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Abstract. This study presents a novel approach to analyzing the vibratory compaction of metal 
powder using the generalized Kelvin medium rheological model and complex function solution 
methods. The research derives a theoretical solution for determining the excitation load required 
for effective compaction, considering key parameters such as oscillation amplitude, frequency, 
and material properties. The work extends existing analytical methods to accurately represent the 
damping effects due to internal friction in metal powders. A formula is provided to calculate the 
necessary surface excitation amplitude for complete compaction, and the theoretical predictions 
are validated through experimental tests. The findings offer a robust framework for vibratory 
compaction in industrial applications, significantly advancing the field of powder metallurgy. This 
research bridges the gap between theoretical models and practical applications, providing valuable 
insights for improving powder compaction processes. 
Keywords: vibratory compaction, metal powder, rheological model, excitation load, complex 
function method, stress analysis. 

1. Introduction 

The vibratory compaction of metal powder is a key process in producing metal powder 
products, relying on the interaction between a vibrating body and a powder mixture, often with an 
anisotropic structure. Compaction efficiency is influenced by parameters like the amplitude and 
frequency of oscillations and the duration of vibration. In industry, oscillation amplitudes reach 
up to 0.4 mm, with frequencies ranging from 10,000 to 20,000 cycles per minute. These 
parameters must be adjusted based on the metal powders’ physical and mechanical properties to 
maximize product benefits. Different powder structures mean that standard vibration modes, 
without material-specific considerations, can limit effectiveness, highlighting the need for 
theoretical analysis. 

The interaction between a vibrating body and the media has been modeled using rheological 
frameworks, integrating elastic, plastic, and frictional components: Hooke’s elastic model [1], 
Newton’s viscous model [2], the Kelvin-Voigt viscoelastic model [3], the Bingham model [4], 
and the Zener model [5], which accounts for reversible and irreversible deformations. Kuhn [5] 
further described stress relaxation using the Maxwell model [6], which combines elastic and 
viscous elements, as well as more complex multi-element models. 

The method of complex functions, first applied in [7] to determine the amplitude of excitation 
for asphalt concrete compaction, was later extended to calculate the load for polymer concrete [5]. 
These models used specific rheological frameworks, and the method provided practical solutions 
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aligned with experiments. 
The generalized Kelvin medium rheological model accurately represents the vibratory 

compaction of metal powders, particularly in analyzing the damping of excitation amplitude due 
to internal friction. However, existing studies have not used this model for powder behavior or 
applied the wave equation to characterize vibrations during compaction. Therefore, it is essential 
to conduct theoretical studies using complex functions to determine the required excitation load 
for effective metal powder compaction. This research aims to apply the generalized Kelvin 
medium model combined with complex function methods, offering a novel approach to metal 
powder compaction. 

2. Research methodology 

2.1. Theoretical model 

In this study, we employ the solution method in complex functions to theoretically determine 
the amplitude of oscillations and the corresponding vibration load required for the compaction of 
metal powder [8]. The elastic-viscous properties of the powder medium are represented using a 
rheological model (Fig. 1) where the equation is inside the table with no borders.  

 
Fig. 1. Rheological model of the compacted powder medium under load 

The following equation describes the relationship between stress and strain for this rheological 
model: 

𝜎ሺ𝑥, 𝑡ሻ ൌ 𝐸 ∙ 𝜕𝑢ሺ𝑥, 𝑡ሻ𝜕𝑥 ൅ 𝜂 ∙ 𝜕𝑢ሺ𝑥, 𝑡ሻ𝜕𝑡 , (1)

where 𝑢 and 𝑥 – Eulerian and Lagrangian coordinates, respectively; 𝜎 – stress that develops in the 
compacted volume of metal powder; 𝐸 – dynamic modulus of elastic deformation of the metal 
powder; 𝜂 – dynamic viscosity coefficient, accounting for internal friction within the metal 
powder. 

Consider the deformation process of a metal powder layer (Fig. 1). Assuming that the density 𝜌 within each elementary volume of the metal powder remains constant, with abrupt changes 
occurring only at the transitions between adjacent volumes, we focus on the movement of the 
compacted medium in the direction of the elementary volume and over time. Consequently, in this 
one-dimensional case, the differential equation of motion for the powder medium can be expressed 
as follows: 𝜕𝜎𝜕𝑥 ൌ 𝜌 ∙ 𝜕ଶ𝑢𝜕𝑡ଶ , (2)

or, considering Eq. (1): 

