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Abstract. Detecting and cleaning grain caking on the inner walls of silos is an important task to 
ensure food safety in storage facilities. However, in response to challenges such as insufficient 
lighting conditions, small and diverse forms of grain caking, this paper proposes the development 
and evaluation of a convolutional neural network model for robot vision detection of grain caking. 
The following improvements to the visual detection algorithm based on YOLOv5 are proposed in 
this article. Firstly, the Convolutional Block Attention Module (CBAM) and the improved Total 
Cross Union (CIoU) loss function are introduced to enhance the detection accuracy of grain 
caking. Secondly, by adding the Retinex Net algorithm with dark light enhancement, the 
recognition and detection performance under low light conditions can be improved. The improved 
YOLOv5 algorithm was trained and validated on a custom grain caking dataset. Comparative 
experiments show that compared with existing detection architectures, the improved algorithm 
has improved the average accuracy of grain caking detection by 1.8 % to 3.8 %. Finally, the 
improved algorithm proposed in this article was deployed on a wall climbing robot based on 
negative pressure adsorption, achieving real-time detection and automatic cleaning of grain 
caking. 
Keywords: machine vision and deep learning, improved YOLOv5 algorithm, grain caking 
detection, wall-climbing robot. 

1. Introduction 

Grain silos are critical storage facilities for preserving grain, but during storage, moisture can 
cause grain caking on silo walls [1]. This compaction leads to mold growth, posing a significant 
threat to grain safety. Due to the structural limitations of vertical silos, cleaning these compacted 
areas is extremely challenging [2]. Currently, manual cleaning inside silos is the most commonly 
used method, but it is both inefficient and highly dangerous due to the confined space and 
high-altitude operations required [3]. Accidents involving workers entering silos for cleaning are 
unfortunately common, often resulting in severe loss of life and property. Therefore, there is an 
urgent need in the grain storage industry for a robot capable of identifying and removing 
compacted grain [4]. Wall-climbing robots [5], [6], a key innovation in robotics, have the ability 
to adhere to vertical structures and move flexibly [7], [8]. They have been widely used for tasks 
such as cleaning high-rise building surfaces, automating maintenance in petrochemical storage 
tanks, and inspecting boiler water wall tubes [9], [10]. The focus of this study is to design a vision-
based detection system for identifying grain caking in silos and integrate it with a wall-climbing 
robot, enabling the robot to autonomously perform the full process of compaction identification 
and cleaning. 

There has been extensive research on deep learning-based object detection [11]. To address 
issues such as the large number of parameters, long training times, and poor real-time detection 
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performance of two-stage models, Redmon et al. [12] introduced YOLO, the first regression-based 
object detection algorithm. Jocher proposed YOLOv5, which includes four models known for 
their real-time detection capabilities and lightweight characteristics, making them ideal candidates 
for mobile deployment environments [13]. Various advanced convolutional neural networks, such 
as VGG [14] and ResNet [15], have been used in the Backbone, but their real-time performance 
does not meet the requirements of industrial applications. ShuffleNet [16] further reduces the 
number of model parameters through grouped convolutions and channel shuffling. Mi et al. [17] 
proposed a lightweight target detection method based on improved YOLOv5s, which can maintain 
a high accuracy under limited resources. Liu et al. [18] introduced an algorithm based on an 
improved feature fusion mode, enhancing the precision of small object detection while making 
the model more lightweight. Additionally, for object detection in low-light environments, Liang 
Cheng [19] proposed a garbage detection algorithm suitable for low-computing-power devices 
and low-light conditions, which improves detection under poor lighting without increasing the 
model's size. Liu Hang [20] developed a feature enhancement-based dark-light object detection 
method that extracts multiple features from input images to reduce the impact of low-light 
conditions on object detection. However, these methods are not suitable for identifying and 
detecting the diverse forms of grain caking in low-light environments within silos. 

