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Abstract. To enable rapid detection of golden snub-nosed monkeys in complex environments, 
reduce the human costs associated with tracking and observing these monkeys, and accelerate the 
development of intelligent forest monitoring, we propose the PCB-YOLOv5n-prune model. This 
model is designed for lightweight devices and is based on channel pruning and module 
reconstruction. First, we constructed a dataset that combines annotations of the golden snub-nosed 
monkey's face and body, with some data converted to grayscale. We mixed and expanded five 
data styles to decrease reliance on color and enhance the informational content. Next, we applied 
the Sparse Group Lasso selection operator method to slim down the YOLOv5n primitive model 
for golden snub-nosed monkey detection, improving the detection speed of the underlying 
network. We then introduced a lightweight convolutional module, PConv, to create the improved 
residual branching module, CPB, which reduces model computation and memory access. 
Additionally, we incorporated a lightweight attention module, ECA, to adaptively weight channel 
features, facilitating local cross-channel information interaction. Finally, we integrated the 
ByteTrack multi-target tracking algorithm to enable continuous tracking of golden snub-nosed 
monkeys and visualize detection results. Experimental results demonstrate that the 
PCB-YOLOv5n-prune model reduces the number of parameters, floating point operations, and 
model weight by 61 %, 56 %, and 55 %, respectively, compared to the original YOLOv5n model, 
while significantly improving detection speed. 
Keywords: golden snub-nosed monkey detection, lightweight, channel pruning, YOLOv5, model 
reorganization. 

1. Introduction 

The golden snub-nosed monkey (Rhinopithecus roxellanae) [1], is a unique protected species 
in China, often referred to as the “Monkey King” due to its striking appearance, and is beloved by 
the Chinese people. Its population development plays a crucial role in maintaining the stability of 
forest ecosystems and holds significant academic research value [2-3]. However, the survival and 
reproduction of golden snub-nosed monkeys face serious threats and challenges due to the over-
exploitation of natural resources and climate change [4]. To enhance the protection of this species 
and preserve biodiversity, observation and research on golden snub-nosed monkeys have become 
particularly important. 

The rapid development of computer vision has enabled the use of lightweight devices 
combined with target detection algorithms as an alternative to manual inspection for intelligent 
monitoring of golden snub-nosed monkey habitats. However, this approach places high demands 
on the real-time performance and deployment capabilities of the detection algorithms [5-6]. As a 
result, lightweight detection algorithms with lower hardware performance requirements have 
become crucial for the intelligent monitoring of golden snub-nosed monkeys. 

https://crossmark.crossref.org/dialog/?doi=10.21595/jmai.2024.24489&domain=pdf&date_stamp=2024-12-26
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In recent years, the detection and recognition of golden snub-nosed monkeys have entered an 
intelligent phase due to the incorporation of convolutional neural networks (CNNs). Fang Nan et 
al. [7] applied residual convolution to the CNN model to enhance the feature fusion capabilities 
of the network layers, effectively recognizing the faces of golden snub-nosed monkeys. Wang 
Gewei et al. [8] utilized a Self-Paced Learning strategy to optimize the training process of Bilinear 
Convolutional Neural Networks, helping to avoid local optima. Hu Xu et al. [9] improved the 
convolutional neural network model AKP-CNN (Attention Key Part Convolutional Neural 
Network) by integrating attention mechanisms, allowing for the separate extraction of global and 
local features, and achieving focused fusion of key feature regions .These studies primarily focus 
on facial recognition of golden snub-nosed monkeys, which makes it challenging to meet the 
detection needs of these monkeys in the wild when relying solely on facial information. To address 
this, Sun Rui et al. [10] combined facial features with body features and achieved individual 
detection of golden snub-nosed monkeys in the field through parameter optimization of Faster 
R-CNN [11], demonstrating effective detection across various scenarios. Faster R-CNN is 
classified as a two-stage detection algorithm, which generally offers better detection accuracy; 
however, it falls short in real-time detection performance. In contrast, single-stage detection 
algorithms directly predict the category and location of targets using dense networks and anchor 
frames [12]. These algorithms feature smaller models, faster detection speeds, and are more 
suitable for real-time applications. Among these, YOLOv5 is particularly popular due to its 
straightforward structure. Mathew et al. [13] proposed a method using the YOLOv5 model to 
detect bacterial spot disease in bell pepper plants from photographs taken in the farm, aiming to 
prevent the spread of plant diseases. Meanwhile, Puliti et al. [14] utilized the largest model in the 
YOLOv5 series, YOLOv5x, to classify the extent of snow breakage in trees. Zhang Fan et al. [15] 
reconfigured the YOLOv5s backbone network using MBConvBlock and constructed the ECBAM 
module to enhance network performance while reducing the number of parameters, achieving 
effective detection of the crested ibis. Sun Han et al. [16] employed a Shuffle block as a 
lightweight module to replace the YOLOv5 backbone, compressing the model’s volume by 
39.4 % while effectively extracting features from a distance. Yang Wenhan et al. [17] enhanced 
YOLOv5s by using a weighted channel splicing method in conjunction with the Swin Transformer 
module and CNN, improving feature extraction and fusion capabilities, particularly for small 
target animals. Overall, YOLOv5 demonstrates high maturity and practicality in the field of target 
detection. 