𝐸 ∙ 𝜕ଶ𝑢ሺ𝑥, 𝑡ሻ𝜕𝑥ଶ ൅ 𝜂 ∙ 𝜕ଶ𝑢ሺ𝑥, 𝑡ሻ𝜕𝑥𝜕𝑡 ൌ 𝜌 ∙ 𝜕ଶ𝑢𝜕𝑡ଶ . (3)

The wave Eq. (3) was solved using the following established boundary conditions [7]: 
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𝑢ሺ0, 𝑡ሻ = 𝐴 ∙ sinሺ𝜔 ∙ 𝑡ሻ ,    𝑢ሺ𝐻, 𝑡ሻ = 0, (4)

where 𝐻 – the height of the compacted metal powder layer.  
The solution of Eq. (3) is presented as the imaginary part of a complex number [7]: 𝑢ሺ𝑥, 𝑡ሻ = 𝐼𝑚 ∙ ሾ𝑢ሺ𝑥ሻ ∙ 𝑒௜ఠ∙௧ሿ. (5)

For convenience, the sign of the coefficient will be omitted in subsequent steps. Substituting 
Eq. (5) into Eq. (3) yields the equation for determining the complex amplitude of oscillations: 𝜕ଶ𝑢ሺ𝑥, 𝑡ሻ𝜕𝑥ଶ + 𝑖𝜂𝜔𝐸 ∙ 𝜕𝑢ሺ𝑥ሻ𝜕𝑥 + 𝜌 ∙ 𝜔ଶ𝐸 ∙ 𝑢ሺ𝑥ሻ = 0. (6)

The solution of Eq. (6) will have the form: 𝑢ሺ𝑥ሻ = 𝑒ି௜ఎఠଶா ௫ ∙ ሺ𝐷ଵ ∙ cosሺ𝑘 ∙ 𝑥ሻ + 𝐷ଶ ∙ sin (𝑘 ∙ 𝑥ሻ), (7)

where 𝐷ଵ and 𝐷ଶ – integration constants (complex amplitudes) are determined by the boundary 
conditions Eq. (4); and 𝑘 – wave number: 𝑘 = 𝜔2𝐸 ∙ ඥ4 ∙ 𝐸 ∙ 𝜌 + 𝜂ଶ. (8)

The wavenumber can be expressed as: 𝑘 = 𝜔𝑐 , (9)

where 𝑐 – phase speed of excitation propagation.  
The following relationships were derived after a series of transformations: 

𝑢(𝑥, 𝑡) = 𝐴 ∙ 𝑒ି௜ఎఠଶா ௫ ∙ ቈsin൫𝑘 ∙ (𝐻 − 𝑥)൯sin(𝑘 ∙ 𝐻) ቉ ∙ 𝑒௜ఠ௧ . (10)

Define 𝑒ି೔ആഘమಶ ௫ in Eq. (10) as follows: 𝑒ି௜ఎఠଶா ௫ = cos ቀ𝜂𝜔𝑥2𝐸 ቁ − 𝑖 ∙ sin ቀ𝜂𝜔𝑥2𝐸 ቁ. (11)

Using Eq. (11) as a basis, solution Eq. (10) can be transformed into the following form: 

𝑢(𝑥, 𝑡) = 𝐴 ∙ ቎cos ቀ𝜂𝜔𝑥2𝐸 ቁ ∙ sin൫𝑘(𝐻 − 𝑥)൯ − 𝑖 ∙ sin ቀ𝜂𝜔𝑥2𝐸 ቁ ∙ sin (𝑘(ℎ − 𝑥))sin(𝑘 ∙ 𝐻) ቏ ∙ 𝑒௜ఠ௧ , (12)

where 𝑢 and 𝑥 – Eulerian and Lagrangian coordinates, respectively; 𝜎 – stress that develops in the 
compacted volume of metal powder; 𝐸 – dynamic modulus of elastic deformation of the metal 
powder; 𝜂 – dynamic viscosity coefficient, accounting for internal friction within the metal 
powder. 

Similarly to Eq. (11), and considering that 𝑒௜ఠ௧ = cos(𝜔𝑡) + 𝑖 ∙ sin(𝜔𝑡), the solution to 
Eq. (3) that satisfies boundary conditions Eq. (4) is found in the following form: 
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𝑢(𝑥, 𝑡) = 𝐴sin (𝑘 ∙ 𝐻) ∙ ቀcos ቀ𝜂𝜔𝑥2𝐸 ቁ ∙ sin൫𝑘(𝐻 − 𝑥)൯ ∙ sin(𝜔𝑡) − sin ቀ𝜂𝜔𝑥2𝐸 ቁ       ∙ sin(𝑘(𝐻 − 𝑥) ∙ cos(𝜔𝑡)). (13)

Thus, Eq. (13) is the final solution of the wave Eq. (3), satisfying the boundary conditions 
Eq. (4). This solution describes the propagation of waves in the compacted layer of metal powder 
and serves as the basis for further analysis of the vibration compaction process. 

