
 

 JOURNAL OF VIBROENGINEERING 1 

Dynamic behaviors and double-frequency 
synchronization analysis of a dynamic vibration 
absorption system driven by three co-rotating exciters 

Pan Fang1, Weiming Zhu2, Yongjun Hou3, Dong Xiao4 
School of Mechanical Engineering, Southwest Petroleum University, Chengdu, 610500, China 
1Corresponding author 
E-mail: 1ckfangpan@163.com, 2936033665@qq.com, 317378499307@163.com, 42486885898@qq.com 
Received 5 November 2024; accepted 31 January 2025; published online 19 February 2025 
DOI https://doi.org/10.21595/jve.2025.24661 

Copyright © 2025 Pan Fang, et al. This is an open access article distributed under the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract. The recovery efficiency of drilling fluid is directly affected by working performance of 
the vibration screen. Therefore, a newly dynamic vibration absorption system driven by different 
excitation frequencies is designed through double-frequency synchronization theory to improve 
the mechanical performance of screening equipment. Firstly, the differential equations of motion 
of vibration system are deduced by Lagrange method. Then, the theoretical conditions of the 
system implementing double-frequency synchronization are obtained based on asymptotic 
method, and stability criterion of the synchronization is revealed according to Routh-Hurwitz 
criterion. Subsequently, the effects of structure parameters on vibration isolation ability, 
synchronous state, and stability of synchronization are numerically discussed. Finally, the 
feasibility of the theoretical method and the obtained results is further verified by simulation and 
experiment. It is found that the vibration isolation and synchronization performance of the system 
is influenced by the motor parameters and system structure. The system has the best vibration 
isolation ability when 𝜔௠଴ ൌ 157 rad/s, which is considered as the best operating frequency of 
the present vibration system. Meanwhile, when the mass ratio 𝜅 between the high-frequency 
co-rotating rotor and the low-frequency co-rotating rotor is smaller, the absolute value of the 
stability coefficient 𝑆௜ is larger, and the stability phase difference is smaller, and the system is 
more stable. The present work can provide theoretical direction for the design of new screening 
equipment. 
Keywords: double-frequency, synchronization, stability, vibration absorption, exciters. 

1. Introduction 

With the development of synchronization theory, vibration synchronization technology has 
been widely used in machinery, biology, chemical industry, and other fields [1]-[4]. Self-
synchronous vibrating screen is largely applied in material screening and mud filtration. 
Therefore, it is of great engineering significance to explore the synchronous mechanism of self-
synchronous vibration system for the development of rotary screening machinery. 

For synchronization of rotor system, towards the end of the century, Blekhman firstly proposed 
the direct motion separation method to study synchronization of the exciter mounted in a rigid 
frame [5], [6]. Subsequently, considering fluctuation of the velocity and phase of the rotor in 
vibration system, Wen introduced the disturbance parameter to greatly simplify mathematical 
treatment process of computing synchronization status [7], [8], which is also called average 
method of small parameters. The two research methods above are the basic methods commonly 
applied in the study of the fundamental frequency synchronization of vibration systems. With the 
deepening of research on synchronization, the improvement of vibration screen performance has 
become an urgent desire for scholars and engineers. For the nonlinear jump problem observed in 
the traditional vibration system, Balthazar et al. investigated synchronous behavior among 
multiple non-ideal exciters in vibration system through numerical analysis and simulation, and 
revealed the relationship between Sommerfeld effect and synchronization of the system [9]-[11]. 
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Kovriguine et al. discussed the amplitude-frequency response and Sommerfeld effect of the 
vibration system driven by two exciters in the near-resonance region, and proved that the nonlinear 
coupling occurred between the elastic base and the unbalanced rotor. The result shows that the 
bifurcation oscillation phenomenon and Sommerfeld instability region of the vibrating system 
gradually disappeared as the increase of energy dissipation. The research has important 
engineering significance for reducing the working noise of vibration machinery and extending the 
life of equipment [12]. In order to improve screening efficiency, Zou et al. revealed 
double-frequency synchronization mechanism in far-resonance vibration system, and designed 
control strategy to improve stability of synchronization on the basis of sliding mode control 
method [13]-[15]. According to the above researches, high efficiency, high reliability and high 
intelligence are the design and development goals of screening device at present.  

Unlike the traditional vibration isolation mode (i.e., isolation spring), the adverse effects such 
as low screening efficiency, vibration fatigue and structural failure caused by vibration can be 
greatly reduced in vibrating system with double rigid frames [16]-[18]. In engineering, many new 
types of vibration equipment with double rigid frames and same-frequency actuation have been 
designed and manufactured. Meanwhile, the vibration system driven by multi-frequencies has 
been proven to improve the working performance in some special industry fields. For example, in 
mineral separation, the double-frequency excitation can greatly improve the screening efficiency 
of the vibration screen under certain conditions [19], [20]. Therefore, the research and 
development of vibration system with double rigid frames and multi-frequency actuation is urgent. 

In the previous literature, most studies focused on the fundamental frequency synchronization 
of the vibration system with double rigid frames or the dual-frequency synchronization of 
far-resonance system [13]-[21]. The multi-frequency synchronization of the double-rigid-frame 
system operating in the near-resonance region, however, is rarely studied except for Ref. [13]. The 
exploration of the stability problem of multifrequency synchronization in the near-resonance 
region is even rather limited. In Ref. [13], taking dynamical model of an anti‑resonance system 
with dual‑motor and double‑frequency actuation for example, synchronous mechanism of the 
system is studied by average method of small parameters, and synchronization state and vibration 
isolation performance are discussed numerically. However, there are still some shortcomings in 
the research work of Ref. [13]: (1) no experimental prototype is designed to verify the credibility 
of the theoretical research and the correctness of the obtained results; (2) the stability of the 
synchronization state, as crucial feature of the synchronization performance, is not analyzed 
numerically; (3) The solution process is complicated and the coupling term of the system is 
difficult to be eliminate. 

In the process of solving the fundamental-frequency synchronization problem of vibration 
system, the direct motion separation method and average method of small parameters are the two 
most commonly used means. But in vibration system excited by dual-frequency, the process of 
solving synchronization is very complicated since a lot of coupling terms in balanced equation of 
the motor are eliminated difficultly. In this case, to solve the multi-frequency synchronization 
problem in far-resonance system, a mathematical analysis method called asymptotic method is 
proposed by Sergey et al. [22]. Based on Sergey’s study, Zhang et al. investigated the multi-cycle 
synchronization and stability of a vibration system with a single body in detail through theoretical, 
numerical and experimental methods [23], [24]. Therefore, in this paper, the asymptotic method 
is introduced to establish double-frequency synchronization theory of vibration system with 
double rigid frames operating in the near-resonance region. This method reasonably eliminates a 
large number of coupling terms in the equilibrium equations of the motor and simplifies the 
cumbersome process of calculating the synchronization problem of the system, and at the same 
time, uses computer simulation and experiments to validate the correctness of the asymptotic 
method in the solving process. 

In the present work, taking dynamical model of a dynamic vibration absorption system with 
three co-rotating rotors (CRs) and double‑frequency actuation as an example, the vibration 
isolation performance and double-frequency synchronization are studied in detail through 
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theoretical, numerical, simulation and experimental methods. the research results will provide 
theoretical guidance for the design of new vibrating equipment with double rigid frames and multi-
frequency actuation. 

2. Differential equation of motion 

According to the 3D solid model of dynamic vibration absorption system with three CRs and 
double‑frequency actuation shown in Fig. 1(a), the simplified dynamic model of the vibrating 
system is illustrated in Fig. 1(b). The vibration isolator (VI) 𝑀଴ଶ is connected to oscillating body 
(OB) 𝑀ଵ and foundation through compression springs with stiffness coefficients 𝑘௫௜(N/m), 𝑘௬௜ 
(N/m) and𝑘ట௜ (N‧m/rad) (𝑖 ൌ 1,2).𝑓௫௜(N‧s/m), 𝑓௬௜(N‧s/m) and 𝑓ట௜(N‧s‧m/rad) (𝑖 ൌ 1,2) are 
damping coefficients of the corresponding springs. Three CRs 𝑚௜, separately driven by three 
identical motors with different supply frequencies, are fixedly mounted on VI. Based on the 
center-of-gravity positions of the vibrating device, the coordinate system 𝑜௜ᇱᇱ𝑥௜ᇱᇱ𝑦௜′′ is established 
to calculate the differential motion equation of the CRs. Therefore, the position of the CRs in 
coordinate system 𝑜௜ᇱᇱ𝑥௜ᇱᇱ𝑦௜′′ can be described by position parameters 𝑙௜ (m), setting angle 𝛽௜ (rad), 
rotational radius of the CRs 𝑟௜ (m) and phase angle 𝜑௜, i.e.: 𝚽ଵᇱᇱ ൌ ൤𝑙ଵcos𝛽ଵ ൅ 𝑟cos𝜑ଵ𝑙ଵsin𝛽ଵ ൅ 𝑟sin𝜑ଵ ൨ ,     𝚽ଶᇱᇱ ൌ ൤𝑙ଶcos𝛽ଶ ൅ 𝑟cos𝜑ଶ𝑙ଶsin𝛽ଶ ൅ 𝑟sin𝜑ଶ ൨ ,     𝚽ଷᇱᇱ ൌ     ൤𝑙ଷcos𝛽ଷ ൅ 𝑟cos𝜑ଷ𝑙ଷsin𝛽ଷ ൅ 𝑟sin𝜑ଷ ൨. (1)

