
 

78 ISSN PRINT 2345-0533, ISSN ONLINE 2538-8479  

Optimal parameters of tuned mass damper for the 
reduction of wind-induced vibration of high-rise 
buildings 

Ke Tan1, Yiming Xie2, Fuchao Cao3, Yiping Wang4, Yinfeng Dong5 
1Chongqing Design Group Co., Ltd., Chongqing, China 
2, 3, 4, 5Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing 
University, Chongqing, China 
2, 3, 4, 5School of Civil Engineering, Chongqing University, Chongqing, China 
2Corresponding author 
E-mail: 1215768032@qq.com, 2yimingxie0314@163.com, 3caofuchaovvv@163.com, 
41580403229@qq.com, 5dongyinfeng@cqu.edu.cn 
Received 30 September 2024; accepted 14 October 2024; published online 12 December 2024 
DOI https://doi.org/10.21595/vp.2024.24586 

71st International Conference on Vibroengineering in Riga, Latvia, December 12-13, 2024 

Copyright © 2024 Ke Tan, et al. This is an open access article distributed under the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract. At present, the use of a tuned mass damper (TMD) to control structural dynamic 
response under wind or earthquake excitations has become a common method for many high-rise 
structures. In previous studies, the amplitude of structural dynamic response which is usually 
viewed as a stochastic process is rarely used as a parameter to evaluate the vibration mitigation 
performance of a TMD system. In this paper, the motion equations of the structures controlled by 
a TMD system under wind excitation are established first. Then, the vibration mitigation 
performance of the TMD system under wind load is analyzed from the point of view of the 
reduction of the amplitude of response stochastic processes, during the analysis the influence of 
mass ratio is also taken into account. Finally, the vibration reduction coefficients are obtained as 
a function of frequency ratio and damping ratio, and the optimal frequency ratio and damping ratio 
of TMD system can be determined for which the minimum vibration reduction coefficient is 
achieved. The analysis results show that compared with the uncontrolled structure, the 
optimization method based on vibration reduction coefficient greatly reduces the amplitude of 
structure response under wind load and has certain adaptability and reliability.  
Keywords: wind load, high-rise structure, tuned mass damper (TMD), power method, vibration 
reduction coefficient. 

1. Introduction 

High buildings will have large displacement under wind loads. The use of tuned mass dampers 
can reduce the structural dynamic response caused by wind loads to a certain extent, but there are 
some limitations. In 2021, Liu [1] predicted the TMD parameters under different wind conditions 
based on neural network and genetic algorithm. In the same year, Zhang et al. [2] proposed to 
optimize structure – TMD system parameters by using the average value obtained from the 
stochastic analysis method of energy consumption power flow. Although there have been some 
research on structural vibration control, the amplitude of stochastic process has not been tried as 
the optimization target of control research. Therefore, in order to fill the gap of this method and 
solve the problem of random vibration of high-rise buildings under wind load, this paper, aiming 
at a 33-story high-rise residential building structure with a total height of 99.85 meters as an 
example, establishes the motion equation of high-rise structures under controlled and uncontrolled 
conditions, and deduces the vibration reduction coefficient of the high-rise structures under wind 
load based on the power method. Based on this optimization objective, the optimal TMD 
parameters are obtained. Through numerical calculation, the optimal damping ratio, frequency 
ratio and vibration reduction coefficient under different mass ratio are obtained. Finally, the 
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dynamic response of high-rise structures under wind load is calculated, and the feasibility of this 
method is verified by comparing the difference of dynamic response between uncontrolled 
structures and controlled structures [3]. 

2. TMD vibration reduction control under wind load 

2.1. Vibration of multi-degree-of-freedom system under wind excitation 

The motion equation of the multi-degree-of-freedom (MDOF) system under wind excitation 
is given by: ሾ𝑀ሿሼ𝑥ሷ ሺ𝑡ሻሽ ൅ ሾ𝐶ሿሼ𝑥ሶ ሺ𝑡ሻሽ ൅ ሾ𝐾ሿሼ𝑥ሺ𝑡ሻሽ ൌ ሼ𝑃ሺ𝑡ሻሽ, (1)ሼ𝑃௜ሺ𝑡ሻሽ ൌ ቊ𝑤௜𝐴௜ 2𝑉௜ሺ𝑡ሻ𝑈௜ ቋ ൌ ቊ𝑤଴𝜇௦೔ ቀ 𝑧௜10ቁఈ 𝜇ோ ൉ 𝐴௜ ൉ 2𝑉௜ሺ𝑡ሻ𝑈௜ ቋ, (2)