To address the challenges of grain caking detection and cleaning in silos, and building on 
previous research, the development of a convolutional neural network model for robot vision 
detection of grain caking is proposed in this paper. Firstly, the Convolutional Block Attention 
Module (CBAM) and the improved Total Cross Union (CIoU) loss function are introduced to 
enhance the detection accuracy of grain caking. Secondly, by adding the Retinex Net algorithm 
with dark light enhancement, the recognition and detection performance under low light 
conditions can be improved. The improved YOLOv5 algorithm was trained and validated on a 
self-made grain caking dataset. Experiments show that compared with existing detection 
architectures, the proposed algorithm achieves higher location average precision and real-time 
capabilities. Finally, the proposed algorithm was deployed on a wall climbing robot based on 
negative pressure adsorption, achieving real-time detection and automatic cleaning of grain 
caking. 

2. Materials and methods 

2.1. Design of the wall-climbing robot based on negative pressure adhesion 

Negative pressure wall-climbing robots typically use either rectangular or circular negative 
pressure chambers to achieve suction adhesion. Considering that the wall-climbing robot in this 
study uses a track-based walking mechanism, a rectangular negative pressure chamber was 
designed. The structure is shown in Fig. 1. 

 
Fig. 1. Schematic of the adhesive mechanism for the wall-climbing robot 
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The minimum adhesion force condition for a wall-climbing robot in any orientation is: 

𝑃ଵ > max ൬𝐺cos𝜃 + 𝑚𝑎 + 𝐹௥ଵ + 𝐹௥ଶ + 𝐹௡௣𝜇 ,𝐺sin𝜃𝜇ଶ , 2𝐻𝐺cos𝜃𝑙 + 2𝐻𝐺sin𝜃𝑏 ൰, (1)

where 𝐹௥ଵ and 𝐹௥ଶ represent the turning resistance of the left and right tracks of the wall-climbing 
robot, respectively, while 𝐹௡௣ denotes the force exerted by the wall on the sealing mechanism. By 
substituting the parameters of the wall-climbing robot designed in this study into Eq. (1) and 
conducting simulations, the safe negative pressure operating range for the robot was obtained, as 
shown in Fig. 2. 

 
Fig. 2. Safe negative pressure range for the wall-climbing robot 

The tracked wall-climbing robot designed in this study, which is based on negative-pressure 
adhesion, comprises three core modules: the negative-pressure adhesion mechanism, the tracked 
walking mechanism, and the modular actuator. The actuator can be replaced with a vision 
detection system or a cleaning mechanism to meet different operational requirements. Fig. 3 shows 
the 3D model and the physical prototype of the wall-climbing robot designed in this study. 

  
Fig. 3. 3D model and physical prototype of the wall-climbing robot 

2.2. Identification and detection of grain caking based on an improved YOLOv5 

YOLOv5 features a compact model structure and fast inference speed, making it highly 
suitable for deployment on mobile devices for identification and detection tasks. However, Due 
to the complex environment within the silo, insufficient lighting, and the presence of multiple 
small target objects, the traditional YOLOv5 algorithm does not adequately meet the 
requirements. To address this issue, the following improvements are made to the algorithm: 1. The 
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introduction of the CBAM (Convolutional Block Attention Module) and improved CIoU 
(Complete Intersection over Union) function to enhance the algorithm’s detection accuracy for 
grain caking. 2. To tackle the problem of insufficient ambient lighting, the Retinex-Net model is 
added for image enhancement to meet detection needs. 