 

 
a) 3D solid model of the system 

 
b) Simplified dynamic model of the vibration system 

 
c) Coordinate transformation method 

Fig. 1. 3D solid model of the system: 1 – the VI; 2 – the CRs; 3 – low-frequency motor;  
4 – high-frequency motor; 5 – the OB; 6 – isolation spring; 7 – foundation support; 8 – steel frame 

In order to accurately describe the kinetic energy of the system, the position vector of the CRs 
in fixed-coordinate system 𝑜௜𝑥௜𝑦௜  is obtained by using a coordinate transformation method 
combining Park’s transformation and translation transformation, as shown in Fig. 1(c). The 
mathematical model of the coordinate transformation can be described as: 𝚽௜ ൌ 𝚽଴ ൅ 𝐗𝚽′′௜ ,   𝚽଴ ൌ ቂ𝑥ଶ𝑦ଶቃ  ,   𝐗 ൌ ൤cos𝜓ଶ        − sin𝜓ଶsin𝜓ଶ           cos𝜓ଶ ൨, (2)

where 𝚽𝟎 is represented as the displacement vector of the VI. Substituting Eq. (2) into Eq. (1), the 
position vector 𝚽𝒊 of the CRs in coordinate system 𝑜௜𝑥௜𝑦௜  can be rewritten as: 
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𝚽௜ = ൤𝑥ଶ + 𝑙௜cos(𝛽௜ + 𝜓ଶ) + 𝑟cos(𝜑௜ + 𝜓ଶ) 𝑦ଶ + 𝑙௜sin(𝛽௜ + 𝜓ଶ) + 𝑟sin(𝜑௜ + 𝜓ଶ)൨. (3)

The kinetic energy of the vibration system can be expressed as: 

𝑇 = 12෍ 𝑀଴௜(𝑥ሶ௜ଶ + 𝑦ሶ௜ଶ)ଶ௜ୀଵ + 12෍ 𝐽଴௜𝜑ሶ ௜ଶଷ௜ୀଵ + 12෍ 𝐽௜𝜓ሶ ௜ଶଶ௜ୀଵ + 12෍ 𝑚௜ଷ௜ୀଵ 𝚽ሶ ௜் 𝚽ሶ ௜ . (4)

The potential energy of the vibration system is expressed by: 𝑈 = 12𝑘௫ଶ𝑥ଶଶ + 12𝑘௬ଶ𝑦ଶଶ + 12𝑘టଶ𝜓ଶଶ + 12𝑘௫ଵ(𝑥ଵ − 𝑥ଶ)ଶ + 12𝑘௬ଵ(𝑦ଵ − 𝑦ଶ)ଶ + 12𝑘టଵ(𝜓ଵ− 𝜓ଶ)ଶ. (5)

The energy dissipation of the system is described as: 𝐷 = 12 [𝑓௫ଶ𝑥ሶଶଶ + 𝑓௬ଶ𝑦ሶଶଶ + 𝑓టଶ𝜓ሶଶଶ + 𝑓௫ଵ(𝑥ሶଵ − 𝑥ሶଶ)ଶ + 𝑓௬ଵ(𝑦ሶଵ − 𝑦ሶଶ)ଶ + 𝑓టଵ(𝜓ሶଵ − 𝜓ሶଶ)ଶ]+ 12෍ 𝑓௜𝜑ሶ ௜ଶଷ௜ୀଵ , (6)

where, •ሶ= 𝑑𝛥/𝑑𝑡, •ሷ= 𝑑ଶΔ/𝑑𝑡ଶ; 𝐽଴௜ (kg‧m2) is the rotational inertia of the CRs (𝑖 = 1,2,3)  
(𝐽଴௜ = 𝑚௜𝑟ଶ); the rotational inertia of the OB and VI is described as 𝐽௜ (𝐽௜ = 𝑀௜𝑙௘ଶ); 𝜓ଵ and 𝜓ଶ are 
represented as the oscillation angle of the OB and VI, respectively; 𝑓௜ is represented as the 
damping coefficient of the motors 𝑖. To calculate differential equation of motion of the vibration 
system, a vector 𝐞 = [𝑥ଵ, 𝑥ଶ,𝑦ଵ,𝑦ଶ,𝜓ଵ,𝜓ଶ,𝜑ଵ,𝜑ଶ] is chosen as the generalized coordinates. 
Therefore, Lagrange equation can be expressed as: 𝑑𝑑𝑡 ൬𝜕𝑇𝜕𝐞ሶ ൰ − 𝜕(𝑇 − 𝑉)𝜕𝐞 + 𝜕𝐷𝜕𝐞ሶ = 0. (7)

In light of Lagrange method, the motion differential equations of the vibrating system are 
established as follows: 𝑀ଵ𝑥ሷଵ + 𝑓௫ଵ(𝑥ሶଵ − 𝑥ሶଶ) + 𝑘௫ଵ(𝑥ଵ − 𝑥ଶ) = 0,𝑀ଵ𝑦ሷଵ + 𝑓௬ଵ(𝑦ሶଵ − 𝑦ሶଶ) + 𝑘௬ଵ(𝑦ଵ − 𝑦ଶ) = 0,𝐽ଵ𝜓ሷଵ + 𝑓టଵ(𝜓ሶଵ − 𝜓ሶଶ) + 𝑘టଵ(𝜓ଵ − 𝜓ଶ) = 0,𝑀ଶ𝑥ሷଶ + (𝑘௫ଵ + 𝑘௫ଶ)𝑥ଶ − 𝑘௫ଵ𝑥ଵ + (𝑓௫ଵ + 𝑓௫ଶ)𝑥ሶଶ − 𝑓௫ଵ𝑥ሶଵ      = ෍ 𝑚௜ 𝑟(𝜑ሷ ௜sin𝜑௜ + 𝜑ሶ ௜ଶcos𝜑௜)ଷ௜ୀଵ ,𝑀ଶ𝑦ሷଶ + ൫𝑘௬ଵ + 𝑘௬ଶ൯𝑦ଶ − 𝑘௬ଵ𝑦ଵ + ൫𝑓௬ଵ + 𝑓௬ଶ൯𝑦ሶଶ − 𝑓௬ଵ𝑦ሶଵ      = ෍𝑚௜ 𝑟൫−𝜑ሷ ௜cos𝜑௜ + 𝜑ሶ ௜ଶsin𝜑௜൯,ଷ

௜ୀଵ𝐽ଶ𝜓ሷଶ + (𝑘టଵ + 𝑘టଶ)𝜓ଶ − 𝑘టଵ𝜓ଵ + (𝑓టଵ + 𝑓టଶ)𝜓ሶଶ − 𝑓௬ଵ𝜓ሶଵ      = ෍ 𝑚௜ 𝑟𝑙௜𝜑ሶ ௜ଶsin(𝜑௜ − 𝛽௜) ଷ௜ୀଵ −෍ 𝑚௜ 𝑟𝑙௜𝜑ሷ ௜cos(𝜑௜ − 𝛽௜),ଷ௜ୀଵ𝐽଴௝𝜑ሷ ௝ + 𝑓௝𝜑ሶ =      = 𝑇௘௜ + 𝑚௝𝑟ൣ𝑥ሷଶsin𝜑௝ − 𝑦ሷଶcos𝜑௝ − 𝜓ሷଶ𝑙௝cos(𝜑௝ − 𝛽௝) + 𝜓ሶଶଶ𝑙௝sin(𝜑௝ − 𝛽௝) + 𝑔sin𝜑௝൧,

 (8)
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with 𝑀ଶ = 𝑀଴ଶ + 𝑚ଵ + 𝑚ଶ + 𝑚ଷ; 𝑇௘௜  means output torque of the motors. 

3. Dynamic behaviors of the vibrating system 

Since the damping of the vibration system is very small relative to the other forces on the 
system during normal operation, and the speed fluctuation of the CRs is very small, and the change 
in angular acceleration has less effect on the main behavior of the system (e.g., displacement and 
velocity), the terms related to the damping of the compression springs and the angular acceleration 𝜑ሷ ௜ can be omitted from Eq. (8), which will simplify the subsequent solution process and make it 
easier to solve for the system. Some parameters are introduced as follows: 𝜂ଵଶ = 𝑀ଵ𝑀ଶ ,   𝜂ଵ = 𝑚ଵ𝑀ଵ ,    𝜂ଶ = 𝑚ଶ𝑀ଵ ,     𝜂ଷ = 𝑚ଷ𝑀ଵ ,      𝑙௘ = ඥ𝐽ଶ 𝑀ଶ⁄ = ඥ𝐽ଵ 𝑀ଵ⁄ ,𝑟଴ = 𝑟𝑙௘ ,   𝑟௟ଵ = 𝑙ଵ𝑙௘ ,   𝑟௟ଶ = 𝑙ଶ𝑙௘ ,   𝑟௟ଷ = 𝑙ଷ𝑙௘ ,   𝜅ଵ𝑚ଵ = 𝜅ଶ𝑚ଶ = 𝜅ଷ𝑚ଷ,𝑛௟௫భ = 𝜔௠𝜔௫భ ,   𝑛௛௫భ = 2𝜔௠𝜔௫భ ,   𝑛௟௫మ = 𝜔௠𝜔௫మ ,   𝑛௛௫మ = 2𝜔௠𝜔௫మ ,𝑛௟௬భ = 𝜔௠𝜔௬భ ,   𝑛௛௬భ = 2𝜔௠𝜔௬భ ,   𝑛௟௬మ = 𝜔௠𝜔௬మ ,   𝑛௛௬మ = 2𝜔௠𝜔௬మ ,𝑛௟టభ = 𝜔௠𝜔టభ ,   𝑛௛టభ = 2𝜔௠𝜔టభ ,   𝑛௟టమ = 𝜔௠𝜔టమ ,   𝑛௛టమ = 2𝜔௠𝜔టమ ,𝜔௫భ = ට𝑘௫భ/𝑀ଵ,   𝜔௫మ = ට𝑘௫మ/𝑀ଶ,   𝜔௬భ = ට𝑘௬భ/𝑀ଵ,𝜔௬మ = ට𝑘௬మ/𝑀ଶ ,   𝜔టభ = ට𝑘టభ/𝑀ଵ ,    𝜔టమ = ට𝑘టమ/𝑀ଶ,𝜆ଵ = 𝜂ଵ𝜂ଵଶ𝑀ଶ𝑟ଶ𝜅ଵ𝐽଴ଵ ,   𝜆ଶ = 𝜂ଵ𝜂ଵଶ𝑀ଶ𝑟ଶ𝜅ଶ𝐽଴ଶ ,   𝜀 = 𝑚ଵ𝑀ଶ .

