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Abstract. To address the challenges of delayed control responses and suboptimal performance 
due to the absence of predictive capabilities for pre-power chain speed fluctuations in the 
electromechanical composite transmission system of armored vehicles, a transient fluctuation 
prediction and control method based on the Least Squares Support Vector Machine (LSSVM) is 
proposed for the engine-generator set within the system. This approach leverages real-world 
generator data collected from actual vehicles as the training dataset to establish a data-driven 
model. A specific LSSVM training model is developed, with experimental data serving as the test 
set. Within the model's predictive framework, transient fluctuations of critical engine-generator 
parameters are generated in real-time under test conditions. Simulations are conducted on a test 
platform for the electromechanical composite transmission system, evaluating both 
single-generator operation and a variety of driving conditions. Comparative analysis is performed 
to assess the operational factors influencing system performance under single and multiple 
conditions, as well as the control effects of transient power chain fluctuation prediction. Under 
multiple-condition scenarios, the system demonstrates faster dynamic recovery in response to 
significant load disturbances, with voltage peak fluctuations remaining within 5 %, which meets 
engineering application standards. This validates the model's adaptability and generalization 
capability for broader use cases.  
Keywords: electric drive, speed fluctuation prediction, least squares support vector machine, 
model predictive control. 

1. Introduction 

Electric-drive armored vehicles are emerging as a key focus for future armored vehicle 
development due to their quiet operation, agile maneuverability, and superior power performance 
[1]. Unlike traditional power systems, these vehicles typically integrate two or more power 
sources, utilizing precise control over processes such as power generation, conversion, 
transmission, and storage to achieve multi-voltage [2, 3] and multi-power-level capabilities. 
However, the operational differences among these power sources pose challenges in coordinating 
and controlling their output to meet dynamic load requirements, which in turn limits the overall 
performance of electric-drive vehicles. 

In the context of generator control for hybrid drive systems in tracked armored vehicles, 
conventional technical solutions often rely on the dynamic torque transfer function model or 
interpolation algorithms to estimate the generator’s output torque under varying throttle conditions 
[4-6]. While these methods primarily focus on torque regulation, they fail to fully account for 
dynamic fluctuations in generator speed [7-9]. This limitation creates difficulties in power 
measurement and simulation testing of hybrid drive systems [10]. The engine-generator unit, a 
critical component in multi-source power systems, is particularly affected by transient 
fluctuations, which directly reflect changes in load demand. Under real-world operating 
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conditions, the engine’s poor response to load variations often leads to significant fluctuations in 
the vehicle’s electrical grid. Therefore, accurately predicting and mitigating these power 
fluctuations is critical to maintaining grid balance and ensuring stable vehicle operation [11, 12]. 
Hence, the need for a real-time method to predict power fluctuations in engine-generator units has 
become increasingly urgent to improve control responsiveness and accuracy [13, 14]. 

Predictive modeling methods for engine speed fluctuations provide a theoretical foundation 
for enhancing prediction performance. Research in this area has explored various approaches. 
Some studies have focused on speed variation modeling, developing predictive models under 
diverse operating conditions [15]. Others have applied semi-supervised adversarial discriminative 
learning to analyze fluctuation data [16]. Additionally, deep learning methods, including 
cross-machine learning and parameter transfer techniques, have shown promise in this domain 
[17]. Signal processing techniques, such as feature extraction based on composite multi-scale 
weighted reverse slope entropy and neighborhood preserving embedding, have also been 
employed to capture the complex dynamic characteristics of speed fluctuation signals [18], 
demonstrating broad applicability. 

To address these challenges, there is a pressing need to develop novel generator test bench 
loading devices and methods to deeply analyze transient generator behavior. Such advancements 
are essential for ensuring the stable operation of vehicles under complex working conditions. This 
study proposes a transient fluctuation prediction and control method for engine-generator units in 
tracked vehicles based on LSSVM. The proposed method has been validated through bench 
testing, offering a practical solution for enhancing the stability and reliability of electric-drive 
armored vehicles in demanding operational scenarios. 