2.2.1. Improved model 

The Convolutional Block Attention Module (CBAM) is a lightweight feed-forward 
convolutional neural network model [21], which consists of two main components: the channel 
attention module and the spatial attention module, as shown in Fig. 4. The channel attention 
module focuses on meaningful information in the input image and can compress the spatial 
dimensions while keeping the channel dimensions unchanged. The spatial attention module, on 
the other hand, focuses on the location information of the target and can compress the channel 
dimensions while keeping the spatial dimensions unchanged. When a specific intermediate feature 
map 𝐹 ∈ ℝ஼×ு×ௐ is input, CBAM derives a channel attention map 𝑀ୡ ∈ ℝ஼×ଵ×ଵ and a spatial 
attention map 𝑀ୱ ∈ ℝଵ×ு×ௐ through the channel attention module and the spatial attention 
module, respectively. By multiplying these attention maps with the original input feature map, a 
refined output 𝐹ᇱᇱ is obtained, which achieves adaptive feature refinement of the input feature map 
and effectively enhances the model's classification performance. The entire process can be 
summarized as follows: 𝐹ᇱ = 𝑀ୡሺ𝐹ሻ⊗ 𝐹,𝐹ᇱᇱ = 𝑀௦ሺ𝐹ᇱሻ ⊗ 𝐹ᇱ. (2)

 
Fig. 4. CBAM network model diagram 

The CBAM attention mechanism is used to enhance the backbone network. In the updated 
YOLOv5s model, the Bottleneck CSP module has been replaced by the C3 module. Therefore, 
this study integrates the CBAM attention mechanism with the C3 module in the Backbone, 
resulting in the improved CBAMC3 module. 

A network loss function for data fitting is introduced in this study to further optimize the 
prediction of grain caking. This function combines three key components: the object confidence 
loss, classification loss, and bounding box (BBOX) regression loss [22]: 𝐿𝑜𝑠𝑠 = 𝑎 ∗ 𝑙𝑜𝑠𝑠௢௕௝ + 𝑏 ∗ 𝑙𝑜𝑠𝑠௥௘௖௧ + 𝑐 ∗ 𝑙𝑜𝑠𝑠௖௟௖ . (3)

For the bounding box regression loss, this model uses CIoU (Complete Intersection over 
Union) as the evaluation metric. The goal is to incorporate key geometric factors – such as the 
overlap area, center point distance, and aspect ratio – between the ground truth box and the 
predicted box into the bounding box regression loss calculation. This design improves the stability 
and convergence accuracy of the regression bounding box. The loss function is expressed as: 

𝐿஼ூ௢௎ = 1 − 𝐿ூ௢௎ + 𝜌ሺ𝑏, 𝑏௚௧ሻ𝑐ଶ + 𝛼𝑣, (4)

where, 𝛼𝑣 represents a penalty factor that fits the aspect ratio between the ground truth box and 
the predicted box. 𝛼 is the coordination parameter, and 𝑣 is a parameter used to measure the 
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consistency of the aspect ratio. The formulas for 𝛼 and 𝑣 are as follows: 𝛼 = 𝑣(1 − 𝐿ூ௢௎) + 𝑣, (5)𝑣 = 4𝜋ଶ ቆarctan𝑤௚௧ℎ௚௧ − arctan𝑤ℎቇଶ. (6)

In the construction of this model, both the confidence loss and classification loss are computed 
using the Binary Cross-Entropy (BCE) loss function. For an image divided into an 80×80 grid, 
the neural network extracts three predicted boxes for each grid cell. Each predicted box contains 
information such as the center coordinates, width and height dimensions, confidence score, and 
classification probabilities. Therefore, the neural network outputs a total of 3×80×803 predicted 
confidence values ranging from 0 to 1. As shown in Fig. 5, when targets such as the red points A, 
B, C, and D are detected, the predicted boxes for these grid cells typically have higher confidence 
values.  