 (9)

It can be noticed from Eq. (8) that the vibrating system is a second-order linear system with 
mutually coupled degrees of freedom (DOF). Inserting Eq. (9) into Eq. (8) and decoupling the 
motion differential equations of the VI and OB, the steady-state solution of the VI and OB in all 
DOFs can be obtained: 

𝑥ଵ = ෍ 𝜇௜௫భ𝜂௜ 𝑟cos𝜑௜ଷ௜ୀଵ ,      𝑥ଶ = ෍ 𝜇௜௫మ𝜂௜ 𝜂ଵଶ𝑟cos𝜑௜ଷ௜ୀଵ ,𝑦ଵ = ෍ 𝜇௜௬భ𝜂௜ 𝑟sin𝜑௜ଷ௜ୀଵ ,      𝑦ଶ = ෍ 𝜇௜௬మ𝜂௜ 𝜂ଵଶ𝑟sin𝜑௜ଷ௜ୀଵ ,𝜓ଵ = ෍ 𝜇௜టభ𝜂௜𝑟଴𝑟௟௜sin(𝜑௜ − 𝛽௜)ଷ௜ୀଵ ,      𝜓ଶ = ෍ 𝜇௜టమ𝜂௜𝜂ଵଶ𝑟଴𝑟௟௜sin(𝜑௜ − 𝛽௜),ଷ௜ୀଵ
 (10)

with 

𝜇௜௝భ = ඨ𝑐௜௝భଶ + 𝑑௜௝ଶ𝑎௜௝ଶ + 𝑏௜௝ଶ ,    𝜇௜௝మ = ඨ𝑐௜௝మଶ + 𝑑௜௝ଶ𝑎௜௝ଶ + 𝑏௜௝ଶ , 𝑐ଵ௝భ = 𝑐ଷ௝భ =  𝑛௟௝మଶ ,    𝑐ଶ௝భ = 𝑛௛௝మଶ ,     𝑐ଵ௝మ = 𝑐ଷ௝మ =  𝑛௟௝మଶ ൫1 − 𝑛௟௝భଶ ൯,    𝑐ଶ௝మ = 𝑛௛௝మଶ ൫1 − 𝑛௛௝భଶ ൯, 𝑎ଵ௝ = 𝑎ଷ௝ = ൫1 − 𝑛௟௝భଶ ൯൫1 − 𝑛௟௝మଶ ൯ − 𝜇ଵଶ𝑛௟௝మଶ ,     𝑎ଶ௝ = ൫1 − 𝑛௛௝భଶ ൯൫1 − 𝑛௛௝మଶ ൯ − 𝜇ଵଶ𝑛௛௝మଶ , 𝑑௜௝ = 𝑏௜௝ = 0,     𝑗 = 𝑥,𝑦,𝜓,    𝑖 = 1,2,3, 
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where parameters 𝜇௜௝భ and 𝜇௜௝మ are amplitude amplification factors of the forced vibration 
response. Meanwhile, in order to master vibration isolation effect during the operation of vibrating 
screen, vibration absorption coefficient 𝜗, the ratio between the amplitude of the VI in 𝑦ଵ DOF 
and the amplitude of the OB in 𝑦ଶ DOF, is represented as vibration isolation ability of the system 
in the vertical direction: 

𝜗 = 𝐶௬ଶ𝐶௬ଵ. (11)

4. Double-frequency synchronization of the three CRs 

In this section, double-frequency synchronization relationship of the three CRs is further 
concerned. According to Eq. (3), 𝑥ሷ௜, 𝑦ሷ௜ and 𝜓ሷ ௜ can be acquired after the differentiation process. 
Considering Ref. [8], substituting the parameters above into the last two formulae of Eq. (8), the 
approximate expressions regarding the angular acceleration 𝜑ሷ௝ (𝑗 = 1,2) of each CR can be 
described as: 

𝜑ሷ௝ = 𝜀
⎩⎪⎪⎨
⎪⎪⎧(𝑇௝(ଵ) − 2𝜌௝(ଵ)𝜑ሶ௝) + 𝑘௝sin𝜑௝
−෍𝜆௜௝ ⎣⎢⎢

⎢⎡𝜑ሷ ௜൫𝑎௜ cos൫𝜑௝ + 𝜑௜൯ + 𝑏௜ cos൫𝜑௝ − 𝜑௜൯൯+𝜑ሶ ௜ଶ൫𝑎௜sin(𝜑௝ + 𝜑௜) + 𝑏௜sin(𝜑௝ − 𝜑௜)൯+𝐴௜௝ ቆ𝜑ሷ ௜cos(𝜑௝ − 𝜑௜ − 𝛽௝ + 𝛽௜) + 𝜑ሷ ௜cos(𝜑௝ + 𝜑௜ − 𝛽௝ − 𝛽௜)−𝜑ሶ ௜ଶsin(𝜑௝ + 𝜑௜ − 𝛽௝ − 𝛽௜) + 𝜑ሶ ௜ଶsin(𝜑௝ − 𝜑௜ − 𝛽௝ + 𝛽௜)ቇ⎦⎥⎥
⎥⎤ଷ

௜ୀଵ ⎭⎪⎪⎬
⎪⎪⎫

      +𝜀ଶ൫𝑇௝(ଶ) − 2𝜌௝(ଶ)𝜑ሶ௝൯ + 𝜀ଷ ⋯ ,
 (12)

with 

𝜆௜௝ = 𝜂௜𝜂ଵଶ𝑀ଶ𝑟ଶ𝜅௝𝐽଴௝ ,      𝑘௝ = 𝑀ଶ𝑔𝜅௝𝑚௝𝜔௠଴ଶ 𝑟 ,      𝑎௜ = 𝜇௜௬మ + 𝜇௜௫మ2 , 𝑏௜ = 𝜇௜௬మ − 𝜇௜௫మ2 ,      𝐴௜௝ = −𝜇௜టమ𝑟௟௜𝑟௟௝2𝜅௝ଶ , 𝑇௝(ଵ) − 2𝜌௝(ଵ)𝜑ሶ௝ = 𝑓௝𝐽଴௝𝜔௠଴ ,      𝑇௝(ଶ) − 2𝜌௝(ଶ)𝜑ሶ௝ = 𝑇௘௝𝐽଴௝𝜔௠଴ଶ ଶ ,      𝜀 = 𝑚ଵ𝑀ଶ ,      𝑗 = 1,2,3 
where the mass of the CR1, 𝑚ଵ, is much less than 𝑀. Therefore, small parameter 𝜀, ratio of 𝑚ଵ to 𝑀, is introduced in Eq. (10) to calculate approximate expressions. In order to reveal double-
frequency synchronization relationship between CRs, instantaneous phase of the CRs can be 
expressed as: 𝜑௝ = ൫𝜎௝𝜏 + Δ௝൯,       𝑗 = 1,2,3,        𝜏 = 𝜔௠଴𝑡, (13)

where, Δ௝ is defined as the fluctuation coefficient when the phase changes; 𝜔௠଴ is considered as 
the lowest operating frequency of the system; Instantaneous phase 𝜑௝, consisting of linearly 
increasing term (i.e., 𝜎௝𝜏) and fluctuation coefficient term (i.e., Δ௝), is gradually increased during 
the steady operation process of the system. Compared with phase 𝜑௝, Δ௝ is a slow-changing 
parameter. Substituting Eq. (13) into Eq. (12), the expression related to Δሷ௝ can be got: 
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Δሷ௝ = 𝜀
⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧𝑇௝(ଵ) − 2𝜌௝(ଵ)(𝜎௝ + Δሶ௝) + 𝑘௝sin(𝜎௝𝜏 + Δ௝)
−෍𝜆௜௝