2. The generator transient fluctuation prediction based on LSSVM model 

The LSSVM algorithm is an innovative regression-based forecasting technique that uses a 
least-squares approach to transform the quadratic programming optimization problem in 
traditional support vector machines, which includes inequality constraints, into a set of linear 
equations with equality constraints. The method minimizes the sum of squared errors as the loss 
function for the training samples. By doing so, LSSVM eliminates the complexity of solving 
quadratic programming problems, reduces the computational burden during the training process, 
and significantly improves both prediction accuracy and computation speed [19,20]. 

Given a set of 𝑛 training samplesሺ𝐱ଵ, 𝐲ଵሻ,⋯ , ሺ𝐱௡, 𝐲௡ሻ, where 𝐱, 𝐲 ∈ 𝐑௠. According to 
Suykens’s LS-SVM theory, the input space 𝐑௠ is mapped into a high-dimensional feature space 𝑍 through a nonlinear function 𝜑ሺ𝐱ሻ. In the feature space, the following optimal linear regression 
function is constructed: 𝑓ሺ𝐱ሻ = 𝐰்𝜑ሺ𝐱ሻ + 𝑏, (1)

where 𝐰 is the weight vector in 𝐑௞ and 𝑏 is a constant in 𝐑. Thus, the nonlinear fitting problem 
is transformed into a linear fitting problem in the high-dimensional feature space. According to 
the principle of structural risk minimization, which balances the complexity of the function and 
the fitting error, the regression problem can be formulated as a constrained optimization problem: min     𝐽ሺ𝐰, 𝑒ሻ = 12 ‖𝐰‖ଶ + 𝐶෍ ሺ𝜉௜ + 𝜉௜∗ሻ௡௜ୀଵ . (2)

Constraints: 

ቐ𝐲௜ − 𝐰𝐱௜ − 𝑏 = 𝜀 + 𝜉௜ ,𝐰𝐱௜ + 𝑏 − 𝐲௜ = 𝜀 + 𝜉௜∗,𝜉௜ ,    𝜉௜∗ ≥ 0,       𝑖 = 1, 2,⋯ ,𝑛, (3)
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where, 𝜉௜, 𝜉௜∗ represents the slack variables, and 𝜀 is the insensitive parameter of the loss function. 
By using 𝑒௜ଶ 2⁄  instead of 𝜉௜ + 𝜉௜∗, the corresponding Lagrange function is established as follows: 

𝐋ሺ𝐰, 𝑏, 𝑒; 𝑎ሻ = 𝐽ሺ𝐰, 𝑒ሻ −෍𝛼௞ሼ𝐰்𝜑ሺ𝐱௞ሻ + 𝑏 + 𝑒௞ − 𝐲௞ሽ௡
௞ୀଵ , (4)

where, 𝛼௞ ∈ 𝐑 are the Lagrange multipliers, and they belong to the real numbers RR. According 
to the Karush-Kuhn-Tucker conditions, take the partial derivatives of 𝐋 with respect to 𝐰,𝑏, 𝑒௞, 
and 𝛼௞ to obtain: 

⎩⎪⎪⎪
⎪⎨
⎪⎪⎪⎪
⎧𝜕𝐋𝜕𝐰 = 0 → 𝐰 = ෍𝛼௜𝜑ሺ𝐱௜ሻ௡

௜ୀଵ = 0,𝜕𝐋𝜕𝑏 = 0 →෍𝛼௜௡
௜ୀଵ = 0,𝜕𝐋𝜕𝑒௜ = 0 → 𝛼௜ = 𝐶𝑒௜ ,𝜕𝐋𝜕𝛼௜ = 0 → 𝐰்𝜑ሺ𝐱௜ሻ + 𝑏 + 𝑒௜ − 𝑦௜ = 0.

 (5)

By eliminating the variables 𝐰 and 𝐞, the following equation can be obtained: 

൥0 𝐈்𝐈 Ω + 1𝐶 𝐈൩ ቂ𝑏𝛂ቃ = ൤0𝐲൨, (6)

where, the kernel function is Ω௜௝ = 𝐾൫𝐱௜ , 𝐱௝൯ = 𝜑ሺ𝐱௜ሻ ⋅ 𝜑൫𝐱௝൯, 𝑖, 𝑗 = 1,2,⋯ ,𝑛; 𝐲 represents the 
output samples; 𝐈 represents the identity matrix; 𝛂 = ሾ𝛼ଵ,𝛼ଶ,⋯ ,𝛼௡ሿ. Thus, the LS-SVM 
regression estimation expression is obtained as: 