2.2. Experimental methodology 

The experiment study aimed to assess the kinetics of the compaction process of a powder 
mixture (tungsten powder WC with a composition of 30 % coarse and 70 % fine particles, bulk 
density: 𝜌଴ = 4.3 t/m3, under different pressing conditions. Experiments were conducted on a 
laboratory vibration table using various excitation force and oscillation frequency parameters to 
replicate the dynamic compaction conditions. During the experiment, changes in the density of 
the powder mixture were observed in response to the applied dynamic pressure. 

All experiments were carried out using a laboratory vibration table with the following technical 
specifications: mass of the movable part of the table including the vibration exciter and the mold: 
37.6 kg; amplitude of the excitation force: 𝑄 = 1072 N; angular frequency of forced oscillations: 𝜔 = 1675 rad/s; stiffness of the elastic dampers: 𝑐ଷ = 235440 N/m; amplitude of oscillations of 
the movable part in idle mode: 𝐴 = 1 mm. 

Modern high-precision instruments were used to measure the changes in the density of the 
powder mixture under dynamic loads. 

The powder mixture was compacted on the vibration table by adjusting the parameters of the 
excitation force and oscillation frequency. Experiments were conducted for four different heights 
of compacted layers: 10 mm, 20 mm, 30 mm, and 40 mm. The minimum stress that provided the 
ultimate breakdown of the powder mixture’s structure was 𝜎଴ = 0.08 MPa. 

Dynamic pressure was applied to the mold, and during the experiment, the oscillation 
amplitudes and changes in the powder mixture's density were recorded. The obtained data allowed 
the construction of a graph showing the dependence of the density change of the powder mixture 
on the relative deformation, which is crucial for understanding the compaction process. 

The measurement results were processed using mathematical and numerical methods. 

3. Results and discuss 

The application of the complex functions method to solve the wave equation for the vibratory 
compaction of metal powder yielded significant insights into the process dynamics. The key 
theoretical finding is expressed in Eq. (14), which describes the stress developed in the compacted 
layer as a function of various parameters: 

𝜎(𝑥, 𝑡) = − 2𝐴𝜔ଷ𝜌𝐸𝜂(𝜂ଶ𝜔ଶ − 4𝐸ଶ𝑘ଶ) sin(𝑘𝐻) 
      ∙ ቌ൭sin൫𝑘(𝐻 − 𝑥)൯ ∙ sin ቀ𝜂𝜔𝑥2𝐸 ቁ − 2𝐸𝑘𝜂𝜔 ∙ cos൫𝑘(𝐻 − 𝑥)൯ ∙ cos ቀ𝜂𝜔𝑥2𝐸 ቁ൱ ∙ sin(𝜔𝑡)

+ ൭sin൫𝑘(𝐻 − 𝑥)൯ ∙ cos ቀ𝜂𝜔𝑥2𝐸 ቁ+ 2𝐸𝑘𝜂𝜔 ∙ cos൫𝑘(𝐻 − 𝑥)൯ ∙ sin ቀ𝜂𝜔𝑥2𝐸 ቁ൱ ∙ cos(𝜔𝑡)ቍ. 
(14)

This equation demonstrates that the stresses generated during compaction are influenced by 
several factors: dynamic modulus of elastic deformation (𝐸), coefficient of dynamic viscosity (𝜂), 
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powder density (𝜌), layer thickness (ℎ), wave number (𝑘), amplitude (𝐴) and angular frequency 
(𝜔) of excitation. 

The stress amplitude is directly proportional to the excitation amplitude, highlighting the 
importance of selecting appropriate vibration parameters to achieve the desired powder density 
throughout the entire thickness of the compacted layer. 