To address the limitations of existing golden snub-nosed monkey detection algorithms, which 
exhibit weak real-time performance and low deployment efficiency, this paper proposes a 
detection algorithm based on YOLOv5n. The approach includes designing a model pruning 
process to lighten the front-end model, applying the Sparse Group Lasso selection operator 
method [18] to achieve channel sparsity in the model, and simultaneously developing a 
lightweight module called CPB. Additionally, the ECA [19] attention mechanism is incorporated 
to reconstruct the model. This results in a significant reduction in computational complexity while 
maintaining detection accuracy, thereby providing technical support for the intelligent monitoring 
of golden snub-nosed monkeys. 

2. Data sets and methods 

2.1. Production of data sets 

The dataset used in this experiment consists of self-media footage from Foping Panda Valley 
(33°40'6.183"N, 107°58'23.92"E) in Shaanxi Province. To increase the diversity of the 
background, web crawling was also performed on golden snub-nosed monkeys from different 
habitats, resulting in a total of 2,872 data images. Unclear target images were removed, yielding 
1,040 valid images. 120 randomly selected images were converted to three-channel grayscale 
images to reduce dependence on target color. Given that the faces of golden snub-nosed monkeys 
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are often small targets and facial features are prone to occlusion, leading to missed detections, 
body data was also included as a detection feature. The Labelimg annotation tool was used to 
annotate the faces and bodies of golden snub-nosed monkeys in the constructed 1,160 images in 
YOLO format, forming the initial dataset. The dataset is divided according to the body parts of 
golden snub-nosed monkeys into facial data and trunk data; and according to the target scene into 
data with scene occlusion and data without scene occlusion, with scene occlusion further divided 
into background occlusion and target-to-target occlusion. As shown in Fig. 1. 

By applying random flips, random brightness adjustments, random saturation changes, random 
pixel shifts, and the addition of salt-and-pepper noise to the initial dataset, the total number of 
images was increased to 5,800. This augmented dataset includes 14,027 body targets and 6,528 
monkey face targets (Fig. 1). A random seed of 123 was set for the augmented dataset, which was 
then divided into training, validation, and test sets in an 8:1:1 ratio. 

 
Fig. 1. Sample data sets and processing 

2.2. Overall technical approach 

The overall process of the golden snub-nosed monkey detection algorithm is outlined in this 
paper, as shown in Fig. 2. After completing the labeling and division of the augmented dataset, it 
is fed into the YOLOv5n network. Using transfer learning methods, general features are extracted 
from a large dataset to obtain a generalized pre-trained model. Redundant parameters are pruned 
and detection performance is enhanced through channel pruning and network reconstruction, 
resulting in the PCB-YOLOv5 prune model. The detection boxes output by the model are 
combined with the ByteTrack [20] target tracking algorithm to achieve continuous tracking and 
visualization of multiple golden snub-nosed monkeys. 

2.2.1. YOLOv5n pruning algorithm based on sparse group Lasso 

YOLOv5n features a simple structure and fast detection speed, making it particularly suitable 
for targets that move quickly, have fewer categories, and possess simple features. Therefore, the 
model selected for detecting golden snub-nosed monkeys uses a depth multiplier of 0.33 and a 
width multiplier of 0.25 as the base model. The model can be divided into four parts: Input, 
Backbone, Neck, and Head. The Input section is responsible for data processing and anchor box 
calculations, the Backbone section is tasked with feature extraction, the Neck section handles 
multi-scale feature fusion, and the Head section, in conjunction with weighted Non-Maximum 
Suppression (NMS), outputs the optimal detection boxes for regression prediction. 

The divided dataset was then input into the network for training. The fine-tuned YOLOv5n 
can detect golden snub-nosed monkeys with high precision, but the model has a large number of 
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redundant parameters. To simplify the model’s complexity and improve detection efficiency, a 
channel pruning algorithm is used to prune the sparsified YOLOv5n. 