⎩⎪⎪
⎨⎪
⎪⎧Δሷ ௜(𝑎௜cos((𝜎௝𝜏 + Δ௝) + (𝜎௜𝜏 + Δ௜)) + 𝑏௜cos((𝜎௝𝜏 + Δ௝)−(𝜎௜𝜏 + Δ௜))) + (𝜎௜ + Δሶ ௜)ଶ(𝑎௜sin((𝜎௝𝜏 + Δ௝) + (𝜎௜𝜏 + Δ௜))+𝑏௜sin((𝜎௝𝜏 + Δ௝) − (𝜎௜𝜏 + Δ௜))) + 𝐴௜௝[Δሷ ௜cos((𝜎௝𝜏 + Δ௝)−(𝜎௜𝜏 + Δ௜) − 𝛽௝ + 𝛽௜) + Δሷ ௜cos((𝜎௝𝜏 + Δ௝)+(𝜎௜𝜏 + Δ௜) − 𝛽௝ − 𝛽௜) − (𝜎௜ + Δሶ ௜)ଶsin((𝜎௝𝜏 + Δ௝) + (𝜎௜𝜏 + Δ௜)−𝛽௝ − 𝛽௜) + (𝜎௜ + Δሶ ௜)ଶsin((𝜎௝𝜏 + Δ௝) − (𝜎௜𝜏 + Δ௜) − 𝛽௝ + 𝛽௜)] ⎭⎪⎪

⎬⎪
⎪⎫ଷ

௜ୀଵ ⎭⎪⎪
⎪⎬
⎪⎪⎪
⎫

      +𝜀ଶ൫𝑇௝(ଶ) − 2𝜌௝(ଶ)𝜑ሶ௝൯ + 𝜀ଷ.
 (14)

Then, the expression related to Δሷ௝ can be rewritten as: 

Δሷ௝ = 𝜀 ⎩⎪⎨
⎪⎧𝑇௝(ଵ) − 2𝜌௝(ଵ)(𝜎௝ + Δሶ௝) + 𝑘௝sin(𝜎௝𝜏 + Δ௝)
−෍𝜆௜௝ ൦Δሷ ௜൫𝑎௜cos(𝜒௜௝ା + 𝛽௝ + 𝛽௜ ) + 𝑏௜cos(𝜒௜௝ି + 𝛽௝ − 𝛽௜ )൯+(𝜎௜ + Δሶ ௜)ଶ൫𝑎௜sin(𝜒௜௝ା + 𝛽௝ + 𝛽௜ ) + 𝑏௜sin(𝜒௜௝ି + 𝛽௝ − 𝛽௜ )൯+𝐴௜௝൫Δሷ ௜cos𝜒௜௝ି + Δሷ ௜cos𝜒௜௝ା − (𝜎௜ + Δሶ ௜)ଶsin𝜒௜௝ା + (𝜎௜ + Δሶ ௜)ଶsin𝜒௜௝ି൯൪

ଷ
௜ୀଵ ⎭⎪⎬

⎪⎫
       +𝜀ଶ൫𝑇௝(ଶ) − 2𝜌௝(ଶ)𝜑ሶ௝൯ + 𝜀ଷ ⋯ ,

 (15)

with 𝜒௜௝ି = (𝜎௝ − 𝜎௜)𝜏 + Δ௝ − Δ௜ − 𝛽௝ + 𝛽௜, 𝜒௜௝ା = (𝜎௝ + 𝜎௜)𝜏 + Δ௝ + Δ௜ − 𝛽௝ − 𝛽௜. 
After the operations above, the approximate expression to carry out synchronization between 

the CRs is obtained, as seen in Eq. (15). In order to further study phase difference of the CRs, 
according to the asymptotic method, we rearrange Eq. (6) into Bogoliubov standard form by: Δ௝ = Δ௝ ,      Δሶ௝ = √𝜀𝑣௝ ,      𝑗 = 1,2,3. (16)

Differentiating Eq. (15) with respect to 𝜏, the expression Δሷ ௜ can be obtained, and substituting 
the results into Eq. (17), the expression related to 𝑣ሶ௝ can be described as: Δ௝ = Δ௝ ,Δሷ௝ = √𝜀𝑣ሶ௝ , 𝑗 = 1,2,3, 𝑣ሶ௝ = √𝜀ቄ𝑇௝(ଵ) − 2𝜌௝(ଵ)𝜎௝ + 𝑘௝ sin൫𝜎௝𝜏 + Δ௝൯     −෍ 𝜎௜ଶ𝜆௜௝൫𝑎௜ sin൫𝜒௜௝ା + 𝛽௝ + 𝛽௜൯൯ + 𝑏௜ sin൫𝜒௜௝ି + 𝛽௝ − 𝛽௜൯ଷ௜ୀଵ ൠ − 3𝐴௜௝(sin𝜒௜௝ା − sin𝜒௜௝ି))     +𝜀 ൜−2𝜌௝(ଵ)𝑣௝ −෍ 2𝜎௜𝑣௜𝜆௜௝൫𝑎௜ sin൫𝜒௜௝ା + 𝛽௝ + 𝛽௜൯ + 𝑏௜ sin൫𝜒௜௝ି + 𝛽௝ − 𝛽௜൯൯ଷ௜ୀଵ ൠ 
    +ඥ𝜀ଷ ൝𝑇௝(ଶ) − 2𝜌௝(ଶ)𝜎௝ −෍𝜆௜௝𝑣௜ଶ൫𝑎௜ sin൫𝜒௜௝ା + 𝛽௝ + 𝛽௜൯ + 𝑏௜ sin൫𝜒௜௝ି + 𝛽௝ − 𝛽௜൯൯ଷ

௜ୀଵ  
    −෍ 𝜆௜௝ଷ௜ୀଵ ൝𝑇௜(ଵ) − 2𝜌௜(ଵ)𝜎௜ + 𝑘௜sin (𝜎௜𝜏 + Δ௜) −෍𝜎௥ଶ𝜆௥௜ଷ

௥ୀଵ ሼ𝑎௥ sin(𝜒௥௜ା + 𝛽௜ + 𝛽௥  ))     +𝑏௥sin(𝜒௥௜ି + 𝛽௜ − 𝛽௥  ) − 𝐴௥௜(sin𝜒௥௜ା − sin𝜒௥௜ି)}     × (𝑎௜cos(𝜒௜௝ା + 𝛽௝ + 𝛽௜ ) + 𝑏௜cos(𝜒௜௝ି + 𝛽௝ − 𝛽௜ ) + 𝐴௜௝(cos𝜒௜௝ା + cos𝜒௜௝ି))}} + 𝜀ଶ ⋯, 

(17)

where, the expression related to 𝑣ሶ௝ is proportional to small parameter √𝜀. Therefore, integral 
parameter 𝑣௝ is a slow-changing parameter. According to average method, parameter 𝑣௝ can be 
approximately expressed as a superposition of an approximate linear term Ω௝ and small oscillation 
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items, as follows: 

𝑣௝ = Ω௝ + √𝜀 ቊ−𝑘௝𝜎௝ cos(𝜎௝𝜏 + Δ௝)       −෍ 𝜎௜ଶ𝜆௜௝(−𝑎௜𝑞௜௝cos(𝜒௜௝ା + 𝛽௝ + 𝛽௜ ) − 𝑏௜𝑝௜௝cos(𝜒௜௝ି + 𝛽௝ − 𝛽௜  )ଷ௜ୀଵ        +𝐴௜௝(𝑞௜௝cos𝜒௜௝ା − 𝑝௜௝cos𝜒௜௝ି))}, (18)

with 𝜎௝ − 𝜎௜ ≠ 0,       𝑝௜௝ = 1𝜎௝ − 𝜎௜ ,       𝜎௝ − 𝜎௜ = 0,       𝑝௜௝ = 0,𝜎௝ + 𝜎௜ ≠ 0,       𝑞௜௝ = 1𝜎௝ + 𝜎௜ ,       𝜎௝ + 𝜎௜ = 0,       𝑞௜௝ = 0. 
Substituting Eq. (18) into Eq. (17), then integrating them in region 0~2𝜋, the averaged 

differential equation can be obtained. It should be noted that the value of the small oscillation 
items related to √𝜀 on 𝑣௝ is very small after the treatment above. Hence, parameter 𝑣௝ can be 
represented as Ω௝ after the integration. Ωሶ ௝ and Δ௝ are regarded as constants during the process of 
averaging. The averaged balanced equation of the motors can be arranged as: 

Ωሶ ௝ = √𝜀 ൜𝑇௝(ଵ) − 2𝜌௝(ଵ)𝜎௝ −෍ 𝑛𝜎௜ଶ𝜆௜௝൫𝑏௜ sin൫𝜒௜௝ି + 𝛽௝ − 𝛽௜  ൯ + 𝐴௜௝sin𝜒௜௝ି൯ଷ௜ୀଵ ൠ     + 𝜀 ൜ −2𝜌௝(ଵ)Ω௝ −෍ 2𝑛𝜎௜Ω௜𝜆௜௝൫𝑏௜ sin൫𝜒௜௝ି + 𝛽௝ − 𝛽௜ ൯ + 𝐴௜௝sin𝜒௜௝ି൯ଷ௜ୀଵ ൠ     +ඥ𝜀ଷ ൜𝑇௝(ଶ) − 2𝜌௝(ଶ)𝜎௝ −෍ 𝑛𝜆௜௝ଷ௜ୀଵ (𝑇௝(ଵ) − 2𝜌௝(ଵ)𝜎௝)൫𝑏௜sin(𝜒௜௝ି + 𝛽௝ − 𝛽௜ ) + 𝐴௜௝sin𝜒௜௝ି൯      +෍ 32 𝜆௜௝𝑘௝𝑧[(𝑎௜ + 𝑏௜)sin(Δ௝ − 2Δ௜) − 𝐴௜௝sin(Δ௝ − 2Δ௜ − 𝛽௝ + 𝛽௜ )]ଷ௜ୀଵ ൠ ,
 (19)

where 𝜎௝ − 2𝜎௜ = 0,      𝑧 = 1,    𝑛 = 0,     𝛾௜௝(ଵ) = Δ௝ − 2Δ௜ ,      𝛾௜௝(ଶ) = Δ௝ − 2Δ௜ − 𝛽௝ + 𝛽௜ ,𝜎௝ − 2𝜎௜ ≠ 0,      𝑧 = 0,    𝑛 = 1.  
The synchronization among the CRs can be implemented when Ωሶ ௝ = 0 and Δሶ௝ = 0. The 

rotational speed ratio between CR 1 and CR 3 is equal to 1:1 when 𝜎ଵ = 𝜎ଷ = 1. Therefore, 
same-frequency synchronization of the vibration system is carried out when 𝜎ଵ = 𝜎ଷ = 1. In this 
case, the phase difference between CR 1 and CR 3 can be written as: Δଵ − Δଷ = 𝜑ଵ − 𝜑ଷ. (20)