whereሾ𝑀ሿ, ሾ𝐶ሿ and ሾ𝐾ሿ are the mass, damping and stiffness matrix of the structure 
respectively; ሼ𝑥ሷ ሺ𝑡ሻሽ, ሼ𝑥ሶ ሺ𝑡ሻሽ and ሼ𝑥ሺ𝑡ሻሽ are acceleration, velocity and displacement vectors 
respectively; ሼ𝑃ሺ𝑡ሻሽ is the wind force vector; 𝑤଴ is the basic wind pressure; 𝜇௦೔ is the body shape 
coefficient at the 𝑖th particle; 𝛼 is the ground roughness index; 𝜇ோ is the ground roughness 
correction coefficient. The surface roughness of class A to D is 1.284, 1.000, 0.544 and 0.262 
according to related design codes of China, and 𝐴௜ is the windward surface area.  

2.2. Vibration of MDOF system with TMD under wind excitation 

In this paper, TMD is used to reduce the vibration response of high-rise structures and installed 
on the top of high-rise buildings. The building structure is simplified into 𝑛 lumped masses, and 
its motion form under wind load is shown in Fig. 1.  

 
a) Simplified structural model without TMD 

 
b) Simplified structural model with TMD 

Fig. 1. Schematic diagram of structure with TMD under wind load 

In order to facilitate subsequent analysis, considering that the structure is in linear elastic state, 
under the action of wind load 𝑃ሺ𝑡ሻ, the motion equation of the high-rise structure with TMD can 
be expressed as: 𝑀𝑥ሷ ൅ 𝐶𝑥ሶ ൅ 𝐾𝑥 ൌ 𝐼ሾ𝑐஽𝑥ሶ஽ ൅ 𝑘஽𝑥஽ሿ ൅ 𝑃ሺ𝑡ሻ, (3)𝑚஽𝑥ሷ஽ ൅ 𝑐஽𝑥ሶ஽ ൅ 𝑘஽𝑥஽ ൌ −𝑚஽𝐼்𝑥ሷ , (4)

where 𝑀, 𝐶 and 𝐾 are the mass matrix, damping matrix and stiffness matrix of the high-rise 
structure respectively. 𝑥 ൌ ሾ𝑥ଵ, 𝑥ଶ, … , 𝑥௡ሿ், 𝑥ሶ ൌ ሾ𝑥ሶଵ, 𝑥ሶଶ, … , 𝑥ሶ௡ሿ், 𝑥ሷ ൌ ሾ𝑥ሷଵ, 𝑥ሷଶ, … , 𝑥ሷ௡ሿ் are 
respectively the displacement, velocity and acceleration of each lumped mass relative to the 
ground; 𝑥஽, 𝑥ሶ஽ and 𝑥ሷ஽ are the displacement, velocity and acceleration of TMD relative to the top 
of the high-rise structure, respectively; 𝑃ሺ𝑡ሻ ൌ ሾ𝑃ଵሺ𝑡ሻ,𝑃ଶሺ𝑡ሻ, … ,𝑃௡ሺ𝑡ሻሿ் is the excitation under 
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wind load; 𝐼 = [0,0, 1]் is the position column vector of TMD.  
In order to facilitate the modal decomposition of Eqs. (1) and (2), take 𝑥 = Φ்𝑞, 𝑥ሶ = Φ்𝑞ሶ , 𝑥ሷ = Φ்𝑞ሷ , where Φ is the mode vector and 𝑞 is the generalized coordinate. Since the TMD system 

mainly controls the first mode of the structure, the first mode of the mode considered for Eq. (1) 
is as follows: Φଵ்𝑀𝑞ሷଵ + Φଵ்𝐶𝑞ሶଵ + Φଵ்𝐾𝑞ଵ = Φଵ் 𝐼[𝑐஽𝑥ሶ஽ + 𝑘஽𝑥஽] + Φଵ்𝑃ሺ𝑡ሻ, (5)

where 𝑟 = Φଵ் 𝐼 𝑀ଵ∗⁄  and multiply both ends of the above equation right by Φଵ at the same time, 
and divide by the generalized mass of the first mode 𝑀ଵ∗  =  Φଵ்𝑀Φଵ: 𝑞ሷଵ + 2𝜔ଵ𝜉ଵ𝑞ሶଵ + 𝜔ଵଶ𝑞ଵ = 𝑟[𝑐஽𝑥ሶ஽ + 𝑘஽𝑥஽] + 𝑃ଵ∗ሺ𝑡ሻ. (6)