 
Fig. 2. Overall process overview 

The parameters of the Batch Normalization (BN) layer in YOLOv5n are used as the predictive 
factor 𝛾 for slimming the network, allowing us to assess the importance of each channel. One 
advantage of this approach is that it does not introduce additional computations to the network. 
We employ a multi-task penalty (Sparse Group Lasso) algorithm to induce sparsity at both the 
group and individual feature levels, facilitating the selection of predictive factors both within and 
across groups. The loss function is given by Eqs. (1-3): 

𝐿𝑜𝑠𝑠 = ෍ 𝑙(𝐹(𝑋,𝑊),𝑌) + 𝜆ଵ‖𝛾‖ଵ(௑,௒) + 𝜆ଶ෍‖𝑤௚‖ଶீ
௚ୀଵ , (1)

𝐹(𝑋,𝑊) = ෍𝑓൫𝑥(௚),𝑤(௚)൯ீ
௚ୀଵ , (2)

𝐿𝑜𝑠𝑠 = ෍ 𝑙(𝐹(𝑋,𝑊),𝑌) + 𝜆ଵ෍|𝛾|ఊ∈୻(௑,௒) + 𝜆ଶ෍ฮΓ(௚)ฮଶீ
௚ୀଵ , (3)

where, 𝑋 and 𝑌 represent the input and output values during network training, respectively, while 𝑊 denotes the weight parameters in the training process. 𝜆ଵ and 𝜆ଶare the regularization balancing 
factors that control the sparsity within and between groups, respectively. Γ is the set of predictive 
factors, and 𝐺 is the number of feature groups, derived from the grouping information of prior 
variables. This loss function sums the absolute values of each 𝛾 coefficient while also aggregating 
the L2 norms of the coefficients within each group. During the optimization process, this structure 
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aims to achieve inter-group sparsity; however, the constraints for intra-group sparsity are not 
sufficiently strong. Therefore, by applying L1 norm penalties to the absolute values of the 𝛾 
coefficients, a sparse solution is provided to compensate for the intra-group constraints. 

2.2.2. Design of CPB lightweight module 

To avoid the loss of critical information caused by extensive pruning, this paper employs a 
model reconstruction approach prior to pruning for parameter optimization. The C3 module of 
YOLOv5n incorporates partial convolution modules (PConv), as shown in Fig. 3, with a kernel 
size set to 3×3. Additionally, the original Bottleneck branch, which uses a 3×3 kernel size CBS, 
is replaced with two CBS layers that use 1×1 kernels to form a PB (PConv-Bottleneck) residual 
branch. The number of branches is set to a multiple of 3, corresponding to the product of the 
model’s depth multiplier. After tensor concatenation of the PB branch with the CBS using a 1×1 
kernel, it is fed into another CBS with a 1×1 kernel to achieve a change in channel dimensions, 
forming the CPB module. In this setup, PConv applies CBS for spatial feature extraction on CP 
input channels, where the input equals the output for this part of the convolution, while the 
remaining channels output through an identity mapping, maintaining an input and output channel 
count of C. A classic ratio of CP:C=1:4 is used, and the formulas for the FLOPs and MAC 
(Memory Access Cost) of the convolution layer, excluding bias terms, are shown in Eq. (4) and 
Eq. (5): 𝐹𝐿𝑂𝑃s = 𝐻௢௨௧𝑊௢௨௧𝐶௜௡𝐶௢௨௧𝑘௛𝑘௪ = 116𝐻௢௨௧𝑊௢௨௧𝐶ଶ × 9. (4)

The computational cost of PConv is 1/16 that of CBS, which is consistent with the test results: 𝑀𝐴𝐶 = 𝐻௜௡𝑊௜௡𝐶௜௡ + 𝐻௢௨௧𝑊௢௨௧𝐶௢௨௧ + 𝐶௜௡𝐶௢௨௧𝐾௛𝐾௪ = 14 (𝐻௜௡𝑊௜௡ + 𝐻௢௨௧𝑊௢௨௧)𝐶 + 916𝐶ଶ. (5)

The memory access volume of PConv is approximately 1/4 that of CBS. This reduction leads 
to a decrease in the overall parameter computation of the CPB module, lowers memory access 
frequency, and has a minimal impact on feature extraction performance. 

 
Fig. 3. CPB module structure Diagram 

2.2.3. Introduction of the ECA attention module 

During neural network training, attention mechanisms are often incorporated to optimize the 
network model. This mechanism works by autonomously learning to reduce the learning weights 
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of less important parts of the input data while enhancing the weights of more significant parts. To 
improve the accuracy of the pruned model, this experiment employs Efficient Channel Attention 
(ECA), which assigns weights to each channel. This is achieved by introducing a learnable 1D 
convolution layer that captures the dependencies between channels. The convolution layer 
performs global average pooling on the feature maps of each channel to provide a global 
description of the channels. The ECA module adaptively determines the kernel size 𝐾 based on 
the number of channels 𝐶, as shown in Eq. (6): 

𝐾 = ฬlogଶ(𝐶)𝜆 + 𝑏𝜆ฬ௢ௗௗ, (6)

where, the parameters 𝜆 and 𝑏 are hyperparameters of the ECA attention mechanism. The 𝜆 
parameter is used to adjust the attention weights, while the 𝑏 parameter is used to shift the attention 
weights. The value of 𝐾 is obtained by taking the absolute value and rounding down to the nearest 
odd number 𝑡, ensuring that the kernel size is odd.  