The excitation motors 1 and 3 are powered by the same power source. In this case, Eq. (19) 
can be described as: Δሶ ଵ = √𝜀Ωଵ,Δሶ ଷ = √𝜀Ωଷ, Ωሶ ଵ = √𝜀{𝑇ଵ(ଵ) − 2𝜌ଵ(ଵ) − 𝜆ଷଵ(𝑏ଷ + 𝐴ଷଵ)sin(Δଵ − Δଷ + 𝛽ଵ − 𝛽ଷ )}        +𝜀ቄ−2𝜌ଵ(ଵ)Ωଵ − 2Ωଷ𝜆ଷଵ(𝑏ଷ + 𝐴ଷଵ) sin(Δଵ − Δଷ + 𝛽ଵ − 𝛽ଷ )ቅ (21)
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       +ඥ𝜀ଷቄ𝑇ଵ(ଶ) − 2𝜌ଵ(ଶ) − 𝜆ଷଵ൫𝑇ଵ(ଵ) − 2𝜌ଵ(ଵ)൯(𝑏ଷ + 𝐴ଷଵ) sin(Δଵ − Δଷ + 𝛽ଵ − 𝛽ଷ )൯, Ωሶ ଷ = √𝜀ቄ𝑇ଷ(ଵ) − 2𝜌ଷ(ଵ) − 𝜆ଵଷ(𝑏ଵ + 𝐴ଵଷ) sin(Δଷ − Δଵ + 𝛽ଷ − 𝛽ଵ )ቅ        +𝜀ቄ−2𝜌ଷ(ଵ)Ωଷ − 2Ωଵ𝜆ଵଷ(𝑏ଵ + 𝐴ଵଷ) sin(Δଷ − Δଵ + 𝛽ଷ − 𝛽ଵ )ቅ        +ඥ𝜀ଷቄ𝑇ଷ(ଶ) − 2𝜌ଷ(ଶ) − 𝜆ଵଷ൫𝑇ଷ(ଵ) − 2𝜌ଷ(ଵ)൯(𝑏ଵ + 𝐴ଵଷ)sin(Δଷ − Δଵ + 𝛽ଷ − 𝛽ଵ )ቅ. 
The torque of the motors is balanced when vibration system operates in synchronous state, 

i.e.,: Ωሶ ௝ = Ωሶ ௝଴,       Δሶ௝ = Δሶ௝଴,      Ωሶ ௝଴ = 0,      Δሶ௝଴ = 0,𝑇௝(ଵ) − 4𝜌௝(ଵ) = 0,       𝑗 = 1,3.  (22)

According to Eqs. (21-22), the same-frequency synchronization condition between the CR 1 
and CR 3 can be expressed as: √𝜀𝜆ଷଵ(𝑏ଷ + 𝐴ଷଵ)sin(Δଵ଴ − Δଷ଴ + 𝛽ଵ − 𝛽ଷ ) = 0. (23)

The double-frequency synchronization is implemented when 𝜎ଶ = 2, 𝜎ଵ = 𝜎ଷ = 1. Thus, the 
phase difference among the CRs can be written as: Δଵ − Δଷ = 𝜑ଵ − 𝜑ଷ,       Δଶ − 2Δଵ = 𝜑ଶ − 2𝜑ଵ,        Δଶ − 2Δଷ = 𝜑ଶ − 2𝜑ଷ. (24)

where, the excitation motor 2 is powered by a separate high-frequency power supply. Thus, the 
formula related to Ωሶ ଶ in Eq. (22) can be described as: Δሶ ଶ = √𝜀Ωଶ,Ωሶ ଵ = −2𝜀𝛼ଵ(ଵ)Ωଵ,       Ωሶ ଷ = −2𝜀𝛼ଷ(ଵ)Ωଷ,Ωሶ ଶ = √𝜀{𝑇ଶ(ଵ) − 2𝜌ଶ(ଵ)𝜎ଶ}  − 𝜀 2𝜌ଶ(ଵ)Ωଶ                   +ඥ𝜀ଷ{𝑇ଶ(ଶ) − 2𝜌ଶ(ଶ)𝜎ଶ + 32 𝜆ଵଶ𝑘ଶ[(𝑎ଵ + 𝑏ଵ) sin(Δଶ − 2Δଵ))      −𝐴ଵଶsin(Δଶ − 2Δଵ − 𝛽ଶ + 𝛽ଵ)]       + 32 𝜆ଷଶ𝑘ଷ[(𝑎ଷ + 𝑏ଷ)sin(Δଶ − 2Δଷ) − 𝐴ଷଶsin(Δଶ − 2Δଷ − 𝛽ଶ + 𝛽ଷ )]}.

 (25)

The mean value of the fluctuation of the system can be regarded as zero when motors operating 
in synchronous state, i.e.,: Δሶ ଶ = 0,     Ωሶ ଶ = 0,     Δଶ = Δଶ଴,     Ωଶ = Ωଶ଴,     𝑇ଶ(ଶ) − 4𝜌ଶ(ଶ) = 0. (26)

Introducing Eq. (26) into Eq. (25), the condition among CRs implementing double-frequency 
synchronization can be expressed as: ඥ𝜀ଷ ൜32 𝜆ଵଶ𝑘ଶ[(𝑎ଵ + 𝑏ଵ)sin(Δଶ − 2Δଵ) + (𝑎ଷ + 𝑏ଷ)sin(Δଶ − 2Δଷ)       −𝐴ଵଶsin(Δଶ − 2Δଵ − 𝛽ଶ + 𝛽ଵ) − 𝐴ଷଶsin(Δଶ − 2Δଷ − 𝛽ଶ + 𝛽ଷ )]} = 0 (27)

Multiple synchronization solutions can be obtained by calculation from Eq. (26) and Eq. (27). 
However, some of them are stable. In order to find stable synchronization solutions, 
micro-disturbance 𝛿௜ and 𝜉௜ to Δ௜଴ and Ω௜଴ are applied here, respectively, i.e.,: 
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Δ௜ = Δ௜଴ + 𝛿௜ ,      Ω௜ = Ω௜଴ + 𝜉௜ ,      𝑖 = 1,2,3. (28)

Substituting Eq. (28) into Eq. (27), disturbance equations of the vibrating system can be 
described as: 𝛿ሶଵ − √𝜀𝜉ଵ = 0,𝛿ሶଶ − √𝜀𝜉ଶ = 0, 𝛿ሶଷ − √𝜀𝜉ଷ = 0,𝜉ሶଵ + 2𝜀𝜌ଵ(ଵ)𝜉ଵ + (√𝜀 + 𝜀)(𝛿ଵ − 𝛿ଷ)𝜆ଷଵ(𝑏ଷ + 𝐴ଷଵ)cos(Δଵ − Δଷ + 𝛽ଵ − 𝛽ଷ ) = 0,𝜉ሶଶ + 2𝜀𝜌ଶ(ଵ)𝜉ଶ − 32 𝜆ଵଶ𝑘ଶඥ𝜀ଷ[(𝑎ଵ + 𝑏ଵ)(𝛿ଶ − 2𝛿ଵ)cos(Δଶ − 2Δଵ)       +(𝑎ଷ + 𝑏ଷ)(𝛿ଶ − 2𝛿ଷ)cos(Δଶ − 2Δଷ) − 𝐴ଵଶ(𝛿ଶ − 2𝛿ଵ)cos(Δଶ − 2Δଵ − 𝛽ଶ + 𝛽ଵ)       −𝐴ଷଶ(𝛿ଶ − 2𝛿ଷ)cos(Δଶ − 2Δଷ − 𝛽ଶ + 𝛽ଷ )] = 0,𝜉ሶଷ + 2𝜀𝜌ଷ(ଵ)𝜉ଷ + (√𝜀 + 𝜀)(𝛿ଷ − 𝛿ଵ)𝜆ଵଷ(𝑏ଵ + 𝐴ଵଷ)cos(Δଷ − Δଵ + 𝛽ଷ − 𝛽ଵ ) = 0.