 
Fig. 5. Confidence prediction 80×80 grid 

Assuming the confidence label is represented by matrix 𝐿 and the predicted confidence by 
matrix 𝑃, the value at each corresponding position in the matrices is involved in the calculation of 
the BCE loss. The calculation formula is: 𝑙𝑜𝑠𝑠஻஼ா(𝑧, 𝑥,𝑦) = −𝐿(𝑧, 𝑥,𝑦) ∗ log𝑃(𝑧, 𝑥,𝑦) − ൫1 − 𝐿(𝑧, 𝑥,𝑦)൯ ∗ log൫1 − 𝑃(𝑧, 𝑥,𝑦)൯, (0 ≤ 𝑧 < 30，0 ≤ 𝑥 < 800,     0 ≤ 𝑦 < 80). (7)

Most existing object detectors generate a large number of candidate boxes and then use 
Non-Maximum Suppression (NMS) to filter them. NMS generally sorts the boxes based on 
classification scores. This traditional multiplication method is not optimal and offers limited 
performance improvement. In this study, the IACS (Instance-Aware Classification Score) 
evaluation criterion is considered to represent the class and quality of the bounding box. IACS is 
a scalar element of the classification score vector, where the scores for class, position, and 
centerness are replaced with ground truth values. The final score for the true class location is the 
Intersection over Union (IoU) between the predicted and ground truth boxes, while scores for 
other locations are set to 0. 

2.2.2. Low-light enhanced object detection 

Due to insufficient lighting inside the silo, the low-quality, low-light images collected are 
challenging for visual detection tasks. Therefore, this study incorporates the Retinex-Net image 
enhancement algorithm [23] to improve the model.  

The Retinex-Net model is a deep learning-based low-light image enhancement algorithm. The 



AN IMPROVED YOLOV5-BASED METHOD FOR ROBOTIC VISION DETECTION OF GRAIN CAKING IN SILOS.  
YI CAO, YAO ZHAO, XIANG WU, MINGQI TANG, CHAO GU 

6 ISSN PRINT 2335-2124, ISSN ONLINE 2424-4635  

network architecture consists of three core components: Decom-Net, Adjustment-Net, and 
Reconstruction-Net. The Decom-Net is responsible for decomposing the input low-light image 
into reflection and illumination components, providing a basis for subsequent processing. The 
Adjustment-Net adjusts the illumination component by enhancing the image’s brightness, 
contrast, and other attributes to improve the overall visual quality. The Reconstruction-Net then 
combines the adjusted illumination component with the reflection component to generate the 
enhanced image. The network structure is illustrated in Fig. 6.  

 
Fig. 6. Retinex-Net model network structure 

The entire process is as follows: First, input images of grain caking under normal lighting 
(𝑆௡௢௠௔௟) and under low-light conditions (𝑆௟௢௪) are processed by the Decom-Net to obtain two sets 
of illumination and reflection component images. Next, in the Adjustment-Net, the four images 
are denoised and enhanced. Since the reflection images derived from both normal and low-light 
conditions are quite similar, indicating that the reflection images are less affected by lighting, only 
noise suppression is applied to the reflection images, while the illumination images are enhanced. 
Finally, the processed illumination and reflection components are combined using the 
Reconstruction-Net to produce the enhanced low-light image of grain caking. The output results 
are shown in Fig. 7. 

 
a) Before processing 

 
b) After processing 

Fig. 7. Comparison of grain caking before and after low-light enhancement 

3. Experiments and analysis 

The experimental process is divided into two main parts: evaluating the grain caking 
recognition algorithm and testing the wall-climbing and cleaning performance of the robot. The 
optimized algorithm is deployed on the NVIDIA Jetson Orin Nano mounted on the robot, 
integrating the recognition system with the robot system. The front of the robot adopts a modular 
design, enabling real-time identification of grain caking by installing a vision module. The 
collected data is sent to the host computer for use by the wall-climbing robot, which is equipped 
with a cleaning module. The overall experimental workflow is illustrated in Fig. 8.  
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Fig. 8. Experimental flowchart 

3.1. Grain caking dataset creation and training 

Since there is no publicly available grain caking dataset, this experiment uses a custom dataset 
for model training. The images are sourced from field collections of the sidewalls of shallow 
cylindrical silos and simulated grain caking on cement walls. To match application scenarios. Data 
was collected under various lighting conditions and simulated with different degrees of 
compaction, resulting in a total of 594 raw images. Due to the limited number of images, Mosaic 
data augmentation [24] was applied to expand the dataset. As shown in Fig. 9, geometric and pixel 
transformations increased the dataset to 3,573 images. Finally, the images were normalized to a 
size of 640×640×3 for subsequent annotation. 

