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Abstract. This paper presents an investigation into the nonlinear dynamic behaviors of the 
floating raft isolation system coupled with quasi-zero-stiffness isolators subject to multiple 
disturbance sources. First, the coupling effects between the excitation source and isolation system 
are considered. Also, the floating raft isolation model under multiple excitations and its motion 
equation are deduced, and then the dynamic responses are mainly investigated by using the 
techniques of time history diagram, spectrum diagram, phase diagram and Poincaré map, and the 
bifurcation diagram. Finally, the bifurcations of the mechanical isolation system with different 
parameters are analyzed through numerical methods, especially the effect of center distance and 
mass ratio. The result predicts that the floating raft shows an alternate phenomenon of periodic 
motion, quasi-periodic motion, and chaotic motion when the center distance and mass ratio vary. 
The motion state of the floating raft vibration isolation system is more sensitive to the mass ratio 
than to the center distance. The horizontal and rotational response of the system becomes very 
intense in the chaotic state, and the response amplitudes in the horizontal and vertical directions 
reach the same order of magnitude. Above all, the dynamic characteristics can provide the 
theoretic supporting for the dynamics, vibration control and its parametric optimization of the 
floating raft isolation system coupled with quasi-zero-stiffness isolators. This study will lay down 
the requirements for the engineering design and application of floating raft isolation equipment in 
large vessel. 
Keywords: quasi-zero-stiffness, floating raft isolation, nonlinear isolation, bifurcation, chaos. 

1. Introduction 

Power equipment usually causes vibration and noise. Passive vibration isolation is widely used 
to solve the problem of vibration transmission in power equipment due to its economical and 
reliable characteristics [1]. At present, passive vibration isolation devices have good vibration 
isolation effects in the medium and high frequency ranges, but the vibration isolation effects in 
the low frequency and even ultra-low frequency ranges are not ideal [2]. The shortcomings of the 
vibration isolation system can be compensated by introducing nonlinear vibration isolation 
elements with high static and low dynamic stiffness [3]. Among them, the quasi-zero stiffness 
vibration isolator introduces a cubic stiffness term, which can significantly improve the vibration 
isolation performance of the vibration isolation system in the low-frequency region.  

Related research on quasi-zero-stiffness vibration isolators focuses on their geometric 
configuration and vibration isolation performance. References [4-6] mainly improved the 
vibration isolation performance in the low-frequency region by improving the structure of the 
single-degree-of-freedom quasi-zero-stiffness vibration isolator. Jazer et al. [7] studied a 
single-degree-of-freedom vibration isolation system with dual nonlinearities in stiffness and 
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damping and found that the effect of nonlinear stiffness on the frequency response of the system 
is opposite to that of nonlinear damping. Xu et al. [8] proposed a multi-directional quasi-zero-
stiffness isolator with time-delay active control, which can suppress low-frequency vibrations in 
multiple directions. Kawana et al. [9] designed a three-degree-of-freedom vibration isolator that 
can suppress the vertical, horizontal, and rotational vibrations of a rigid body, and found that the 
transient nonlinear vibration of the rigid body has a 2:1:1 internal resonance. Lu et al. [10] and 
Tang et al. [11] respectively designed a quasi-zero-stiffness vibration isolation platform with a 
6-degree-of-freedom rigid body. The results showed that the introduction of quasi-zero-stiffness 
vibration isolators can improve the low-frequency vibration isolation characteristics. The 
quasi-zero-stiffness vibration isolators improve the vibration isolation performance remarkably in 
the low-frequency region. However, the chaotic phenomena make the vibration state more 
complex.  

The quasi-zero-stiffness isolators makes the system more susceptible to chaotic phenomena 
that are unique to nonlinear systems, especially under the influence of large low-frequency 
disturbances [12]. Lou et al. [13] evaluated the vibration isolation performance of nonlinear 
vibration isolators in a chaotic state and found that the line spectrum amplitude was significantly 
reduced. Li et al. [14] and Zhang et al. [15] used time-delay control methods to deal with chaos in 
a two-dimensional vibration isolation raft system and studied the stability of different time-delay 
feedback control methods. Based on a simplified two-dimensional raft system model, Zhang et al. 
[16] fully presented the line spectrum chaos method of nonlinear time-delay feedback control and 
explored the influence of control parameters on the chaotic effect of the system under multi-source 
excitation conditions. Chai et al. [17] used double-delay feedback control to make a high-static 
and low-dynamic vibration isolation system chaotic, while weakening the line spectrum 
characteristics and intensity. Zuo et al. [18] used the open-loop plus nonlinear closed-loop 
coupling method to realize the generalized chaotic synchronization, which can achieve the dual 
functions of concealing the line spectrum information and maintaining the vibration isolation 
performance. Obviously, when quasi-zero-stiffness isolators are applied to vibration isolation 
systems, it is inevitable to pay attention to their nonlinear vibration phenomena. 