Once the kernel size 𝐾 is determined, the ECA module applies a one-dimensional convolution 
to the input features, allowing it to learn the importance of each channel relative to the others. This 
process can be represented by the following Eq. (7): 𝜔 = 𝜎൫𝐶1𝐷௄(𝑦)൯, (7)

where, 𝐶1𝐷௄ represents a one-dimensional convolution operation with a kernel size of 𝐾, 𝑦 
denotes the channel, and 𝜎 represents the Sigmoid activation function. As the number of channels 
increases, the range of local cross-channel interactions also expands. The ECA attention module 
achieves performance improvements without significantly increasing the computational burden. 

The improved model PCB-YOLOv5n obtained from the aforementioned YOLOv5n model is 
shown in Fig. 4.  

 
Fig. 4. Improved network mode 

2.2.4. Combining ByteTrack for tracking golden snub-nosed monkeys 

Combining the improved YOLOv5n with the IoU-based ByteTrack algorithm, we estimate the 
trajectories of multiple moving targets and assign unique identity identifiers (IDs). The video is 
transmitted to the improved YOLOv5 to generate target detection boxes. Based on a confidence 
threshold, the detection boxes are classified into high-confidence and low-confidence boxes. The 
ByteTrack algorithm performs the following operations based on the detection box conditions, as 
shown in Fig. 5. 
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Fig. 5. ByteTrack algorithm diagram 

Using Kalman filtering, the position information A of the target trajectory at frame 𝑇(𝑓 − 1) 
is predicted to obtain the predicted position of the target trajectory at frame 𝑓. The predicted 
position information of the 𝑓-frame trajectory is associated with the target position information of 
frame 𝑇(𝑓) using IoU to calculate distance and similarity metrics, and the Hungarian algorithm is 
employed for matching. For the successfully matched trajectory set B, the Kalman filter is 
updated, and the trajectories are added to the trajectory collection, while the high-confidence 
detection boxes that were not matched to any trajectory are retained in collection E, along with 
the trajectory collection D that has not matched any detection boxes. 

Next, the unmatched trajectory collection D is assessed against the low-confidence detection 
boxes using a second IoU similarity measurement. For the successfully matched trajectory 
collection D1, the Kalman filter is updated, and the trajectories are added to the trajectory 
collection. Low-confidence detection boxes that fail to match can be considered background and 
are directly removed. 

The unmatched high-confidence detection boxes in collection E may represent newly appeared 
targets, and they are initialized as new inactive trajectories. In the next frame cycle, it is checked 
whether there are any detection boxes that match, which will determine if they are activated. For 
the trajectories in collection D2 that fail to match a second time, they are retained for 30 frames 
before being deleted and are included in the trajectory prediction for frame 𝑇(𝑓 + 1). 

This process is repeated to achieve ID tracking of multiple targets. 

2.3. Experimental platform and evaluation criteria 

2.3.1. Experimental platform 

The experiment was conducted on the Ubuntu 20.04.5 LTS operating system, with a processor 
model of Intel(R) Core(TM) i7-6800K CPU @ 3.40GHz×12 and a graphics card model of 
NVIDIA CORPORATION GP102[TITAN Xp]. The deep learning framework used was PyTorch 
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1.21 with CUDA 11.3, the programming platform was PyCharm, and the programming language 
was Python 3.8. All algorithm comparisons were performed in the same environment. To improve 
model training efficiency, custom parameters were set: the image input size was set to 640×640 
pixels, the learning rate was set to 0.009, the number of data loading processes was set to 4, and 
the batch size was set to 16 to fully utilize the GPU. After multiple preliminary experiments, the 
training epoch was set to 200. 

2.3.2. Evaluation criteria 

To comprehensively evaluate the model’s performance, the experiment utilized several 
computational performance metrics, including the number of parameters (Params) or model 
weight and floating point operations (FLOPs). Additionally, recognition performance metrics 
included the mean Average Precision (mAP), Precision (P), and Recall (R) to assess the 
effectiveness of the experimental model. The recognition performance metrics involve True 
Positives (TP), False Negatives (FN), False Positives (FP), and True Negatives (TN). Based on 
TP, FN, FP, and TN, the formulas for Precision P and Recall R are shown in Eqs. (8-9): 𝑃 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃, (8)𝑅 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁. (9)

Mean Average Precision (mAP) is the average of Average Precision (AP) for two categories 
(the face and body of the golden snub-nosed monkey). AP measures the average precision of a 
model for a single class. A higher mAP value indicates better detection performance of the model. 
The calculation of AP and mAP is shown in Eqs. (10-11): 

𝐴𝑃 = න 𝑃(𝑅)𝑑𝑅ଵ
଴ , (10)

𝑚𝐴𝑃 = 1𝐹෍𝐴𝑃௞ி
௞ୀଵ . (11)

where 𝐹 represents the number of categories. To improve the detection of golden snub-nosed 
monkeys, this study averages the detection accuracies of the monkey’s face and body to derive 
the final detection accuracy. The purpose of this approach is to learn richer features from these 
two categories and reduce the miss rate caused by partial target omission. 