 
Fig. 9. Mosaic data augmentation effect 

The custom dataset was annotated using the Labelme tool, including two categories: Heavily 
and Lightly, representing severe and mild grain caking, respectively. The dataset contains 982 
labels for the Heavily category and 1,537 labels for the Lightly category. Summary analysis of the 
labels is shown in Fig. 10. Fig. 10(a) displays the distribution of the center points of all labels in 
the training set, with the 𝑥 and 𝑦 coordinates representing the actual positions of the center points 
in the image, measured in pixels. This Figure shows that the center points are spread across all 
areas of the image and are distributed relatively evenly. This indicates that the training set is 
flexible and comprehensive, capable of detecting objects in various positions within the image. 
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Fig. 10(b) shows the distribution of label sizes, where the 𝑥-axis represents the relative width of 
the bounding boxes and the 𝑦-axis represents the relative height of the bounding boxes, measured 
in pixels. This Figure reveals a dense distribution of points in the lower-left corner and a sparser 
distribution in the upper regions. This indicates that the custom grain caking dataset features 
numerous small targets with diverse size characteristics, which aligns with the nature of grain 
caking in cylindrical silos. 

 
a) Label center point position distribution diagram 

 
b) Label size distribution diagram 

Fig. 10. Summary analysis of the labels 

The experimental system runs on Ubuntu 20.04, with an NVIDIA GeForce GTX 1650 GPU 
featuring 16GB of VRAM. The training framework is based on PyTorch 3.8.0, utilizing CUDA 
11.4 for GPU acceleration. During model training, considering the characteristics of the dataset, a 
lower version of YOLOv5 hyperparameters is used, and Adam is chosen as the network optimizer. 
The initial learning rate is set to 0.001, and mini-batch gradient descent is employed with a weight 
decay of 0.0005. The dataset is randomly and uniformly sampled in batches for training. Finally, 
the momentum parameter is set to 0.937, the batch size for iterations is set to 9, and the total 
number of iterations is 200.  

3.2. Model performance evaluation 

Model performance evaluation includes both qualitative and quantitative analyses. This study 
uses the COCO dataset evaluation system, which provides more comprehensive evaluation 
information and results in a more stable model. Common evaluation metrics for object detection 
models include Precision, Recall, Average Precision (AP), and Mean Average Precision (mAP). 

Fig. 11(a), (b), and (c) show the identification and detection results of grain caking at viewing 
distances of 30 cm, 60 cm, and 90 cm, respectively. A qualitative analysis of the model reveals 
that the detection performance for small objects has been improved by the proposed algorithm, 
with high accuracy and confidence in detecting the target objects. Moreover, the detection at 
different viewing distances can accurately distinguish the severity of grain caking, allowing the 
robot to adopt different cleaning strategies based on the varying degrees of caking during the 
cleaning process. 

When performing quantitative analysis of the model, the choice of IoU threshold can affect 
the calculation of mAP. Since the target objects, grain caking, are small and irregularly shaped, a 
lower IoU threshold should be used to improve recall. Based on practical requirements and general 
standards, an IoU threshold of 0.5 is selected. Additionally, the COCO dataset introduces the 
parameter mAP@[0.5:0.95], which calculates mAP using ten IoU thresholds evenly spaced 
between 0.5 and 0.95, and averages these ten values to obtain the final result. For real-time target 
detection, which is crucial for the robot’s cleaning efficiency, another important parameter is FPS 
(Frames Per Second). A higher FPS value indicates better real-time performance of the detector. 
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a) Detection results at 30 cm range 