𝑦ሺ𝐱ሻ = ෍𝛼௜𝐾ሺ𝐱௜ , 𝐱ሻ௡
௜ୀଵ + 𝑏. (7)

In the formula: 

𝑏 = 𝐈்ሺΩ + 𝐶ିଵ𝐈ሻିଵ𝐲𝐈்ሺΩ + 𝐶ିଵ𝐈ሻିଵ𝐈 , (8)𝛂 = ሺΩ + 𝐶ିଵ𝐈ሻିଵሺ𝐲 − 𝑏𝐈ሻ. (9)

In the LSSVM modeling process, 𝐾൫𝐱௜ , 𝐱௝൯ is a kernel function that satisfies Mercer’s 
condition. 

The dataset utilized in this study is derived from generator data measured on actual tracked 
vehicles. Data collection was conducted in real-time using the On-Board Diagnostics system with 
a sampling period of 10 ms, which was configured with a bus collection channel. The sampling 
frequency of the bus was adjusted according to the type of signal being measured. To ensure the 
dataset's diversity and comprehensiveness, data was collected across various driving environments 
and climatic conditions. Each vehicle's dataset included driving scenarios across different road 
types, such as cement roads, hard soil, and muddy terrain. High-precision sensors, such as speed 
sensors and torque meters, were employed to ensure accurate and consistent data collection across 
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diverse driving conditions. These sensors were carefully calibrated to maintain data quality. 
The collected data includes generator speed 𝑛, generator torque 𝑇. The training and testing 

processes are conducted with speed fluctuations around 3800 rpm as the dependent variable. The 
input features, including generator speed 𝑛, generator torque 𝑇, multi-scale torque variations Δ𝑇 Δ𝑡⁄  over time, and speed fluctuations Δ𝑛, were standardized during preprocessing to maintain 
a uniform scale. This standardization process could enhance model stability and minimized the 
risk of scale differences among features negatively impacting training outcomes. The data 
collected from the vehicle's bus on Dataset1 was selected as the test dataset, with data points from 
50001 to 140000, as shown in Fig. 1 and Fig. 2. The data collected from the vehicle’s bus on 
Dataset2 was selected as the test dataset, with data points from 40001 to 90000 chosen for testing, 
as shown in Fig. 3 to Fig. 4. 

 
Fig. 1. Generator speed 

 
Fig. 2. Generator torque 

 

 
Fig. 3. Generator speed 

 
Fig. 4. Generator torque 

The LSSVM model’s output aligns closely with the real-time transient fluctuations of the 
generator under actual operating conditions. By expanding the original small sample into a larger 
training dataset, the model can predict future transient fluctuations of the generator, as illustrated 
in Fig. 5. The prediction accuracy of the LSSVM model for speed fluctuations is highly dependent 
on the choice of kernel function parameters. In this case, a Gaussian kernel function is selected, 
with optimization performed on two key parameters: the penalty factor 𝛾 and the kernel width 𝜎 
[21, 22]. The LSSVM model uses a 10 % cross-validation method on the training sample to 
determine optimal parameters. This involves a two-step optimization process. First, a coupled 
simulated annealing algorithm is employed for coarse parameter estimation. Then, the simplex 
method is applied for fine-tuning and precise parameter estimation. 
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Fig. 5. Diagram of the generator transient fluctuation prediction model 

3. Real-time load prediction and control of a generator test bench 

By collecting and processing real-world data from the generator in specialized 
electromechanical hybrid transmission systems for vehicles, the generator’s speed, torque, and 
rate of torque change over time are utilized as feature vectors. The machine learning algorithm 
LSSVM is then applied to predict the generator’s speed fluctuations in the subsequent moment, 
leading to the development of a test bench loading model that simulates actual vehicle generator 
behavior. 

During the training process of the LSSVM, multi-scale data processing techniques are applied 
to the real vehicle data. This approach enhances the ability of the predicted speed to more 
accurately track torque variations in the test bench loading device, while also improves the 
model’s capacity to predict speed fluctuations within the electromechanical hybrid transmission 
system’s test bench. The flowchart of the generator test bench loading device and method is 
illustrated in Fig. 6. 