 (29)

Rearranging Eq. (29), the balanced equation related to disturbance 𝛿௜ can be obtained as: 𝛿ሷଵ + 2𝜀𝜌ଵ(ଵ)𝛿ሶଵ + (√𝜀 + 𝜀)𝜆ଷଵ(𝑏ଷ + 𝐴ଷଵ)𝛿ଵcos(Δଵ଴ − Δଷ଴ + 𝛽ଵ − 𝛽ଷ)        = (√𝜀 + 𝜀)ଷଵ(𝑏ଷ + 𝐴ଷଵ)𝛿ଷcos(Δଵ଴ − Δଷ଴ + 𝛽ଵ − 𝛽ଷ), 𝛿ሷଶ + 2𝜀𝜌ଶ(ଵ)𝛿ሶଶ − 32 𝜆ଵଶ𝑘ଶඥ𝜀ଷ[(𝑎ଵ + 𝑏ଵ)𝛿ଶcos(Δଶ − 2Δଵ) + (𝑎ଷ + 𝑏ଷ)𝛿ଶcos(Δଶ − 2Δଷ)        −𝐴ଵଶ𝛿ଶcos(Δଶ − 2Δଵ − 𝛽ଶ + 𝛽ଵ ) − 𝐴ଷଶ𝛿ଶcos(Δଶ − 2Δଷ − 𝛽ଶ + 𝛽ଷ )]        = −3𝜆ଵଶ𝑘ଶඥ𝜀ଷ[(𝑎ଵ + 𝑏ଵ)𝛿ଵcos(Δଶ − 2Δଵ) + (𝑎ଷ + 𝑏ଷ)𝛿ଷcos(Δଶ − 2Δଷ)        −𝐴ଵଶ𝛿ଵcos(Δଶ − 2Δଵ − 𝛽ଶ + 𝛽ଵ) − 𝐴ଷଶ𝛿ଷcos(Δଶ − 2Δଷ − 𝛽ଶ + 𝛽ଷ )], 𝛿ሷଷ + 2𝜀𝜌ଷ(ଵ)𝛿ሶଷ + (√𝜀 + 𝜀)𝛿ଷ𝜆ଵଷ(𝑏ଵ + 𝐴ଵଷ)cos(Δଷ − Δଵ + 𝛽ଷ − 𝛽ଵ)        = ൫√𝜀 + 𝜀൯𝛿ଵ𝜆ଵଷ(𝑏ଵ + 𝐴ଵଷ)cos(Δଷ − Δଵ + 𝛽ଷ − 𝛽ଵ). 
(30)

Setting 𝑞 as the eigenvalue of the Eq. (30), the corresponding characteristic equations can be 
written as: 𝑞ଵଶ + 2𝜀𝜌ଵ(ଵ)𝑞ଵ + (√𝜀 + 𝜀)𝜆ଷଵ(𝑏ଷ + 𝐴ଷଵ)cos(Δଵ − Δଷ + 𝛽ଵ − 𝛽ଷ ) = 0,𝑞ଶଶ + 2𝜀𝜌ଶ(ଵ)𝑞ଶ − 32 𝜆ଵଶ𝑘ଶඥ𝜀ଷ[(𝑎ଵ + 𝑏ଵ)cos(Δଶ − 2Δଵ) + (𝑎ଷ + 𝑏ଷ)cos(Δଶ − 2Δଷ)       −𝐴ଵଶcos(Δଶ − 2Δଵ − 𝛽ଶ + 𝛽ଵ ) − 𝐴ଷଶcos(Δଶ − 2Δଷ − 𝛽ଶ + 𝛽ଷ )] = 0,𝑞ଷଶ + 2𝜀𝜌ଷ(ଵ)𝑞ଶ + (√𝜀 + 𝜀)𝜆ଵଷ(𝑏ଵ + 𝐴ଵଷ)cos(Δଷ − Δଵ + 𝛽ଷ − 𝛽ଵ ) = 0.  (31)

In light of Routh-Hurwitz criterion, the real part of the all roots in Eq. (31) must be negative 
to guarantee the existence of stable solutions. Therefore, the stability condition of 
double-frequency synchronization of the vibrating system can be expressed as follows: 2𝜀𝜌ଵ(ଵ) > 0,      2𝜀𝜌ଶ(ଵ) > 0,      2𝜀𝜌ଷ(ଵ) > 0,𝑆ଵcos(Δଵ − Δଷ + 𝛽ଵ − 𝛽ଷ ) > 0,𝑆ଶ[(𝑎ଵ + 𝑏ଵ)cos(Δଶ − 2Δଵ) + (𝑎ଷ + 𝑏ଷ)cos(Δଶ − 2Δଷ)       −𝐴ଵଶcos(Δଶ − 2Δଵ − 𝛽ଶ + 𝛽ଵ ) − 𝐴ଷଶcos(Δଶ − 2Δଷ − 𝛽ଶ + 𝛽ଷ )] > 0, (32)

where, 𝑆ଵ = (√𝜀 + 𝜀)(𝑏ଷ + 𝐴ଷଵ)𝜆ଷଵ; 𝑆ଶ = −3𝜆ଵଶ𝑘ଶ√𝜀ଷ/2. 𝑆ଵ is stability coefficient for 
fundamental frequency synchronization, and 𝑆ଶ is the stability coefficient for double-frequency 
synchronization. According to the simplified physical model of the vibration system, the identical 
low-frequency motors (motor 1 and motor 3) are symmetrically installed on the VI. Therefore, 
some parameters of the motors can be described as: 
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𝐴ଵଵ = 𝐴ଵଷ = 𝐴ଷଵ = 𝐴ଷଷ = 𝐴ଵ,        𝐴ଶଵ = 𝐴ଶଷ = 𝐴ଶ, 𝐴ଵଶ = 𝐴ଷଶ = 𝐴ଷ,         𝜅ଵ = 𝜅ଷ,        𝑙ଵ = 𝑙ଷ = 𝑙ଶsin𝛽, 𝑎ଵ = 𝑎ଷ,        𝑏ଵ = 𝑏ଷ,        𝜆ଵଵ = 𝜆ଵଷ = 𝜆ଷଵ = 𝜆ଷଷ = 𝜆ଵ,     𝜆ଶଵ = 𝜆ଶଷ = 𝜆ଶ,        𝑘ଵ = 𝑘ଷ,       𝛽 = 𝛽ଷ = 𝜋 − 𝛽ଵ,       𝛽ଶ = 𝜋2. (33)

From Eq. (9), parameters 𝜀, 𝜆ଵ, 𝜆ଶ, 𝑘ଶ are positive. Introducing Eq. (33) into Eq. (32), the 
stability condition of double-frequency synchronization can be rewritten as: 2𝜀𝜌ଵ(ଵ) > 0,        2𝜀𝜌ଶ(ଵ) > 0,        2𝜀𝜌ଷ(ଵ) > 0,        cos(Δଵ − Δଷ + 2𝛽 ) < 0, 𝐴ଷ[sin(Δଶ − 2Δଵ − 𝛽 ) − sin(Δଶ − 2Δଷ + 𝛽)]        +(𝑎ଵ + 𝑏ଵ)[cos(Δଶ − 2Δଵ) + cos(Δଶ − 2Δଷ)] < 0. (34)

5. Numerical analyses based on the above theoretical results 

According to engineering practice, some numerical discussions on vibration absorption 
performance and synchronous stability of the vibration system are given in this section based on 
the theoretical results above. The nominal parameters of the motor are assigned as follows: 380 V, 
0.12 kW, 50 Hz, 2-pole, rated velocity 3000 r/min, stator resistance 𝑅௦ = 0.0996 Ω, rotor 
resistance 𝑅௥ = 0.0583 Ω, stator inductance 𝐿௦ = 0.0008 H, rotor inductance 𝐿௥ = 0.0008 H, the 
mutual inductance 𝐿௠ = 0.0304 H. Theoretical analysis and experimental studies have shown that 
the processing capacity of vibrating screen increases with the increase of amplitude and excitation 
frequency, but the amplitude is not much affected by the excitation frequency after moving away 
from the resonance region. In actual engineering application, the amplitude is generally taken as 
2-5 mm, and the stiffness coefficient and the damping coefficient have a significant relationship 
with the amplitude. Therefore, the structural parameters of the system are detailed in Table 1. 

Table 1. The structure parameters of the vibration system 
Oscillating body Vibration isolator Eccentric rotors 𝑀ଵ = 50 kg 𝑀ଶ = 35-80 kg 𝑚ଵ = 𝑚ଷ = 1-4 kg 𝑘௫ଵ = 47326 N/m 𝑘௫ଶ = 47326 N/m 𝑚ଶ = 1-2 kg 𝑘௬ଵ = 1232450 N/m 𝑘௬ଶ = 47326 N/m 𝑟 = 0.05 m 𝑘టଵ = 19719 N‧m/rad 𝑘టଶ =19719 N‧m/rad 𝑙ଵ = 0-1 m 𝑓௫ଵ = 60 N‧s/m 𝑓௫ଶ = 60 N‧s/m 𝛽 = 𝜋/6 or 𝜋/4 or 𝜋/3 𝑓௬ଵ = 198 N‧s/m 𝑓௬ଶ = 0-314 N‧s/m 𝛽ଶ = 𝜋/2 𝑓టଵ = 25 N‧s‧m/rad 𝑓టଶ = 25 N‧s‧m/rad – 𝐽ଵ = 10 kg‧m2 𝐽ଶ = 10 kg‧m2 – 