 
b) Detection results at 60 cm range 

 
c) Detection results at 90 cm range 

Fig. 11. Identification and detection results of grain caking 

To highlight the advantages of the improved algorithm, comparative experiments were 
conducted with YOLOv4, YOLOv5s, and Fast R-CNN models. Each of these classic algorithms 
was trained on the custom grain caking dataset for 200 iterations. The results showed that the 
feature extraction by these models was not as effective, leading to lower detection accuracy. In 
comparison, the proposed algorithm showed significant improvements across various evaluation 
metrics, as shown in Table 1. Specifically, the AP values for the Lightly and Heavily categories 
increased by 3.8 % and 1.8 %, respectively, compared to the highest-performing Fast R-CNN 
model. The mAP of the improved algorithm was 5.9 % and 3.7 % higher than those of YOLOv4 
and YOLOv5s, respectively. Although the mAP of the improved algorithm is slightly lower than 
that of the Fast R-CNN model, the enhancements made to the original IoU function and the data 
augmentation processes have significantly increased detection accuracy. Compared to the other 
three models, the proposed algorithm demonstrates superior overall performance and is more 
suitable for real-time detection of grain caking in the complex environment of grain silos. 

Table 1. Comparison of improved algorithm performance 
Algorithm Lightly Heavily Precision Recall mAP୴ୟ୪50 mAP୴ୟ୪50-95 FPS 
YOLOv4 73.3 84.9 91.5 91.8 92.3 78.5 34.7 
YOLOv5s 74.7 85.7 92.3 92.5 94.5 79.3 38.5 

Fast R-CNN 75.5 86.4 92.8 96.0 98.6 81.7 31.4 
Improved algorithm 79.3 88.2 98.9 98.7 98.2 85.6 39.7 

Experiments were conducted to evaluate the effectiveness of the algorithm under low-light 
conditions. The performance of the algorithm in recognizing grain caking under different lighting 
intensities is shown in Fig. 12. 

 
a) 264 LUX Light intensity 

 
b) 122 LUX Light intensity 

 
c) 53 LUX Light intensity 

Fig. 12. Identification of grain caking under different lighting conditions  

The lighting intensity of the three images decreased by 53.79 % and 56.56 %, respectively. 
The algorithm’s confidence in detecting light grain caking decreased by 9.16 % and 12.59 %, 
respectively. When the lighting intensity decreased by 79.92 % overall, the algorithm's confidence 
in detecting severe grain caking decreased by only 9.10 %. These experiments demonstrate that 
the model with the added low-light enhancement algorithm meets the operational requirements in 
the dark environment of a silo.  
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3.3. Ablation study 

To verify the effectiveness of adding different modules in improving the algorithm’s 
performance, the following ablation experiments were conducted based on the custom Grain 
dataset. As shown in Table 2, YOLOv5s represents the unmodified original algorithm. Model1 
adds a data augmentation algorithm (DA) to the original model. Model2 adds the CBAM attention 
module to Model 1. Model 3 further incorporates the CIoU_Loss improved loss function on top 
of Model 2. Model 4, which is the final improved model presented in this paper, adds a tiny target 
detection layer (TTDL) to Model 3. 

Table 2. Experimental results of Grain dataset ablation under four improved methods 
Model DA CBAM CIoU_Loss TTDL Parameters GFLOP/s mAP FPS 

YOLOv5s × × × × 78.4 14.0 94.5 38.5 
Model1 √ × × × 79.7 16.5 96.5 36.5 
Model2 √ √ × × 81.8 15.8 98.6 40.4 
Model3 √ √ √ × 83.5 15.8 97.8 41.3 
Model4 √ √ √ √ 85.6 15.8 98.2 42.7 