3.1. Extraction of real vehicle data characteristics for electromechanical composite 
transmission system generators 

Obtain experimental data at time 𝑡 by placing sensors on the actual vehicle, including the 
generator speed 𝑛 and the generator torque 𝑇௘, as well as the torque rate of change Δ𝑇௘/Δ𝑡. The 
calculation formula for Δ𝑇௘/Δ𝑡 is as follows: Δ𝑇௘Δ𝑡 = 𝑇௘,௧ − 𝑇௘,௧ିଵΔ𝑡 , (10)

where Δ𝑡 is the data sampling period, forming the feature vector [𝑛,𝑇௘ ,Δ𝑇௘/Δ𝑡]. Simultaneously, 
obtain the speed fluctuation rate Δ𝑛 at time 𝑡 + 1, which represents the amplitude of fluctuation 
around the generator speed command issued by the electromechanical composite transmission 
system’s integrated controller. When there are 𝑛 time instances, the feature vector [𝑛,𝑇௘ ,Δ𝑇௘/Δ𝑡] 
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forms an 𝑛 × 3 dimensional feature matrix, while the speed fluctuation rate Δ𝑛 forms an 𝑛 × 1 
dimensional target matrix. 

 
Fig. 6. Generator test rig loading device and method flowchart 

3.2. Generator speed prediction for electromechanical composite transmission systems 
based on machine learning 

Use the 𝑛 × 3 dimensional feature matrix and the 𝑛 × 1 dimensional target matrix extracted 
in Section 3.1 as inputs for machine learning algorithms to train the model. This training process 
establishes the mapping relationship between the feature vector [𝑛,𝑇௘ ,Δ𝑇௘/Δ𝑡] at time 𝑡 and the 
speed fluctuation rate Δ𝑛 at time 𝑡 + 1. During training, the least squares error is used as the 
objective function, and an intelligent optimization algorithm estimates and saves the parameters 
in the machine learning algorithm, facilitating the application of the trained model in predicting 
speed fluctuations in Section 3.3. 

3.3. Implementation of generator loading control for electromechanical composite 
transmission systems 

Based on the mapping relationship obtained in step (2), executable code is generated and 
deployed in a real-time control interface. The input data for this real-time control interface 
includes the current speed 𝑛 and the corresponding torque 𝑇௘ from the test rig’s generator 
feedback, as well as the rate of change of torque Δ𝑇௘/Δ𝑡 computed by the internal executable code. 
These three values are combined into a feature vector [𝑛,𝑇௘ ,Δ𝑇௘/Δ𝑡]), which is then fed into the 
machine learning algorithm trained in Section 3.2 to predict the next moment’s speed fluctuation 
value Δ𝑛, as shown in Fig. 7. 
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Fig. 7. Generator test rig loading control  

 
a) 250 ms 

 
b) 500 ms 

 
c) 750 ms 

 
d) 1000 ms 

Fig. 8. Prediction of engine speed fluctuations at different time scales 

Due to the relatively small proportion of transient speed samples in the overall dataset, there 
is a risk of sample imbalance during machine learning training, which can lead to inaccurate 
predictions. To address this, it is essential to ensure that the sample sizes Δt in the training and 
testing sets are well-matched. Taking into account the communication rate of the test rig control 
hardware, different data sampling intervals of 250 ms, 500 ms, 750 ms, and 1000 ms were chosen 
for the feature sets shown in Fig. 2 to Fig. 5 to enhance the dataset through multi-scale sampling. 
The parameter estimates for the LSSVM model at each scale are detailed in Table 1. 

Based on the calculation process illustrated in Fig. 7, real-time engine speed feedback is 
replaced with LSSVM-predicted values, while torque values are derived from actual vehicle data. 
The initial speed is input, and the process is looped continuously to simulate the loading process. 
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The results, as shown in Fig. 8, indicate that at sampling intervals of 250 ms, 500 ms, and 750 ms, 
the tracking performance between the experimental and predicted values deteriorates, with errors 
increasing in the middle segment of the sampling points. This degradation is primarily attributed 
to the time lag between response speed and change in speed. Conversely, the 1000 ms sampling 
interval exhibits better tracking performance with reduced error. 