3. Experiment and analysis 

3.1. Pruning results and analysis 

Sparsity training selects channels by setting different sparsity rates (𝑠𝑟). If the 𝑠𝑟 value is too 
small, the sparsity process becomes too slow, and the effect of weights approaching zero is not 
significant, making it difficult to distinguish the importance of channels. Conversely, if the 𝑠𝑟 
value is too large, it may set the weights of important channels to zero, often resulting in a rapid 
decline in accuracy. To determine the optimal sparsity rate, multiple experiments with different 
sparsity rates were conducted, setting the 𝑠𝑟 values to 1e-2, 1e-3, 8e-4, 5e-4, 1e-4, 8e-5, 5e-5, and 
1e-5, followed by sparsity training on YOLOv5n. Fig. 6 illustrates the trend of coefficient changes 
corresponding to different sparsity rates. It can be observed that as training progresses, the 
coefficients gradually approach zero, and the higher the sparsity rate, the faster the coefficients 
approach zero. After sparsity training, all models underwent 50 % pruning, and Fig. 7 compares 
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the parameters of the pruned models. It is evident that when the sparsity rate is 8e-4, the pruned 
model achieves the highest mAP. Therefore, this study selects a sparsity rate of 8e-4. 

 
Fig. 6. BN layer 𝛾 coefficient under different sparsity rates (𝑠𝑟) 

 
Fig. 7. mAP at multi-degree sparsity rates 

After determining the sparsity rate, this study performed pruning on the YOLOv5n model at 
different ratios to select the optimal pruning rate. Table 1 presents the changes in model parameters 
after pruning and fine-tuning at a sparsity rate of 8e-4 with various pruning rates. From the table, 
it can be observed that the number of model parameters, floating point operations, mAP, inference 
time with a batch size of 32, and model weight are all approximately negatively correlated with 
the pruning rate. However, in terms of inference time, there is a noticeable reduction when the 
pruning rate is 0.5, while the loss in mAP accuracy at this point is minimal. Therefore, a pruning 
rate of 0.5 is selected, which effectively compresses model parameters, reduces computational 
load, and significantly increases detection speed. At a pruning rate of 0.5, the output feature maps 
of each module in the YOLOv5n model changed in quantity before and after pruning, with the 
original output feature map counts being 16, 64, 128, and 256, corresponding to the pruned model's 
feature map counts of 10, 41, 83, and 167, respectively. 
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Table 1. Model performance at different pruning rates 
Pruning rate Params(M) FLOPs (G) mAP (%) FPS(b32) Model weight (MB) 

0 1.767 4.176 98.2 1.82 3.8 
0.1 1.604 3.779 98.3 1.77 3.5 
0.2 1.420 3.340 98.0 1.82 3.1 
0.3 1.232 2.914 97.6 1.67 2.7 
0.4 1.056 2.514 97.5 1.49 2.4 
0.5 0.878 2.129 97.2 1.28 2.0 
0.6 0.708 1.748 96.3 1.36 1.7 
0.7 0.532 1.312 94.0 1.23 1.3 
0.8 0.353 0.917 91.7 0.97 1.0 
0.9 0.177 0.502 86.7 0.77 0.6 

To more intuitively observe the changes in output features after model pruning, the feature 
maps of the CBS_0 layer were visualized for comparison. The CBS_0 layer was selected because 
it has fewer channels and higher feature recognition, making it easier for the human eye to 
compare directly. As shown in Fig. 8. The original CBS_0 convolution layer mapped to 16 output 
feature maps, but after pruning, the number of output feature maps was reduced to 10. Based on 
the correspondence between the feature map outputs before and after pruning, the dashed boxes 
indicate the feature maps that disappeared corresponding to the filters being trimmed, the red 
boxes indicate that some convolution kernels in the filters were pruned, causing pixel changes in 
the corresponding feature maps, and the green boxes indicate the feature maps that remained 
consistent with the original model after pruning. After pruning, similar pattern feature maps were 
effectively trimmed. Applying pruning to the entire model significantly reduced the redundant 
parameters, greatly improving the model’s detection speed. 