Existing research on quasi-zero-stiffness vibration isolation systems focuses on single-degree-
of-freedom vibration isolation or double-layer vibration isolation [19-23]. Lu et al. [24] placed 
quasi-zero-stiffness isolators on the upper and lower layers of a double-layer vibration isolation 
system and found that the stiffness nonlinearity of the lower layer had a greater impact on the 
vibration isolation performance of the system than that of the upper layer. Ji et al. [25] explored 
the vibration isolation performance of two-degree-of-freedom quasi-zero stiffness isolators under 
different parameters. The study found that the damping ratio and the vertical stiffness ratio can 
improve the low-frequency vibration isolation performance. Zhao et al. [26] established a vertical 
vehicle-quasi-zero stiffness floating plate track coupling dynamic model and found that 
excessively high nonlinear stiffness levels would weaken the vibration isolation effect in the 
resonance and high-frequency regions. Zhang et al. [27] established the raft dynamic equation 
considering the foundation flexibility and the nonlinear stiffness of the isolator, and analyzed the 
vertical vibration of the system under single-frequency and multi-frequency excitation. Zhao et al. 
[28] established the dynamic equations of the airbag raft-rotor system considering the vertical and 
horizontal vibrations of the raft body, and analyzed the nonlinear characteristics of the system 
such as bifurcation and chaos under a single vibration excitation source. Li et al. [29] introduced 
the quasi-zero-stiffness isolator into the floating raft vibration isolation system and established a 
high-dimensional coupled dynamic equation with 12 degrees of freedom. They found that its 
vibration isolation performance was significantly improved, but did not analyze the nonlinear 
characteristics of the system. Li et al. [30] established a 6-degree-of-freedom vibration isolation 
model composed of eight isolators to solve the complex problem of rolling and pitching motions 
of ocean-going vessels. Wei et al. [31] designed a 2-degree-of-freedom bottom-springs grounded 
nonlinear vibration isolator model, and carried out numerical simulation under typical harmonic 
excitation. The results showed that the model has a good vibration isolation effect. Sun et al. [32] 
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adopted the improved Incremental Harmonic Balance Method to discuss the coupling relationship 
between different degrees of freedom of the quasi-zero stiffness Gough-Stewart vibration isolation 
platform, considering the coupling relationship between each degree of freedom. 

However, it is worth mentioning that researchers’ works mainly concentrated on either single-
degree-of-freedom or double-layer vibration isolation while the floating raft vibration isolation 
with quasi-zero-stiffness isolators is not referred. In addition, the excitation resource from their 
research is always a single vibration excitation source, and the definition of excitation was not 
accurate enough to describe the real movement of the floating raft. 

In this paper, an investigation into the nonlinear dynamic behaviors of the floating raft isolation 
system coupled with quasi-zero-stiffness isolators under multiple disturbance sources is presented. 
First, the coupling effects between the excitation source and isolation system are considered, and 
movements in the vertical, horizontal, and rotational directions are also taken into account. Based 
on this, the floating raft isolation model subjected to multiple disturbance sources and its motion 
equation is developed, and then its dynamic responses are mainly investigated by using the 
techniques of time history diagram, spectrum diagram, phase diagram, Poincaré diagram, and the 
bifurcation diagram. Last, the bifurcations of the floating raft isolation system with different 
parameters are analyzed through numerical methods, especially the effect of center distance and 
mass ratio. In particular, this work aims to present the theoretic supporting for the dynamics, 
vibration control and its parametric optimization of the floating raft isolation system coupled with 
quasi-zero-stiffness isolators. 

2. Modeling of the floating raft vibration isolation system  

2.1. Dynamics modeling 

A plane motion model is established for the floating raft vibration isolation system considering 
multi-disturbance sources, as shown in Fig. 1. The plane motion model includes five parts: 
machinery A, machinery B, upper vibration isolator I, lower vibration isolator II, and raft C. 