Table 1. LSSVM parameter estimates and fitting RMSE for each time scale 
Time scale 250 500 750 1000 

Initial speed –3828 –3823 –3830 –3830 𝛾 12.24 12.27 11.66 2.38 𝜎ଶ 57230.5 8379.3 14982.1 2365.6 
RMSE 45.2 47.5 48.6 46.4 

4. Model adaptability testing under different operating conditions 

The electric-driven tracked vehicle test bench is capable of reproducing the driving loads 
encountered by the vehicle on real road surfaces, including both resistive and inertial loads. 
Therefore, the load simulation platform is a critical component of the comprehensive performance 
test bench for electric-driven tracked vehicles. The dynamic load simulation capability is a key 
feature of the load simulation platform. To address this, a load simulation platform testing system 
has been established. The validation platform utilized in this study is an electric-drive tracked 
vehicle test bench, which integrates a hardware-in-the-loop (HIL) simulation platform to assess 
the transient speed fluctuations of the generator. The platform is comprised of five main 
components: the control system, driving control system, dynamic real-time simulation system, 
data acquisition, and monitoring system. The control system orchestrates the operation of the test 
bench by coordinating its control functions through the vehicle’s real-time control bus. 

From the perspective of control methodology, the study integrates LSSVM-based predictive 
control with generator PI regulation. LSSVM predictive control is utilized to forecast fluctuations 
in engine speed, while generator PI control is employed to regulate torque output. Torque output, 
as the primary driver of engine speed fluctuations, serves as the input for engine speed dynamics. 
The stability of generator PI regulation is critical, as it directly impacts the amplitude of engine 
speed fluctuations. By coordinating these two approaches, the stability and performance of the 
overall system are ensured. 

To enhance generalization capabilities, two primary strategies are employed. First, the 
diversity and comprehensiveness of the training data are significantly improved. Data is collected 
from a variety of driving environments and climatic conditions, encompassing a wide range of 
road surfaces such as cement roads, hard soil roads, muddy roads, and high-altitude terrains. This 
ensures that the model is exposed to diverse scenarios during the training process, enhancing its 
robustness and adaptability. Second, a pre-trained model is utilized to simulate the generator's 
standalone operation mode. By designing specific current ramps and injecting current, the model 
effectively simulates scenarios involving sudden load increases and decreases. This approach 
enables the system to better handle dynamic and complex situations, further improving its overall 
performance. Furthermore, the post-powertrain section of the platform controls load spikes and 
drops, while monitoring how the engine-generator unit in the pre-powertrain system anticipates 
fluctuations in engine speed due to load changes and predicts the corresponding power demands. 
The tests are carried out using a power motor to emulate the engine, as illustrated in Fig. 9. 

Before conducting tests for the two modes mentioned above, a model tracking test was 
performed using real vehicle test data to validate the model’s predictive capabilities and speed 
tracking accuracy. The generator speed response is shown in Fig. 10 when the speed command 
generated by the model is applied to the test bench using actual vehicle data. 

To observe the speed change trends more clearly, data processing was performed on both the 
speed command and the speed feedback. Specifically, an additional 50 r/min was added to the real 
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vehicle's generator speed values, while 50 r/min was subtracted from the speed commands output 
by the model. From Fig. 10, it can be seen that under steady-state conditions, the generator speed 
fluctuations of the real vehicle remain relatively stable. However, in comparison to the model's 
speed command output and the generator speed feedback, the real vehicle's generator speed is 
more sensitive to fluctuations. The speed command generated by the model exhibits greater 
sensitivity when compared to the actual speed feedback. 