In Eq. (6), 𝜉ଵ = Φଵ்𝐶Φଵ 2𝑀ଵ∗𝜔ଵ⁄  is the damping ratio of the first mode of the high-rise 
structure, and 𝜔ଵ = ඥΦଵ்𝐾Φଵ 𝑀ଵ∗⁄  is the frequency of the first mode. 𝑃ଵ∗ሺ𝑡ሻ is the generalized 
wind load of the first order mode, and 𝑃ଵ∗ሺ𝑡ሻ = Φଵ்𝑃௜ሺ𝑡ሻ, where Φଵ௜ is the mode shape component 
of the first order mode corresponding to the 𝑖th lumped mass, and 𝑃௜ሺ𝑡ሻ is the wind load 
corresponding to the 𝑖th lumped mass. 

Similarly, the first mode vector is introduced to the right end of Eq. (4) 𝑥ሷ = Φଵ்𝑞ሷଵ to obtain: 𝑚஽𝑥ሷ஽ + 𝑐஽𝑥ሶ஽ + 𝑘஽𝑥஽ = −𝑚஽Φଵ் 𝐼𝑞ሷଵ. (7)

Assume that 𝛽 = Φଵ் 𝐼, and divide both ends of the Eq. (7) by 𝑚ௗ: 𝑥ሷ஽ + 2𝜔஽𝜉஽𝑥ሶ஽ + 𝜔஽ଶ𝑥஽ = −𝛽𝑞ሷଵ. (8)

Then Fourier transform is performed on both ends of Eq. (6), and respectively  ℱ(𝑞ଵ) = 𝐹௤భ(𝜔), ℱ(𝑞ሶଵ) = (𝑖𝜔)𝐹௤భ(𝜔) and ℱ(𝑞ሷଵ) = (𝑖𝜔)ଶ𝐹௤భ(𝜔). Here 𝐹௉భ∗(𝜔) is the Fourier 
transform of the generalized force, the following equation is obtained: (𝜔ଵଶ − 𝜔ଶ + 𝑖 · 2𝜉ଵ𝜔ଵ𝜔)𝐹௤భ(𝜔) − 𝑟𝑚஽(𝜔஽ଶ + 𝑖 · 2𝜉஽𝜔஽𝜔)𝐹௫ವ(𝜔) = 𝐹௉భ∗(𝜔). (9)

The Fourier transform is also performed on both ends of Eq. (8), and the transformation 
relations ℱ(𝑥஽) = 𝐹௫ವ(𝜔), ℱ(𝑥ሶ஽) = (𝑖𝜔)𝐹௫ವ(𝜔) and ℱ(𝑥ሷ஽) = (𝑖𝜔)ଶ𝐹௫ವ(𝜔) are adopted. Then 
resulting equation is given by: −𝛽𝜔ଶ𝐹௤భ(𝜔) + (𝜔஽ଶ − 𝜔ଶ + 𝑖 · 2𝜉஽𝜔஽𝜔)𝐹௫ವ(𝜔) = 0. (10)𝐹௤భ(𝜔) and 𝐹௫ವ(𝜔) can be solved by the combination of Eq. (9) and (10), where 𝐹௤భ(𝜔) is the 
Fourier spectrum of the vibration of the main structure of the high-rise structure, and 𝐹௫ವ(𝜔) is 
the Fourier spectrum of the vibration of the TMD substructure. 