 
Fig. 1. Plane motion model of the floating raft isolation system 

The floating raft vibration isolation system is modeled by the multi-rigid body dynamic 
method. The machinery and raft are regarded as rigid bodies. A couple of quasi-zero-stiffness 
vibration isolators are vertically installed under each machinery, and three quasi-zero-stiffness 
vibration isolators are vertically installed under the raft. The foundation is rigidly fixed. As shown 
in Fig. 1, the mass centers of machinery A, machinery B and raft C are set as the origins of their 
local coordinate systems 𝑜஺, 𝑜஻, 𝑜஼, respectively. 𝑜஺𝑥஺, 𝑜஻𝑥஻, 𝑜஼𝑥஼ are the ordinate axes of the 
local coordinate systems, and their directions are perpendicular to the geodetic plane where the 
system is located. 𝑜஺𝑦஺, 𝑜஻𝑦஻, 𝑜஼𝑦஼ are the horizontal axes of the local coordinate systems, and 
their directions are parallel to the geodetic plane. 𝜙𝐴, 𝜙𝐵, 𝜙𝐶 represents the rotation angles of 
machinery A, machinery B and raft C in the plane, respectively. Set the origin of the global 
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coordinate system at point o. 𝑜௫, 𝑜௬ are the ordinate axis and horizontal axis of the overall 
coordinate system. 

The dynamic equations of machinery A, machinery B and raft C are established respectively 
based on Newton's second law, which is formulated in Eq. (1): 

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧𝐌୅𝐫ሷ୅ = 𝐑୅𝐅୅ −෍𝐅஁௜௧ଶ

௜ୀଵ ,
𝐌୆𝐫ሷ୆ = 𝐑୆𝐅୆ −෍𝐅஁௜௧ସ

௜ୀଷ ,
𝐌େ𝐫ሷେ = −෍𝐅஁஁௝௧ଷ

௝ୀଵ −෍𝐅஁௜௕ସ
௜ୀଵ .

  (1)

In the equilibrium equation of machinery A, 𝐌୅ = dig[𝑀୅,𝑀୅, 𝐽୅] represents the mass matrix 
of machinery A. 𝑀୅ and 𝐽୅ represent the mass and planar moment of inertia, respectively.  𝐫ሷ୅ = [𝑥ሷ୅,𝑦ሷ୅,𝜙ሷ୅]் represents the acceleration vector of the center of machinery A. 𝐑୅ represents 
the transformation matrix of the local coordinate system to the overall coordinate system for 
machinery A, which can be expressed as Eq. (2). 𝐅୅ = [𝐹୅cos𝜔୅𝑡, 0,0]் represents the simple 
harmonic excitation vector of machinery A. Assuming the machinery is only subjected to vertical 
excitation, the excitation amplitude is 𝐹୅ and the excitation frequency is 𝜔୅. 𝐅஁௜௧  represents the 
restoring forces at the top ends of the upper vibration isolator I. The subscript 𝑖 indicates the 𝑖th 
vibration isolator in the upper level I. Superscript 𝑡 represents the top end of the isolator: 

𝐑୅ = ൥cos𝜙୅ −sin𝜙୅ 0sin𝜙୅ cos𝜙୅ 00 0 1൩. (2)

Similarly, in the equilibrium equation of machinery B, 𝐌୆ = dig[𝑀୆,𝑀୆, 𝐽୆],  𝐫ሷ୆ = [𝑥ሷ୆,𝑦ሷ୆,𝜙ሷ୆]், 𝐅୆ = [𝐹୆cos(𝜔୆𝑡 + 𝜑),0,0]் represent the mass matrix, acceleration array 
and simple harmonic excitation array of machinery B, respectively. 𝜑 represents the phase 
difference between motivation 𝐅୆ and 𝐅୅. 𝐑୆ represents the transformation matrix of the local 
coordinate system to the overall coordinate system for machinery B, and it is formulated in the 
same form as 𝐑୅. 

Similarly, in the equilibrium equation of raft C, 𝐌େ = dig[𝑀େ,𝑀େ, 𝐽େ] and 𝐫ሷେ = [𝑥ሷେ,𝑦ሷେ,𝜙ሷେ]் 
represent the mass matrix and acceleration vector of raft C, respectively. 𝐅஁஁௝௧  represents the 
restoring forces acting on the top end of the lower vibration isolator II. 𝐅஁௜௕ represents the restoring 
forces at the bottom end of the upper vibration isolator I. The subscript 𝑗 indicates the 𝑗th vibration 
isolator in the lower level II. Superscript 𝑏 represents the bottom end of the isolator.  