Trained model

Real-time collected 
generator torque

Output speed control 
command

Real-time speed value 
obtained from collection

Speed tracking 
and comparison

DC power supply 
simulates load 

sudden changes

Rear powertrain 
load motor 

simulated load 
sudden change

Straight-line 
acceleration

Steering

Center steering

Different operating 
conditions

1

2

 
Fig. 9. Test bench verification plan 

 
Fig. 10. Real vehicle test data is used as the test set to validate  

the generator speed fluctuation tracking curve 

In terms of transient fluctuations, the real vehicle’s generator speed fluctuates between 
3550 r/min and 4000 r/min, the model’s speed output fluctuates between 3650 r/min and 
4000 r/min, and the generator speed feedback fluctuates between 3650 r/min and 3900 r/min. This 
indicates an error in the generator speed command output by the model, which is attributed to the 
model's training accuracy. Additionally, there is a discrepancy between the feedback speed value 
and the generator speed command, caused by the desynchronization between the command 
issuance cycle and the response time. The command changes occur faster than the system’s speed 
response capability, affecting tracking performance. This issue could potentially be addressed by 
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adjusting the model's execution cycle. However, due to the hardware limitations of the test bench, 
there is a bottleneck in achieving significant improvement. Enhancements are needed in the 
processing capability of the main controller chip and in reducing the latency between command 
execution and system response. For example, utilizing a bus with higher real-time performance 
for data transmission and improving hardware control processing capabilities, or shortening 
software execution cycles, could help mitigate this issue. 

Overall, based on the generator speed fluctuations observed during both steady-state and 
dynamic operations, and the trends of generator speed commands and feedback, the real vehicle’s 
fluctuations align reasonably well with the provided commands. In engineering applications, 
whether the model can accurately simulate generator speed fluctuations will need further 
validation through test bench experiments. 

4.1. Generator standalone mode operation 

To verify the consistency between the model’s output engine speed commands and the 
generator's feedback speed, an analysis of speed fluctuations was conducted under standalone 
operation and load step change conditions using a test stand. The generator was operated 
independently with a DC power source as the load, running at 3800 rpm and a high voltage of 
900 V. By setting a specific load ramp, load step changes were simulated to observe the resulting 
speed fluctuations of the generator. Simulations were carried out under the following scenarios: 

(1) Load 50 A, 100 A/s ramp to 100 A, power change rate 90 kW/s. 
(2) Load 100 A, 100 A/s ramp to 200 A, power change rate 90 kW/s. 
(3) Load 200 A, 100 A/s ramp to 100 A, power change rate 90 kW/s. 
(4) Load 100 A, 200 A/s ramp to 300 A, power change rate 180 kW/s. 
(5) Load 300 A, 200 A/s ramp to 100 A, power change rate 180 kW/s. 
(6) Load 100 A, 200 A/s ramp to 300 A, power change rate 180 kW/s. 
(7) Load 300 A, 100 A/s ramp to 400 A, power change rate 90 kW/s. 
(8) Load 400 A, 100 A/s ramp to 300 A, power change rate 90 kW/s. 
(9) Load 300 A, 200 A/s ramp to 100 A, power change rate 180 kW/s. 
(10) Load 100 A, 200 A/s ramp to 500 A, power change rate 180 kW/s. 
(11) Load 500 A, 200 A/s ramp to 100 A, power change rate 180 kW/s. 
(12) Load 100 A, 100 A/s ramp to 50 A, power change rate 90 kW/s. 
The speed curve of the generator is depicted in Fig. 11. In Fig. 11, the power rate changes for 

points (1), (2), (3), (4), (5), and (12) are identical, but the speed fluctuations differ. As the target 
current increases, the speed fluctuations become more pronounced. It can be observed that the 
rising slope and current change at (1) are consistent with the falling slope and current change at 
(12); (12) represents the reverse process of (1) and manifests as a speed increase on the waveform. 
Similarly, (2) and (3), as well as (10) and (11), represent opposite processes, though (10) exhibits 
a steeper slope and a higher target current value compared to (2). 

From (1) and (2), it can be concluded that when the current change value ∇𝐴 is 50, the speed 
change value ∇𝑅 is 15; when the current change value ∇𝐴 is 100, the speed change value ∇𝐴 is 
35; when the current change value ∇𝐴 is 200, the speed change value ∇𝑅 is 55; and when the 
current change value ∇𝐴 is 400, the speed change value ∇𝑅 is 90. This suggests that the current 
amplitude change is approximately linearly related to the speed fluctuation amplitude. 

Further analysis shows that sudden changes in current (which correspond to generator torque) 
impact the speed fluctuations. The slope of a sudden rise or fall and the magnitude of the current 
are positively correlated with the slope and amplitude of the speed waveform. The sharper and 
larger the current change, the steeper and higher the corresponding speed waveform. 