By substituting specific values for the x and h coordinates into Eq. (14), we can determine how 
stresses change at different points in the metal powder layer: 

Surface stress (𝑥 = 0): 

𝜎(0, 𝑡) = − 2𝐴𝜔ଷ𝜌𝐸𝜂(𝜂ଶ𝜔ଶ − 4𝐸ଶ𝑘ଶ) sin(𝑘𝐻) ∙ ൬−2𝐸𝑘𝜂𝜔 ∙ sin(𝜔𝑡) + sin(𝑘𝐻) ∙ cos(𝜔𝑡)൰. (15)

Base stress (𝑥 = ℎ): 

𝜎(𝐻, 𝑡) = − 2𝐴𝜔ଷ𝜌𝐸𝜂(𝜂ଶ𝜔ଶ − 4𝐸ଶ𝑘ଶ) sin(𝑘𝐻)       ∙ ൬−2𝐸𝑘𝜂𝜔 ∙ sin ൬𝜂𝜔𝐻2𝐸 ൰ ∙ sin(𝜔𝑡) + 2𝐸𝑘𝜂𝜔 ∙ sin ൬𝜂𝜔𝐻2𝐸 ൰ ∙ cos (𝜔𝑡)൰. (16)

These equations provide valuable insights into the stress distribution within the compacted 
layer, which is crucial for optimizing the compaction process. 

To achieve effective compaction, the stress generated must exceed a critical value 𝜎଴௜, which 
represents the minimum stress required to break down the structure of the powder mixture. This 
condition is expressed as: 𝜎(𝐻, 𝑡) ≥ 𝜎଴௜ . (17)

Based on this condition, we can derive an expression for the required excitation amplitude: 

𝐴 = 𝜎଴௜ ∙ (𝜂ଶ𝜔ଶ − 4𝐸ଶ𝑘ଶ)sin (𝑘𝐻)2𝜔ଷ𝜌𝐸𝜂 ∙ ቂ−2𝐸𝑘𝜂𝜔 ∙ cos ቀ𝜂𝜔𝐻2𝐸 ቁ ∙ sin(𝜔𝑡) + 2𝐸𝑘𝜂𝜔 ∙ sin ቀ𝜂𝜔𝐻2𝐸 ቁ ∙ cos (𝜔𝑡)ቃ. (18)

This formula allows for the calculation of the necessary surface excitation amplitude to achieve 
complete compaction of the metal powder, taking into account its specific properties and the 
desired compaction parameters. 

The theoretical analysis presented here builds upon the analytical method proposed by Prof. 
A. Maslov, extending it to the specific case of metal powder compaction using the Kelvin 
rheological model. This approach provides a robust framework for optimizing vibratory 
compaction processes in industrial applications. 

Experiments conducted using the laboratory vibration table provided valuable data on the 
kinetics of the compaction process. Based on the experimental and calculated data of the amplitude 
of oscillations A, a change in the density of the powder mixture was found depending on the 
dynamic pressing pressure. Based on the obtained results, a graph was constructed that reflects 
the kinetics of the compaction process of the powder mixture depending on the relative 
deformation 𝜀 (Fig. 2). The graph visually represents how the density of the tungsten powder 
mixture changes with increasing relative deformation. The curve shows a non-linear relationship, 
with density increasing more rapidly at lower deformation values and then gradually leveling off 
at higher deformations. 

By analyzing the graph, we can identify different stages of the compaction process: 
Initial stage (0 < 𝜀 < 0.1): Rapid increase in density, likely due to particle rearrangement and 

filling of large voids. 
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Intermediate stage (0.1 < 𝜀 < 0.3): Continued increase in density but at a decreasing rate, 
possibly due to plastic deformation of particles. 

The final stage (𝜀 ൐ 0.3): The curve begins to plateau, indicating that further deformation 
results in diminishing returns in terms of density increase. 

The graph suggests that the most efficient compaction occurs in the relative deformation range 
of 0.1 to 0.3, where the slope of the curve is steepest. The shape of the curve provides information 
about the material’s response to dynamic pressure. The tungsten powder mixture shows good 
compressibility initially but becomes increasingly resistant to further densification at higher 
deformation levels. 

This information allows for better control of the compaction process by providing a clear 
relationship between applied pressure (which relates to deformation) and resulting density. 

 
Fig. 2. The kinetics of the tungsten powder mixture compaction process  

as a function of relative deformation 

4. Conclusions 

The theoretical studies conducted have yielded several key parameters, including the phase 
speed of excitation propagation and the absorption coefficient, which characterizes the decrease 
in excitation as it moves away from the source. Additionally, analytical expressions have been 
derived to calculate the amplitude of stress occurring on the surface and at the base of the 
compacted metal powder layer, depending on the coordinate. An analytical expression has also 
been developed to determine the excitation amplitude necessary for complete compaction of the 
metal powder surface based on specific compaction conditions. The findings significantly advance 
the understanding of metal powder compaction and provide valuable tools for improving the 
efficiency and quality of powder metallurgy processes. Future research could focus on extending 
this model to a wider range of powder materials and exploring the effects of particle size 
distribution on compaction behavior. 
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