In the ablation experiments, five different models were trained on the custom Grain dataset. 
The curves showing the changes in different parameters during the training process are depicted 
in Fig. 13. It can be observed that various improved models contribute to enhanced detection 
accuracy. As the number of training rounds increases, accuracy, recall, and mAP_0.5 values 
consistently improve, while the loss function values decrease to varying extents. 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Fig. 13. Convergence curves of different models 

Before 40 rounds, the model’s accuracy significantly increases, with a noticeable drop in the 
loss function, especially a rapid decrease in cls_loss. At 60 rounds, the accuracy improvement 
begins to slow, and the loss function decrease rate also slows down. After 100 rounds, the model’s 
metrics stabilize, reaching optimal network weights by the end of the training. As shown in 
Fig. 13(a), Model4 performs the best, achieving a detection accuracy of 98.9 %. Fig. 13(b) shows 
that the recall rate for Model4 reaches 87.4 % at 40 rounds and eventually grows to 98.7 %. 
Fig. 13(c) demonstrates a rapid increase in mAP_0.5, with a peak value of 98.2 %. The loss 
functions of the model, including the bounding box loss, object loss, and classification loss, are 
shown in Fig. 13(d), (e), and (f), respectively. It can be seen that the improved model demonstrates 
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enhancements in the prediction accuracy of the bounding box, the existence of detected objects, 
and classification accuracy. 

The results of the ablation experiments indicate that the proposed algorithm has better 
detection performance, faster regression speed, and higher accuracy, which demonstrates the 
effectiveness of the improved model for the recognition and detection of grain caking in silo 
applications. 

3.4. Wall-climbing robot surface motion and cleaning experiments 

By deploying the optimized algorithm described in this paper on the NVidia Jetson Orin Nano 
mounted on the robot, a seamless integration of the recognition system with the robotic system is 
achieved. The wall-climbing robot designed in this paper features a modular design, allowing 
different functions to be performed by swapping the front-end actuators. Fig. 14(a) shows the 
wall-climbing robot equipped with a camera, capable of identifying and detecting grain caking 
and transmitting the collected data to a host computer. Fig. 14(b) depicts the wall-climbing robot 
fitted with a hard brush disc, which uses a brushless motor to drive the high-speed rotation of the 
disc to remove grain caking, completing the entire operation process.  

Experiments on wall-climbing robot movement and cleaning operations demonstrate that the 
robot can stably adhere to and move along the wall while carrying a camera or cleaning brush. It 
can successfully complete the full process of identifying and cleaning grain caking, meeting the 
engineering requirements for grain caking identification and cleaning on the inner walls of silos. 

 
a) The wall-climbing robot equipped  

with a camera for detection 

 
b) The wall-climbing robot equipped  

with a brush for cleaning 
Fig. 14. The operation of the wall-climbing robot  

4. Conclusions 

This paper proposes the development and evaluation of a convolutional neural network model 
for robot vision detection of grain caking. This article proposes the following improvements to the 
visual detection algorithm based on YOLOv5: Firstly, the Convolutional Block Attention Module 
(CBAM) and the improved Total Cross Union (CIoU) loss function are introduced to enhance the 
detection accuracy of grain caking. Secondly, by adding the Retinex Net algorithm with dark light 
enhancement, the recognition and detection performance under low light conditions can be 
improved. The improved YOLOv5 algorithm was trained and validated on a self-made grain 
caking dataset. 

The results indicate that the improved algorithm enhances the accuracy of grain caking 
recognition by 1.8 % to 3.8 % compared to other algorithms. The wall-climbing cleaning robot 
equipped with this algorithm can effectively identify and clean grain caking, meeting the needs of 
grain caking tasks in silos. 

However, in practical working environments, varying silo capacities and degrees of 
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compaction present challenges. Future work will focus on improving detection real-time 
performance and generalizability, particularly on enhancing detection speed while increasing 
algorithm accuracy. Collaborative operation with multiple robots will also be explored to meet 
broader engineering application requirements. 
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