From the comparison of (4), (5), and (6), it can be deduced that sudden rises and falls in current 
with the same slope and amplitude do not affect the waveform characteristics; the amplitude and 
slope of the speed fluctuation waveform remain largely unchanged. 

Additionally, it is observed that the feedback speed amplitude is magnified relative to the 
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commanded speed amplitude, with amplification errors ranging from 0.24 % to 1.45 %. This 
amplification error increases with larger current changes and steeper slopes. Adjustments to the 
PI control system parameters can reduce this error. 

Based on the above analysis, the following conclusions can be drawn: A well-calibrated model 
can predict generator speed fluctuations in advance and make the necessary adjustments. The 
generator's speed fluctuations vary with sudden load changes, and the degree of fluctuation is 
positively correlated with the magnitude of the load change and the steepness of the current rise 
or fall. 

 
Fig. 11. Generator speed curve chart 

4.2. Operation mode of power chain coordination 

To verify the consistency between the generator’s speed command output and the generator’s 
feedback speed, a front and rear powertrain coordination method is employed. This approach 
involves simulating load changes in the rear powertrain and observing the resulting speed 
fluctuations in the front powertrain. The model’s generalization capability is evaluated by 
validating its performance under various operating conditions based on the powertrain speed 
command output. Additionally, the ability of the generator controller to stabilize voltage is 
assessed. The generator is operated at 3800 rpm, and three distinct test conditions are considered: 

– Test Condition 1: Acceleration from 0 to 32 km/h. The output speed on both sides of the 
transmission begins at 50 rpm and increases incrementally by 50 rpm, reaching up to 1050 rpm. 
The left and right drive motors each produce a torque of 230 N·m, with the target torque increased 
to 700 N·m at a power change rate of 100 kW/s. 

– Test Condition 2: Transition between straight driving and steering. The A-side drive motor 
of the transmission operates at 1958 rpm, while the B-side drive motor runs at 4160 rpm. To 
simulate significant load disturbances with a power change rate of 100 kW/s, the torque step is set 
at 550 N·m/s. A load of -3042 N·m is applied to the A-side output, and a load of 6138 N·m is 
applied to the B-side output. 

– Test Condition 3: Center steering test. The A-side output speed of the transmission is set to 
–172 rpm, while the B-side output speed is set to 172 rpm. Both drive motors are subjected to a 
torque of 50 N·m. To simulate large load disturbances with a power change rate of 100 kW/s, the 
torque step is set to 200 N·m/s, and a load of 500 N·m is applied. These test conditions provide a 
comprehensive framework to analyze the system’s performance in maintaining speed consistency 
and voltage stability under various dynamic load scenarios. 

Through calculations, it has been determined that the speed command and speed response error 
is 1.4 % under acceleration conditions, and 1.38 % under acceleration recovery conditions, as 
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shown in Fig. 12; 1.2 % under straight-line steering conditions, and 1.45 % under straight-line 
steering recovery conditions, as shown in Fig. 13; 1.9 % under center steering conditions, and 
1.35 % under center steering recovery conditions, as shown in Fig. 14. These results indicate that 
the speed fluctuation under center steering conditions is relatively higher compared to other 
conditions. 

 
Fig. 12. Generator speed curve under acceleration condition during continuous driving test  

 
Fig. 13. Generator speed curve under straight-line steering condition in Test Condition 2  

 
Fig. 14. Generator speed curve under center steering condition in Test Condition 3 
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Calculate the corresponding voltage fluctuation value: 

𝑈௕ = |𝑈୫ୟ୶ − 𝑈଴|𝑈଴ × 100%. (11)

The maximum voltage fluctuation is observed to be 1.7 % under Test Condition 1, as shown 
in Fig. 15; 2.0 % under Test Condition 2, as shown in Fig. 16; 2.4 % under Test Condition 3, as 
shown in Fig. 17. All voltage fluctuations are controlled within 5 %, although a voltage fluctuation 
close to 5 % is seen in the actual vehicle. It can be concluded that while a larger voltage fluctuation 
occurs under center steering conditions compared to other conditions, the performance is still 
superior to the voltage fluctuations observed in the actual vehicle. 

