Abstract
A non-contact fiber-optical piezomechanical (FOP) nano-micropositioning, manipulating and measuring system has been developed and investigated. The system consists of a non-contact fiber one optopair reflection sensor with a semiconductor light source (light diode), a reflected light receiver with a p-i-n photo diode, an amplifier of electronic signals, and a positioning device, the resolution of which is 0.5 µm. The diameter of the fiber sensor measuring head is 3 mm and its length is 10 mm. The positioning device is fixed in front of a mirror. The diameter of fiber core is 100 µm and the external diameter is 125 µm (WF100/110/125P22). Fiber length may reach up to 200 m. The FOP system also has a piezoceramics positioning and manipulating system with a mirror. The piezoceramics system is fastened to the positioning device. The dependence of the fiber sensor signal U on the distance h to the mirror, located on piezoceramics, has been measured. The obtained U-h characteristic has a peak on two parts of linear dependence of an increasing and decreasing signal. Sensitivity of the U-h linear part in front of the peak is higher and equal to 1.6725 nW/nm, and that of the decreasing signal part is 1.388 nW/nm. These parts can be used for displacement indication and measurement
About this article
Received
30 April 2008
Accepted
13 June 2008
Published
30 June 2008
Keywords
Fiber-optic sensor
nanometric displacement measurement
piezoelectric actuator
experiment
Copyright © 2008 Vibroengineering
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.