Both the upper vibration isolator I and the lower vibration isolator II are selected as quasi-
zero-stiffness vibration isolators. Their restoring forces 𝐅஁௜௧ , 𝐅஁௜௕ and 𝐅஁஁௝௧  can be expressed as 𝑘Δ𝑥(1 + 𝜀Δ𝑥ଶ), where Δ𝑥 is the deformation, 𝑘 is the stiffness coefficient, 𝜀 is the cubic 
nonlinear stiffness coefficient.  

The stiffness coefficient matrix and damping coefficient matrix of the upper vibration isolator 
I are 𝐊஁ = dig[𝑘஁௫,𝑘஁௬,𝑘஁థ], 𝐂஁ = dig[𝑐஁௫, 𝑐஁௬, 𝑐஁థ]. 𝑘஁௫, 𝑘஁௬ and 𝑘஁థ are the stiffness coefficients 
of the upper vibration isolator I in the vertical, horizontal and rotational directions. Accordingly, 𝑐஁௫, 𝑐஁௬ and 𝑐஁థ are the damping coefficients of the upper vibration isolator I in the vertical, 
horizontal and rotational directions.  

The stiffness coefficient matrix and damping coefficient matrix of the lower vibration 
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isolator II are 𝐊஁஁ = dig[𝑘஁஁௫,𝑘஁஁௬,𝑘஁஁థ], 𝐂஁஁ = dig[𝑐஁஁௫, 𝑐஁஁௬, 𝑐஁஁థ]. 𝑘஁஁௫, 𝑘஁஁௬ and 𝑘஁஁థ are the 
stiffness coefficients of the lower vibration isolator II in the vertical, horizontal and rotational 
directions. Accordingly, 𝑐஁஁௫, 𝑐஁஁௬ and 𝑐஁஁థ are the damping coefficients of the lower vibration 
isolator II in the vertical, horizontal and rotational directions.  

At the same time, the frequency parameters corresponding to the stiffness matrix can be 
obtained, as shown in Table 1. 

Table 1. Frequency parameters 
Parameter Expression Parameter Expression 𝜔ଵ௫ ඥ2𝑘஁௫/𝑀୅ 𝜔ଵ௬ ට2𝑘஁௬/𝑀୅ 𝜔ଶ௫ ඥ2𝑘஁௫/𝑀୆ 𝜔ଶ௬ ට2𝑘஁௬/𝑀୆ 𝜔ଷ௫ ඥ3k஁஁௫/𝑀େ ωଷ୷ ට3k஁஁௬/𝑀େ 

The equilibrium equations of the upper vibration isolator I and the lower vibration isolator II 
are formulated. And their restoring forces are expressed as: 

൞𝐅஁௜௧ = 𝐓஁௜௧𝐊஁[൫Δ𝐫஁௜௧ − Δ𝐫஁௜௕൯ + 𝜀൫Δ𝐫஁௜௧ − Δ𝐫஁௜௕)ଷ൧ + 𝐓஁௜௧ 𝐂஁൫Δ𝐫ሶ஁௜௧ − Δ𝐫ሶ஁௜௕൯,     𝑖 = 1,2,3,4,𝐅஁௜௕ = −𝐓େ௜௕ 𝐊஁[൫Δ𝐫஁௜௧ − Δ𝐫஁௜௕൯ + 𝜀൫Δ𝐫஁௜௧ − Δ𝐫஁௜௕)ଷ൧ − 𝐓େ௜௕ 𝐂஁൫Δ𝐫ሶ஁௜௧ − Δ𝐫ሶ ஁௜௕ ൯,     𝑖 = 1,2,3,4,𝐅஁஁௝௧ = 𝐓େ௝௧ 𝐊஁஁[൫Δ𝐫஁஁௝௧ − Δ𝐫஁஁௝௕ ൯ + 𝜀൫Δ𝐫஁஁௝௧ − Δ𝐫஁஁௝௕ )ଷ൧ + 𝐓େ௝௧ 𝐂஁஁൫Δ𝐫ሶ஁஁௝௧ − Δ𝐫ሶ஁஁௝௕ ൯,      𝑗 = 1,2,3. (3)