  
Fig. 8. Output of feature map after pruning in CBS_0 layer 

3.2. Model reconstruction results and analysis 

This experiment compares several popular lightweight convolution modules, including 
DepthConv, GhostConv, GSConv, and the PConv used in this model. The CBS(Conv2d-
BatchNorm-SiLU) module is the basic convolution module in YOLOv5, serving as a benchmark 



RESEARCH ON LIGHTWEIGHT DETECTION METHODS FOR THE GOLDEN SNUB-NOSED MONKEY BASED ON YOLOV5N.  
HAO-RAN XU, LEI WANG, KUI XIAO, PENG-CHAO ZHANG, XING HE, YAN ZHOU 

 JOURNAL OF MECHATRONICS AND ARTIFICIAL INTELLIGENCE IN ENGINEERING. DECEMBER 2024, VOLUME 5, ISSUE 2 183 

for the experiment. The experiment input values are generated by randomly sampling from a 
standard normal distribution to create a batch size of 8 and pixel matrices of size (512, 512), with 
both input and output channels set to 128 and a uniform convolution kernel size of 3×3. To reflect 
the modules’ actual performance, the warmup value is set to 500 and the number of tests is 1000. 
The module performance comparison is shown in Table 2. 

Table 2. Performance comparison of different lightweight convolution 
Convolution module Total time (s) ↓ FPS ↑ FLOPs (G) ↓ Params (K) ↓ 

CBS 14.83 13.48 310.31 147.84 
DepthConv [21]  31.75 6.30 38.92 18.30 
GhostConv [22]  16.55 12.09 19.46 9.15 

GSConv [23]  40.93 4.89 159.05 75.71 
PConv [24] 7.13 28.07 20.40 9.47 

According to Table 2, PConv demonstrates the best inference speed and shows significant 
advantages in reducing both floating point operations and parameter count. Therefore, using 
PConv to reconstruct the C3 residual branch is a feasible approach. In the fusion experiments, the 
CPB module performed exceptionally well, with a noticeable reduction in parameter count 
compared to the C3 module. Table 3 illustrates the parameter count comparison between the C3 
and CPB modules at layer X. In this experiment, we replaced the larger parameter modules C3_6, 
C3_8, and C3_23 in the original model with CPB_6, CPB_8, and CPB_23, resulting in model M, 
which achieved an accuracy of 98.2. This approach successfully minimized the model's parameter 
count while maintaining its accuracy. 

Table 3. Comparison of parameter counts at layer X 
Modules Backbone network module Neck network module 

C3_X module C3_2 C3_4 C3_6 C3_8 C3_13 C3_17 C3_20 C3_23 
Parameter 4800 29184 156928 296448 90880 22912 74496 296448 
Parameter 
reduction ↓1392 ↓11136 ↓66816 ↓89088 ↓22272 ↓5568 ↓22272 ↓89088 

CPB_X module CPB_2 CPB_4 CPB_6 CPB_8 CPB_13 CPB_17 CPB_20 CPB_23 
Parameter 3408 18048 90112 207360 68608 17344 52224 207360 

The CPB module aims to further reduce the parameters of the pruned model while keeping the 
changes in pruning accuracy minimal. This experiment employs a method of integrating attention 
modules to enhance the model’s detection accuracy by incorporating attention mechanisms into 
the C3_2, C3_4, and C3_20 layers of the baseline model M. To visually demonstrate the impact 
of different attention modules on the training accuracy before and after pruning, while offsetting 
the changes in network layers caused by the addition of attention mechanisms, this study compares 
popular attention modules such as SE [25], CBAM [26], CA [27], and the ECA attention module 
used in this research. As shown in Fig. 9. 

The M model, obtained by integrating the CPB module with YOLOv5n, shows a significant 
reduction in the number of parameters both before and after pruning, while maintaining stable 
accuracy. By incorporating different attention mechanisms into the M model, the resulting pruned 
model demonstrates improvements in both accuracy and parameter count. Notably, the ECA 
attention mechanism stands out in this experiment, achieving a pre-pruning accuracy of 0.987 and 
a post-pruning accuracy of 0.983, with a significant reduction in parameter count to just 0.69M. 

3.3. Final model performance analysis 

To validate the performance of the final model in object detection, we lightweighted the model 
and evaluated it using mAP, parameter count, floating point operations, and FPS, with the results 
presented in Table 4. We employed the Sparse Group Lasso Prune method to achieve model 
sparsity and obtain the optimal sparse pruning parameters. Next, we replaced the CPB module 
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using a pre-pruning method, ensuring that the pruned model’s weight was further reduced while 
maintaining stable accuracy. Finally, we integrated the ECA attention module, which improved 
the accuracy of the pruned model while also compressing the parameter count, resulting in the 
final model PCB-YOLOv5n-Prune. We also tested the detection performance of the model before 
and after pruning. 