5.1. Vibration isolation ability 

Vibration isolation ability, as a critical index of vibration system performance, is measured by 
vibration absorption coefficient 𝜗. In light of Eq. (11), coefficient 𝜗 is mainly influenced by mass 
ratio 𝜅, lowest excitation frequency 𝜔௠଴ and mass 𝑀ଶ of the VI if the other structure parameters 
of the vibration system are assigned in Table 1, and vibration isolation of the system is carried out 
when 𝜅 < 1. Moreover, it can be seen from Eq. (11) that the smaller the coefficient 𝜗, the better 
the vibration isolation performance. Taking parameters 𝜅 and 𝜔௠଴ as the independent variables, 
the variation laws of vibration absorption coefficient 𝜗 when 𝑀ଶ = 35 kg, 𝑀ଶ = 50 kg,  𝑀 = 65 kg and 𝑀 = 80 kg is plotted in Fig. 2(a)-(d), respectively. As shown in Fig. 2, the red 
region indicates that vibration isolation is absent, while the blue area means that the vibration 
isolation performance is ideal. In Fig. 2, the region for implementing ideal vibration isolation is a 
triangular region centered at point (157, 0), and the farther away from the center, the larger the 
coefficient 𝜗. Therefore, the vibration isolation performance is the best when the lowest operating 
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frequency 𝜔௠଴ is equal to the natural frequency of the OB. In this case, 𝜔௠଴ = 157 rad/s is 
considered as the optimal operating frequency of the vibration system. Meanwhile, by comparing 
Fig. 2(a)-(c), the larger the value of 𝑀ଶ, the larger the region for implementing ideal vibration 
isolation. 

 
a) 𝑀ଶ = 35 kg 

 
b) 𝑀ଶ = 50 kg 

 
c) 𝑀ଶ = 65 kg 

 
d) 𝑀ଶ = 80 kg 

Fig. 2. The vibration absorption coefficient 

5.2. Stable phase difference 

The phase difference among the CRs is the most important parameter to measure the 
synchronization state of the system. From Eq. (23) and Eq. (27), the phase difference among the 
CRs can be calculated. When the stable double-frequency synchronization is carried out in the 
vibration system, the phase difference can be obtained according to Eq. (34). It can be observed 
from theoretical derivation in section 4 that the stable phase difference is affected by the mass 
ratio of the CRs and the installation position of excitation motors (i.e., installation angle 𝛽 and 
position parameters 𝑟௟). What is noteworthy is that the stable phase difference between same-
frequency CRs can be calculated by the stable phase difference between double-frequency CRs 
(Δଵ − Δଷ = (Δଶ − 2Δଷ)/2 − (Δଶ − 2Δଵ)/2). Therefore, the stable phase difference between 
same-frequency CRs is less discussed in the section. When 𝜇ଵ = 𝜇ଶ = 𝜇ଷ = 0.04 and  𝜇ଵ = 𝜇ଷ = 0.06, 𝜇ଶ = 0.03, the values of Δଶ − 2Δଷ and Δଶ − 2Δଵ are slightly changed at first and 
then gradually decrease with the increase of parameter 𝑟௟, as seen in Fig. 3 and Fig. 4. Meanwhile, 
as shown in Fig. 3 and Fig. 4, the smaller the mass ratio 𝜅, the smaller the stable phase differences Δଶ − 2Δଷ and Δଶ − 2Δଵ. Stable phase differences of Δଶ − 2Δଷ and Δଶ − 2Δଵ when 𝛽 = 𝜋/3 are 
greater than those when 𝛽 = 𝜋/4, and stable phase difference 𝛼௜  is maximal when 𝛽 = 𝜋/6. 
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a) 𝜇ଵ = 𝜇ଶ = 𝜇ଷ = 0.04 

 
b) 𝜇ଵ = 𝜇ଷ = 0.06, 𝜇ଶ = 0.03 

Fig. 3. The phase difference between CRs 1 and 2 

 
a) 𝜇ଵ = 𝜇ଶ = 𝜇ଷ = 0.04 

 
b) 𝜇ଵ = 𝜇ଷ = 0.06, 𝜇ଶ-0.03 

Fig. 4. The phase difference between CRs 2 and 3 

5.3. Stability characteristics 

In order to grasp the stability characteristics of the vibration system under the fundamental 
frequency synchronization and double-frequency synchronization, taking parameters 𝑟௟ and the 
mass ratio between the high-frequency CR and the low-frequency CR as variables, the variation 
laws of the stability coefficient are numerically discussed. As shown in Fig. 5(a) and (b), stability 
coefficient for fundamental frequency synchronization 𝑆ଵ and stability coefficient for 
double-frequency synchronization 𝑆ଶ are negative definite as 𝑟௟ changes, which reveals that the 
system will be in a monostable state in this case. Meanwhile, the values of 𝑆ଵ gradually decrease 
and 𝑆ଶ remains substantially unchanged with the increase of 𝑟௟. The absolute value of 𝑆ଵ is greater 
than that of 𝑆ଶ. Therefore, the stability for fundamental frequency synchronization is greater than 
the stability for double-frequency synchronization in the system. Moreover, the smaller the mass 
ratio between the high-frequency CR and the low-frequency CR, the greater the absolute value of 
stability coefficient. It is shown that choosing a reasonable mass of high-frequency CR and 
low-frequency CR in the system helps to improve the stability of the system. The analysis of the 
stability of the synchronous state of the system makes up for the theoretical deficiencies of Ref. 
[13] and helps to make a reasonable choice of rotor mass and installation parameters in the future 
design of the prototype. 

6. Simulation analyses of the system 

In this section, the electromechanical coupling model of the vibration system is established to 



DYNAMIC BEHAVIORS AND DOUBLE-FREQUENCY SYNCHRONIZATION ANALYSIS OF A DYNAMIC VIBRATION ABSORPTION SYSTEM DRIVEN BY 
THREE CO-ROTATING EXCITERS. PAN FANG, WEIMING ZHU, YONGJUN HOU, DONG XIAO 

14 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460  

verify the numerical analyses above. The motor performance and the structure parameters of the 
system are consistent with the parameters in Section 5. 

 
a) 𝜇ଵ = 𝜇ଷ = 0.04, 𝜇ଶ = 0.04  

 
b) 𝜇ଵ = 𝜇ଷ = 0.06, 𝜇ଶ = 0.03 

Fig. 5. Stability coefficient 𝑆ଵ and 𝑆ଶ 

6.1. Electromechanical coupling model 

The schematic diagram of the electro-mechanical coupled model is plotted based on 
Runge-Kutta method, as shown in Fig. 6. In the procedure of simulation, the acceleration of the 
VB and VI in each DOF is the output of the mechanical system. Thus, the displacements and 
velocities of the rigid frames can be calculated by an integrator. Then, taking these numerical 
values back to the torque equilibrium equation of the motors, the dynamic equilibrium between 
the coupling torque and the loading torque can be achieved by adding a motor module. According 
to the dynamic equation of the vibration system, the angular velocity of the motor module is 
output. Therefore, the acceleration and phase of the CRs can be obtained through differentiator 
and integrator, and the data will be fed back to the dynamic equations of the system. It is obvious 
that the electromechanical coupling model is a closed-loop system. Moreover, a phase disturbance 𝜋/3 is added to the motor 3 to test the stability of the system, as seen in Fig. 6. Meanwhile, the 
blue cabling part on the right side of Fig. 6 is an observing system, and the output quantity of the 
closed-loop system during simulation can be observed by an oscilloscope. 

 
Fig. 6. The electromechanical coupling model of the vibration system 
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6.2. Simulation results for 𝜷 = 𝝅/𝟑 rad, 𝑴𝟐 = 80 kg, 𝒎𝟏 = 𝒎𝟑 = 3 kg, 𝒎𝟐 = 1.5 kg, 𝒓𝒍 = 1.8  

In this section, considering 𝛽 = 𝜋/3 rad, 𝑀ଶ = 80 kg, 𝑚ଵ = 𝑚ଷ = 3 kg, 𝑚ଶ = 1.5 kg,  𝑟௟ = 1.8, the simulation results are illustrated in Fig. 7. It can be observed from Fig. 7(a) that the 
rotational velocity of motor 2 is stabilized at 314 rad/s. The rotational velocities of the motors 1 
and 3 are maintained at 157 rad/s by reducing the frequency of the power supply. Besides, the 
output electromagnetic torques of three motors are kept within 6 N·m during simulation analyses, 
as seen in Fig. 7(b). What is noteworthy is that the fluctuation ranges of the rotational velocity and 
output electromagnetic torque of the low-frequency motor (motors 1 and 3) are larger than those 
of the high-frequency motor (motor 2). As shown in Fig. 7(c), the stable phase difference between 
CRs with same frequency Δଵ − Δଷ is stabilized at –1.05 rad, and the stable phase differences 
between CRs with different frequency Δଶ − 2Δଵ and Δଶ − 2Δଷ are –1.10 (rad, –1.10 = –114.2 + 
2𝜋 ×18) and –3.20 (rad, –3.20 = –116.3 + 2𝜋 ×18), respectively. From Fig. 7(d), the oscillating 
angle of the vibration system is very small. Meanwhile, the displacement amplitudes of the VI in 
the horizontal and vertical directions are smaller than the OB, as shown in Fig. 7(e) and (f). It 
should be noticed that the amplitude of the VI (1.35×10-3 m) in 𝑦ଶ DOF is only 21.43 % of the 
OB (6.30×10-3 m) in 𝑦ଵ DOF. In this case, the ideal vibration isolation is implemented. In order 
to test the stability of the synchronous operation of the system, a phase disturbance of 𝜋/3 is added 
to the motor 3 at the 20th second of the simulation start. As seen in Fig. 7, a short-term fluctuation 
is observed in the dynamic responses of the vibration system when disturbance is added. Later, 
the system quickly returns to the previous states. Therefore, the synchronous stability of the 
vibration system is very strong. 

 
a) Rotational velocities of the motors 

 
b) Electromagnetic torque 

 
c) Stable phase difference 

 
d) Oscillating angle of the OB and VI 
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e) Displacements in 𝑥ଵ and 𝑥ଶ DOFs 

 
f) Displacements in 𝑦ଵ and 𝑦ଶ DOFs 

Fig. 7. The simulation results when 𝛽 = 𝜋/3 rad, 𝑀ଶ = 80 kg, 𝑚ଵ = 𝑚ଷ = 3 kg, 𝑚ଶ = 1.5 kg, 𝑟௟ = 1.8 

7. Experiment verification 

In order to verify the practicality of the double-frequency synchronization theory of the 
vibration absorption system in the oil drilling engineering, an experimental prototype is 
established, and a test scheme for dynamic response and synchronization characteristics is detailed 
given. Meanwhile, the motor performance parameters and the structure parameters of the vibration 
system are consistent with the parameters in the simulation. 