 
Fig. 15. Generator voltage fluctuation curve under continuous driving  

acceleration condition in Test Condition 1 

 
Fig. 16. Generator voltage fluctuation curve under straight-line steering condition in Test Condition 2  

A further analysis of the reasons for the greater speed and voltage fluctuations under center 
steering conditions, compared to other conditions, considering the structural characteristics of the 
transmission system, reveals that the transmission coefficient 𝑖௖௘௡௧௘௥ under center steering 
conditions is 17.01, while it is 3.15 under straight-line acceleration. The drive motor torque 𝑇௖௘௡௧௘௥ 
is amplified by the transmission coefficient, resulting in an output shaft torque of 8505 N·m under 
center steering, compared to 2205 N·m under straight-line acceleration, 𝑇௧௨௥௡஺ is –3042 N·m 
under general steering, and 𝑇௧௨௥௡஻ is 6138 N·m under straight-line steering. The increase in target 
torque for center steering leads to an increase in target current, which in turn causes larger speed 
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and voltage fluctuations. From acceleration to straight-line steering to center steering conditions, 
the rising target current directly correlates with larger speed and voltage fluctuations, consistent 
with the analysis of generator single-unit operation. 

In conclusion, the power motor experiences more severe fluctuations under center steering 
conditions. During center steering, speed fluctuation ranges from approximately 3600 to 
3850 r/min, and during center steering recovery, it reaches 3800 to 3930 r/min. Similarly, the 
amplitude of voltage fluctuation increases compared to other conditions. Therefore, during actual 
vehicle operation, appropriate measures should be implemented under center steering conditions 
to prevent excessive voltage fluctuation from causing motor over-voltage issues. 

 
Fig. 17. Generator voltage fluctuation curve under center steering condition in Test Condition 3  

5. Conclusions 

This paper focuses on the study of mechatronic hybrid drive systems. By integrating real 
vehicle test data, it proposes and establishes a transient fluctuation prediction model based on the 
LSSVM prediction algorithm. The research involves comparing simulation values with real 
vehicle test data, analyzing the adaptability of the real vehicle model for fluctuation predictions, 
and verifying the model’s effectiveness and generalization capabilities using a mechatronic hybrid 
drive system test bench. The key conclusions are as follows: 

1) Through the LSSVM prediction model training approach, a parameter optimization model 
using Gaussian functions as the space mapping mechanism is developed, aimed at optimizing 
penalty functions and kernel function widths. This approach effectively enhances the predictive 
capability of the model by comparing simulation values with real vehicle test results. 

2) Using real vehicle test data as the test set, a prediction control model based on real vehicle 
data is established to predict control and track generator speed fluctuations. Applying predictive 
control to the system significantly improves both the model’s prediction accuracy and its 
speed-tracking performance. 

3) Based on the mechatronic hybrid drive system test platform, various current ramp scenarios, 
target loads, and power change rates were designed for generator single-unit operating states. 
Through comparative analysis, speed fluctuation amplitudes and real-time performance were 
validated. For the front-and-rear powertrain adjustment mode, tests were designed for acceleration 
from 0 to 32 km/h, transitions between straight-line and steering conditions, and center steering 
conditions. Comparative analysis of these three scenarios and the generator single-unit operating 
mode showed that, under multiple operating conditions and load disturbances, the system exhibits 
fast dynamic recovery times, with voltage peak fluctuations within a range of ≤5 %, meeting 
engineering application requirements. This further validates the model's adaptability and 
generalization capabilities. 



TRANSIENT FLUCTUATION PREDICTION AND CONTROL OF TRACKED VEHICLE ELECTRIC DRIVE ENGINE-GENERATOR SET BASED ON LSSVM.  
LEI GUO, YAOHENG LI, JINBAO ZHANG, CHENG CHENG, HUANHUAN LI, MEIQIU SONG 

 JOURNAL OF MEASUREMENTS IN ENGINEERING 15 

The results demonstrate that the LSSVM-based transient fluctuation prediction model for 
engine-generator sets in mechatronic hybrid drive systems provides accurate foresight for 
predicting engine speed fluctuations. It significantly enhances multi-power source coordination 
control and improves control effects related to engine speed fluctuations, offering valuable 
insights for engineering applications, particularly in scenarios involving traditional model 
predictive control approaches. 
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