Therefore, when considering the first mode of vibration of the TMD system under wind load, 
the power spectrum of the structure is as follows, where 𝐶ଵ = Φଵ்𝐶Φଵ: 𝑃்ெ஽ௗభ = 𝜔ଶ𝐶ଵห𝐹௤భ(𝜔)หଶ. (11)

Similarly, under wind load 𝑃(𝑡), the motion equation of structure without TMD can be 
expressed as: 𝑀𝑥ሷ + 𝐶𝑥ሶ + 𝐾𝑥 = 𝑃(𝑡). (12)

Assume that 𝑥 = Φ்𝑞, and similarly decompose Eq. (12) to obtain: 
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𝑞ሷ௡ + 2𝜔௡𝜉௡𝑞ሶ௡ + 𝜔௡ଶ𝑞௡ = 𝑃௡∗(𝑡). (13)

Then Fourier transformation is performed, and relationsℱ(𝑞௡) = 𝐻௤೙(𝜔), ℱ(𝑞ሶ௡) =(𝑖𝜔)𝐻௤೙(𝜔), ℱ(𝑞ሷ௡) = (𝑖𝜔)ଶ𝐻௤೙(𝜔) and 𝐹(𝑃௡∗(𝑡)) = 𝐹௉೙∗(𝜔) are adopted to obtain: (𝜔௡ଶ − 𝜔ଶ + 𝑖 · 2𝜉௡𝜔௡𝜔)𝐻௤೙(𝜔) = 𝐹௉೙∗(𝜔). (14)

Therefore, the power spectrum of the structure without TMD is expressed as: 𝑃ௗభ = 𝜔ଶ𝐶ଵห𝐻௤భ(𝜔)หห𝐹௉భ∗(𝜔)หଶ. (15)

2.3. The amplitude of a random process with given power spectrum and the vibration-
reduction coefficient  

For a random process 𝑠(𝑡) with given power spectrum 𝐺௦(𝑤), its amplitude (maximum 
absolute value) 𝐴 satisfies the probability distribution density function as given in Eq. (16), and 
the amplitude 𝐴 can be calculated using Eq. (17) [4]: 

𝐹஺(𝑠) = ቆ1 − 𝑒ି௔మଶ ቇ exp൞−𝜈𝜏𝑒ି௔మଶ 1 − 𝑒ିටగଶ𝑞௘𝑎1 − 𝑒ି௔మଶ ൢ, (16)

𝜇஺ = න 𝑠𝑓஺(𝑠)𝑑𝑠ஶ
଴ , (17)

where 𝑎 = 𝑠/ඥ𝜆଴, 𝜈 = ඥ𝜆ଶ 𝜆଴⁄ /𝜋, 𝑞௘ = 𝑞ଵା௕, 𝑞 = ඥ1 − (𝜆ଵଶ 𝜆଴𝜆ଶ⁄ ), 𝑏 = 0.2, 𝑓஺(𝑠) is the 
probability density function of 𝐴, 𝑑𝐹஺(𝑠) 𝑑𝑠⁄ = 𝑓஺(𝑠). 

For the random process corresponding to the power spectrum given by Eq. (11) and (15), we 
use the above equations to calculate the corresponding maximum absolute value 𝜇஺೅ಾವ೏భ and 𝜇஺೏భ 
respectively, according to which the vibration reduction coefficient 𝑅஺ can be calculated [5]: 

𝑅஺ = ቤ𝜇஺೅ಾವ೏భ𝜇஺೏భ ቤ. (18)

𝑅஺ (vibration reduction coefficient) is a function of mass ratio, frequency ratio and damping 
ratio. When its minimum value is achieved, it corresponds to the optimal frequency ratio and 
damping ratio of TMD. 

3. Optimization of the TMD parameters of a high-rise building 

A 33-story high-rise building in Fig. 2 is taken as an example to verify the parameter 
optimization method. As shown in Fig. 2, the 33-storey residential building structure is all on the 
ground. The height of the bottom layer is 5.6 m, the standard layer is 3 m, and the total height is 
99.85 m. The concrete strength of beams and columns in each layer of the structure adopts C40, 
the floor adopts C30, and the floor thickness is 120 mm. 

3.1. Determination of TMD optimization parameters 

For the case that the mass ratio is 0.05, the vibration reduction coefficient as a function of 
damping ration and frequency ratio is shown in Fig. 3(a), it can be seen that it presents a downward 
concave shape, which indicates the optimal solution for TMD parameters. Moreover, when the 
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damping is relatively small and the frequency ratio is close to 1, it can be found that the vibration 
reduction coefficient will be greater than 1, which indicates that simply increasing the damping 
ratio cannot achieve better vibration reduction effect. It might actually cause larger vibration. As 
can be seen from the isoline of vibration reduction coefficient in Fig. 3(b), the same law exists. 
The closer the parameter is to the optimal one, the more obvious the vibration reduction effect will 
be. When the optimal parameters of TMD are obtained, the optimal damping ratio and the optimal 
frequency ratio are 0.100 and 0.96, respectively, and the corresponding vibration reduction 
coefficient is 0.6846. 