7.1. Test scheme of the experimental prototype 

The diagram of the test scheme consists of the synchronous test system, the experimental 
prototype, and the dynamic characteristic test system, as shown in Fig. 8. What is noteworthy is 
that the performance parameters such as slip rate, magnetic flux, etc., are different if the types of 
induction motors are different. Therefore, double-frequency synchronization among the CRs is 
hard to accurately carry out.  

 
Fig. 8. The diagram of the test scheme 

In order to reduce the experimental error caused by the type of excitation motor, the type of 
excitation motor used in the experiment is identical (model: YZS-1.5-2). In addition, the power 
frequency of the high-frequency excitation motor is adjusted by the frequency converter governor 
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to reduce its rotational speed to about 1500 r/min to realize the demand of the system’s double-
frequency relationship. The experimental prototype and the main testing instruments are listed in 
Fig. 9. In the process of dynamic characteristics testing, the sensor calibrator is used to calibrate 
the sensitivity of the acceleration sensor. Later, the acceleration values of VI and OB in the vertical 
and horizontal directions are detected by the acceleration sensor. Then, a dynamic signal 
acquisition and analysis system is used to integrate the data collected by the signal collector (e.g., 
acceleration signal) and pass it to the analysis system to obtain the vibration system displacement 
response. Finally, the displacement response of the vibration system can be calculated by 
integrating the acceleration signal. On the other hand, a high-speed camera is used to accurately 
record the instantaneous phase of the CRs during the experiment. The use of high-speed cameras 
minimizes errors in the recording of instantaneous phase differences of the CRs. Then, the 
instantaneous phase information at different times is transmitted to the computer to calculate the 
phase difference related to time. Through the experimental scheme above, the synchronization 
state and dynamic response of the experimental prototype during operation can be accurately 
recorded, which can provide experimental verification for the double-frequency synchronization 
theory in the vibration absorption system. 

 
Fig. 9. Experimental prototype of and the testing instruments 

7.2. Dynamic response of the vibration system during the experiment 

When the system runs stably, the acceleration responses of the VI and OB in the vertical and 
horizontal directions detected by the acceleration sensor are illustrated in Fig. 10(a)-(b), 
respectively. The maximum amplitudes of the acceleration responses of the OB in the horizontal 
and vertical directions are 50.21 m/s2 and 51.98 m/s2, respectively. The maximum amplitudes of 
the acceleration responses of the VI in 𝑥ଶ and 𝑦ଶ DOFs are 4.86 m/s2 and 4.87 m/s2, respectively. 
The isolation capability of the system is the critical index to measure the performance of the 
vibration system. Therefore, the displacement responses of the OB and VI in the vertical and 
horizontal directions are calculated by quadratically integrating the acceleration signal, as shown 
in Fig. 10(c)-(d). In particular, the amplitude of the VI (1.35×10-3 m) in 𝑦ଶ DOF is only 21.43 % 
of that of the OB (6.30×10-3 m) in 𝑦ଵ DOF. The vibration isolation capacity of the system is ideal 
at this point. Compared with the previous research content, this experiment not only clarifies the 
specific vibration isolation capability of the system, but also clarifies the detailed parameter 
selection and structural design for the fabrication of the actual prototype of the subsequent 
engineering. 
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a) Horizontal acceleration of the OB and VI 

 
b) Vertical acceleration of the OB and VI 

 
c) Horizontal displacement of the OB and VI 

 
d) Vertical displacement of the OB and VI 

Fig. 10. The dynamic response of the vibration system  
when 𝛽 = 𝜋/3 rad, 𝑀ଶ = 80 kg, 𝑚ଵ = 𝑚ଷ = 3 kg, 𝑚ଶ = 1.5 kg, 𝑟௟ = 1.8 

7.3. Stable synchronization state of the CRs during the experiment 

During the steady synchronous rotation of the CRs, the instantaneous state of the CRs is 
accurately recorded by a high-speed camera at multiple times, as illustrated in Fig. 11. According 
to Eq. (24), the instantaneous phase difference among the CRs can be obtained. The experimental 
results show that the stable phase differences of the three CRs are maintained at Δଵ − Δଷ ∈ (–1.13 
rad, –1.01 rad), Δଶ − 2Δଵ ∈ (–3.19 rad, –3.09 rad) and Δଶ − 2Δଷ ∈ (–1.08 rad, –1.03 rad), 
respectively. Therefore, the phase differences among CRs all fluctuate within a small range around 
the theoretical value. 

7.4. Results comparison 

In this section, the stable phase difference among the three CRs and the vibration isolation 
coefficient 𝜗 in the numerical analysis, simulation analysis and experimental verification are listed 
in Table 2. The comparison results show that the phase difference and the coefficient 𝜗 in 
simulation are consistent with the numerical analysis. Meanwhile, the values of the stable phase 
difference measured in the experiments are close to the theoretical value, which indicates that 
measurement errors are unavoidable during the experiment. The main reasons for the experimental 
errors can be summarized as follows: (1) manufacturing defects of the experimental equipment, 
such as uneven distribution of the system mass and spring stiffness errors, leading to uneven motor 
loads; (2) the actual performance parameters of the excitation motor are affected by voltage 
fluctuations, ambient temperature and humidity, and even if the two motors are of the same model, 
the actual electromagnetic output torque is not exactly the same due to the manufacturing and 
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installation errors; (3) Inaccurate measurement positions of sensors and high-speed camera 
equipment lead to errors in the recorded dynamic response and synchronous phase. Although the 
experimental results deviate slightly from the theoretical values, the error value is very small, 
which also proves the practicality of the synchronization theory. 

 
a) Δଶ − 2Δଵ = –61° (–1.06 rad), Δଶ − 2Δଷ = –179° (–3.12 rad),  Δଵ − Δଷ = –59° (–1.03 rad) 

 
b) Δଶ − 2Δଵ = –65° (–1.13 rad), Δଶ − 2Δଷ = –181° (–3.16 rad), Δଶ − 2Δଷ = –181° (–3.16 rad) 

 
c) Δଶ − 2Δଵ = –58° (–1.01 rad), Δଶ − 2Δଷ = –182° (–3.18 rad), Δଵ − Δଷ = –62° (–1.08 rad) 

 
d) Δଶ − 2Δଵ = –63° (–1.10 rad), Δଶ − 2Δଷ = –181° (–3.16 rad), Δଵ − Δଷ = –59° (–1.03 rad) 

 
e) Δଶ − 2Δଵ = –61° (–1.06 rad), Δଶ − 2Δଷ = –183° (–3.19 rad), Δଵ − Δଷ = –61° (–1.06 rad) 

 
f) Δଶ − 2Δଵ = –61° (–1.06 rad), Δଶ − 2Δଷ = –183° (–3.19 rad), Δଵ − Δଷ = –61° (–1.06 rad) 

Fig. 11. Stable synchronization state of the CRs 

Table 2. Results comparison of the numerical analysis, simulation and experiment 
– Numerical analysis Simulation Experiment 𝜗 0.214 0.214 0.214 Δଵ − Δଷ (rad) –1.05 –1.05 –1.13- –1.01 Δଶ − 2Δଵ (rad) –1.10 –1.10 –1.08- –1.03 Δଶ − 2Δଷ (rad) –3.20 –3.20 –3.19- –3.09 

8. Conclusions 

In order to improve the mechanical performance of the screening equipment, the 
double-frequency synchronization theory of a dynamic vibration absorption system with three 
CRs and double‑frequency actuation is established based on the asymptotic method. Some 
conclusions are obtained as follows: 

1) Asymptotic method is applied to the near-resonance system, which provides a new way of 
solving the multi-frequency synchronization of the near-resonance system, and provides reference 
data for the design of a new high-efficiency vibration system. 

2) The vibration isolation performance of the system is affected by motor and structure 
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parameters of the system. When 𝜔௠଴ is operating at the optimal operating frequency of the 
vibration system (𝜔௠଴ = 157 rad/s), the vibration isolation effect of the system is better. In 
addition, the vibration isolation capability was verified through vibration system simulation 
analysis and experimental tests. 

3) The state of synchronization between the eccentric rotors is affected by the installation 
position of the excitation motor and the mass ratio of the eccentric rotors. Meanwhile, the larger 
the mass ratio between the double-frequency CRs and the installation angle of motor 𝛽, the smaller 
the stable phase difference between double-frequency CRs, and the state of system 
synchronization is more sensitive to changes in installation distance.  

4) The stability of fundamental frequency synchronization is greater than that of double-
frequency synchronization in the vibration system. Moreover, the smaller the mass ratio between 
the high-frequency CR and the low-frequency CR, the greater the absolute value of stability 
coefficient. 
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