 
Fig. 9. Performance comparison before and after pruning the reconstructed model 

According to the data in Table 4, the YOLOv5n model after pruning has seen a reduction of 
approximately 50 % in both parameter count and floating point operations. At a batch size of 32, 
the model’s speed increased by about 246 FPS, but the mAP decreased by 1 %. By employing a 
pre-pruning method to replace the CPB module, the model’s accuracy further improved after 
pruning, while floating point operations and parameter count were reduced even more, with the 
speed increasing by an additional 54 FPS on top of the pruning improvement. After integrating 
the ECA attention mechanism, the inference speed decreased slightly due to the addition of 30 
layers compared to model M, but it still showed a significant improvement over the original 
YOLOv5n, with accuracy similar to YOLOv5n. Furthermore, when combined with ByteTrack, 
the improved model’s detection frame rate increased by 39 FPS compared to YOLOv5n. 

Table 4. Ablation experiment 

Model CPB prune ECA mAP 
(%) Params(M) FLOPs 

(G) FPS(b32) ByteTrack 
(FPS) 

Yolov5n – – – 98.2 1.76 4.1 534.7 57 
prune √ – – 97.2 0.88 2.1 781.2 88 
CPB √ √ – 97.6 0.79 1.9 836.0 92 
ECA √ √ √ 98.3 0.69 1.8 785.0 96 

To validate the effectiveness of the model improvements, we selected images of golden 
snub-nosed monkeys taken in various backgrounds, including grasslands, forests, snowy scenes, 
and artificial settings, while considering occlusions. We compared the performance of the 
YOLOv5n, YOLOv7-tiny, YOLOv8n, and PCB-YOLOv5n-Prune models. Fig. 10 illustrates the 
detection results of golden snub-nosed monkeys in different real-world scenarios. From the figure, 
it is evident that the YOLOv5n, YOLOv7-tiny, and YOLOv8n models exhibited missed detections 
under various backgrounds, whereas the PCB-YOLOv5n-Prune model had significantly fewer 
missed detections. This model effectively improved detection rates in occluded situations by 
integrating an attention mechanism and also demonstrated a higher detection speed. 
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Fig. 10. Scene occlusion detection comparison chart 

To validate the performance of the algorithm presented in this paper within the public domain 
of object detection, we conducted experiments using the proposed network model on the PASCAL 
VOC dataset. The PASCAL VOC dataset is a significant benchmark in the field of computer 
vision, encompassing 20 common object categories such as people, animals, and vehicles. We 
adopted a popular training methodology by combining the training and validation sets from 
PASCAL VOC_2007 and PASCAL VOC_2012, resulting in a total of 16,551 images. The test set 
utilized the PASCAL VOC_2007 test set, which contains 4,952 images. Table 5 presents the test 
results of our algorithm alongside several mainstream networks on the PASCAL VOC dataset. 
All comparative experiments were conducted under identical environmental configurations. From 
Table 5, it is evident that our algorithm demonstrates competitive results in terms of model size 
and computational load compared to current networks. For instance, as shown in Table 5, our 
algorithm significantly improves detection accuracy compared to models based on the lighter 
ShuffleNetV2 backbone while maintaining a similar number of parameters and computational 
requirements. However, there remains a noticeable gap in detection accuracy when compared to 
larger models such as YOLOv7 and YOLOv5m. Additionally, when compared to transformer-
based backbone models like EfficientViT and Swin Transformer, the detection accuracy is closely 
linked to their higher computational costs and longer training times. 

Table 5. Comparison experiments on the PASCAL VOC dataset 
Models Input Parameters FLOPs mAP@0.5% mAP@0.5:0.95% 

YOLOv7 640×640 37.2M 105.4G 81.5 63.1 
YOLOv5m 640×640 20.9M 48.1G 81.6 57.9 

ShuffleNetV2 [28] 640×640 1.02M 0.6G 47.5 25.9 
EfficientViT [29] 640×640 5.6M 9.8G 68.8 42.6 

Swin Transformer [30] 640×640 29.0M 75.6G 76.2 48.8 
PCB-YOLO-prune 640×640 0.71M 1.8G 69.1 41.7 

The model primarily focuses on training for the characteristics of the golden snub-nosed 
monkey. To validate the improvements of the pruned network compared to other networks, we 
conducted comparative experiments using the golden snub-nosed monkey dataset with Faster 
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R-CNN, YOLOv7-tiny, YOLOv8n, and YOLOv9c. The test results are shown in Table 6. We 
performed 150 tests on a single image sized 640×640 with a batch size of 1, and conducted another 
150 tests at the same image size but with a batch size of 32. Additionally, we tested detection 
speed on a video lasting 5 seconds, which contained 150 frames, each sized 384×640, totaling 
2.67 MB. The results indicate that our model outperforms other models in detection speed across 
various object specifications and demonstrates superior performance in video detection, making 
it particularly suitable for rapid detection of moving targets while maintaining accuracy that meets 
practical requirements. 