 
Fig. 2. High-rise building structure 

 
a) Three-dimensional diagram  

of vibration reduction coefficient 

 
b) Isogram of vibration reduction coefficient  

Fig. 3. TMD parameter distribution diagram under wind load 

According to Table 1, when the mass ratio of TMD is changed, it can be seen from the four 
different mass ratios of 0.01, 0.03, 0.05 and 0.07 that the optimal damping ratio basically increases 
with the increase of the mass ratio, reaching the maximum value of 0.10 when the mass ratio is 
0.05, and the optimal frequency ratio also reaches the maximum value of 0.96 when the mass ratio 
is 0.05. The results obtained were compared with those obtained by the classical optimization 
formulas such as J. P. Den Hartog and H. C. Tsai et al. [6]. Compared with the vibration reduction 
coefficient 0.7260 obtained by the classical optimization method, the vibration reduction 
coefficient obtained by the optimization method was lower, 0.6846, indicating better vibration 
reduction effect. 

Table 1. Comparison of optimization results of different mass ratios 

Mass 
ratio 

Optimal 
frequency ratio 

Optimal 
damping ratio 

Vibration 
reduction 
coefficient 

Vibration reduction coefficient by 
Den Hartog and Tsai’s power 

method 
0.01 0.99 0.05 0.6604 0.6085 
0.03 0.93 0.08 0.6198 0.8135 
0.05 0.96 0.10 0.6846 0.7260 
0.07 0.93 0.07 0.6183 0.6639 
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3.2. Analysis of the effect of the power method of TMD 

In order to further understand the optimal parameters and vibration reduction performance of 
TMD, the optimal damping coefficient is obtained when the mass ratio is 0.05. Taking the 
controlled structure as an example, according to the conditions given in Eq. (2), 20 sets of wind 
load time-history data are generated, and the corresponding dynamic response of the structure is 
calculated by time-history analysis method. In Fig. 4, the average value of maximum displacement 
and maximum acceleration velocity of each layer of the structure under 20 groups of wind load 
input and the ratio of maximum displacement response of each layer before and after setting TMD 
are listed.  

It can be seen from Fig. 4(a) that the maximum displacement along the height direction of the 
high-rise structure increases with the increase of height. The maximum displacement of the top of 
the structure without TMD and with TMD is 0.118 m and 0.075 m, respectively. When the optimal 
TMD parameters are adopted, the maximum displacement at the top of the high-rise structure 
decreases by 36.44 %. As can be seen from Fig. 4(b), the maximum acceleration is 0.20 m/s2, and 
the maximum acceleration of non-TMD structure is 0.36 m/s2, which decreases by 44.4 %. 
Fig. 4(c) shows that the damping effect of the top layer after TMD installation is 0.64 when TMD 
is not installed. 

 
a) The maximum displacement 
along the height of the structure 

 
b) Maximum acceleration along 

the height of the structure 

 
c) Column displacement ratio before 

and after TMD installation 
Fig. 4. TMD parameter distribution diagram under wind load 

4. Conclusions 

1) The equations of motion of controlled and uncontrolled high-rise structures are established, 
and the equations of vibration reduction coefficient under random excitation are obtained, as well 
as the optimal damping ratio, frequency ratio and corresponding vibration reduction coefficient 
under different mass ratios. 

2) When the TMD mass ratio is 0.05, the optimization effect of column displacement under 
wind load is the best. TMD has the best constraint effect on the top displacement of the structure, 
and the constraint effect of non-TMD structure is 0.64.  

3) The simplified model is used for research, but the limitation is that the structural complexity 
and local effects are ignored, so the results are not as fine as the precise model. However, the 
simplified model is more effective in determining the optimization of structural schemes, with low 
cost and high efficiency. 

4) In this paper, wind loads are applied to the structure in a random process. Stochastic finite 
element is also an analysis method considering randomness, but it is more suitable for reliability 
analysis and less used in structural design, so deterministic structure is used in this paper. 
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