Furthermore, we compared our model with other lightweight backbone models such as 
GhostNet and MobileNetV3 on the golden snub-nosed monkey dataset. Our model exhibited 
strong performance in terms of model weight, detection accuracy, and speed. Both GhostNet and 
MobileNetV3 utilize depthwise separable convolutions, which decompose standard convolutions 
into two steps: first convolving each input channel independently and then performing pointwise 
convolution (1x1 convolution). This design significantly reduces computational load and 
parameter count. However, the reduced number of parameters may lead to a decrease in the 
model's expressive power, potentially impacting accuracy. 

In our model, the introduced CPB module incorporates partial convolution (PConv), which 
excels at preserving spatial information. It effectively reduces overall parameter count and 
computational load while maintaining model accuracy. The use of pruning further minimizes the 
model's cost. Additionally, the ECA module in our model replaces fully connected layers with 
one-dimensional convolutions, significantly lowering computational complexity and adaptively 
adjusting kernel sizes based on input features to better capture inter-channel dependencies. This 
design further enhances the detection performance of the model. 

Table 6. Performance of different algorithmic models 

Model mAP 
(%) 

Params 
(M) 

FLOPs 
(G) 

FPS 
(b1) 

FPS 
(b32) 

FPS 
(2.67MB) 

Model weight 
(MB) 

Faster rcnn 92.0 28.3 474.1 27.3 – 76.3 113.4 
YOLOv7-tiny [31] 98.3 6.0 13.2 96.2 526.3 83.3 12.3 

YOLOv8n 98.4 3.0 8.1 58.5 158.6 90.1 6.3 
YOLOv9c [32] 98.8 50.7 236.6 23.8 52.7 29.6 102.8 

Ghostnet 97.2 1.3 2.9 126.9 447.9 128.2 2.9 
MobileNetV3 [33] 93.6 0.8 1.3 100.3 441.2 103.1 1.9 

Ours 98.3 0.7 1.8 120.8 785.0 129.9 1.7 

3.4. Design of the visualization interface combined with ByteTrack 

In this experiment, we utilized PyQt5 to encapsulate and package the proposed model. We 
converted the generated best.pt file into best.torchscript format using the official YOLOv5 
export.py script, providing the necessary weight files for model visualization. The visualization 
interface includes options for selecting configuration files, opening different file formats, starting 
and stopping detection, setting the save path, and enabling tracking. The right side of the interface 
features settings for video frame segmentation, display of detection frame rates, target types, and 
the number of targets. The detection effect of deploying this model on low-performance devices 
is shown in Fig. 11. 

4. Conclusions 

This study focuses on the facial and body features of the golden snub-nosed monkey, 
integrating the YOLOv5n model with a pruning algorithm based on Sparse Group Lasso. By 
employing the CPB module, which utilizes Pconv and residual structures, we reconstructed the 
model to achieve rapid detection of individual golden snub-nosed monkeys. Additionally, the 
incorporation of the ECA attention mechanism improved detection performance for occluded 



RESEARCH ON LIGHTWEIGHT DETECTION METHODS FOR THE GOLDEN SNUB-NOSED MONKEY BASED ON YOLOV5N.  
HAO-RAN XU, LEI WANG, KUI XIAO, PENG-CHAO ZHANG, XING HE, YAN ZHOU 

 JOURNAL OF MECHATRONICS AND ARTIFICIAL INTELLIGENCE IN ENGINEERING. DECEMBER 2024, VOLUME 5, ISSUE 2 187 

targets, resulting in a pruned model accuracy of 0.983. Compared to the original model, the 
improved version reduced the parameter count by 1.07M, decreased computational load by 2.3G, 
and lightened the model by 2.3 MB, significantly enhancing detection speed. Moreover, we 
integrated ByteTrack with this lightweight model to enable continuous multi-target tracking of 
golden snub-nosed monkeys, enhancing the continuity of object detection. 

 
Fig. 11. Visualization interface for detection and tracking of golden snub-nosed monkeys 

The improved YOLOv5n model has broad application potential in animal behavior 
observation, wildlife monitoring, and conservation efforts. It can be integrated into mobile devices 
for real-time capture and identification of animals, providing valuable data for ecological research. 
Deploying fixed monitoring systems in specific reserves allows for around-the-clock automated 
surveillance to promptly detect habitat destruction and illegal poaching activities. Furthermore, 
integrating this model into drone systems enables efficient monitoring over vast areas, particularly 
in hard-to-reach locations. The enhanced YOLOv5n model offers technical support for wildlife 
conservation by lowering hardware performance requirements and providing a reference for 
developing portable mobile terminals for golden snub-nosed monkey detection. This advancement 
can help researchers dedicated to golden snub-nosed monkey protection and study reduce labor 
costs and promote smart forestry development. Future work could combine visible light and 
thermal infrared sensors to further expand the dataset across different backgrounds, improving 
detection capabilities in complex environments. 
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