Among them: 

𝐓஁௜௧ = ቊ𝐓୅௜௧ ,      𝑖 = 1,2,𝐓୆௜௧ ,      𝑖 = 3,4, (4)

where, 𝐓୅௜௧  and 𝐓୆௜௧  represents the translation transformation matrix of the top end of the upper 
vibration isolator I in the global coordinate system. The specific form is expressed as follows: 

𝐓୅ଵ௧ = ൥ 1 0 00 1 0−𝑦஁௜୲ 𝑥஁௜୲ 1൩  ,      𝑖 = 1,2, (5)

where 𝑥஁௜௧  and 𝑦஁௜௧  represents the coordinates of the upper end of the upper isolator I in the local 
coordinate system. The meaning and form of 𝐓୆௜௧ , 𝐓େ௜௕ , and 𝐓େ௝௧  are similar to 𝐓୅௜௧ , which needs no 
further elaboration: 

ቊΔ𝐫஁௜௧ = 𝐫஁௜௧ − 𝐫஁௜଴௧ ,Δ𝐫ሶ஁௜௧ = 𝐫ሶ஁௜௧ − 𝐫ሶ஁௜଴௧ ,        𝑖 = 1,2,3,4, (6)

where 𝐫஁௜଴௧  and 𝐫ሶ஁௜଴௧  represents the deformation and velocity when the coordinates of the top end of 
the upper isolator I are in the local coordinate system. Δ𝐫஁௜௕, Δ𝐫஁஁௝௧ , Δ𝐫஁஁௝௕ , Δ𝐫ሶ஁௜௕, Δ𝐫ሶ஁஁௝௧ , and Δ𝐫ሶ஁஁௝௕  have 
similar meaning and form as Δ𝐫஁௜௧  and Δ𝐫ሶ஁௜௧ , which needs no further elaboration. 

2.2. Dimensionless kinetic equations 

Define characteristic length, 𝑥଴, characteristic angle, 𝜙଴, and the planar moment of inertia of 
the raft, 𝐽େ: 
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𝑥଴ = 𝑀୅𝑔2𝑘஁௫ , (7)𝜙଴ = 𝑀୅𝑔2𝑘஁௫𝑏୅, (8)𝐽େ = 𝑀େ(𝑎େଶ + 𝑏େଶ)12 , (9)

where 𝑏୅ indicates the height of machinery A, 𝑎େ and 𝑏େ respectively represents the width and 
height of raft C. The plane moment of inertia of machinery A and machinery B, 𝐽୅ and 𝐽୆ have 
similar form as 𝐽େ. 

Define two dimensionless parameters: centroid distance𝑠 and mass ratio 𝜂. Centroid distance𝑠 
indicates the horizontal distance 𝐿 from the machinery center to the raft center, which is divided 
by the characteristic length 𝑥଴. Mass ratio 𝜂 represents the mass of the raft 𝑀େ and machinery A 𝑀୅: 𝑠 = 𝐿𝑥଴, (10)𝜂 = 𝑀େ𝑀୅. (11)

In addition to considering the centroid distance 𝑠 and mass ratio 𝜂, the following 
dimensionless parameters are further introduced, as shown in Table 2. 

Table 2. Dimensionless parameters 
Parameter Expression Parameter Expression Parameter Expression 𝑥ଵ 𝑥୅/𝑥଴ Ωଵ௫ 𝜔ଵ௫ඥ𝑥଴/𝑔 𝐹෨୅ 𝐹୅/(2𝑘௶௫𝑥଴) 𝑦ଵ 𝑦୅/𝑥଴ Ωଶ௫ 𝜔ଶ௫ඥ𝑥଴/𝑔 𝐹෨୆ 𝐹୆/(2𝑘௶௫𝑥଴) 𝜙ଵ 𝜙୅/𝜙଴ Ωଷ௫ 𝜔ଷ௫ඥ𝑥଴/𝑔 Ω୅ 𝜔୅ඥ𝑥଴/𝑔 𝑥ଶ 𝑥୆/𝑥଴ Ωଵ௬ 𝜔ଵ௬ඥ𝑥଴/𝑔 Ω୆ 𝜔୆ඥ𝑥଴/𝑔 𝑦ଶ 𝑦୆/𝑥଴ Ωଶ௬ 𝜔ଶ௬ඥ𝑥଴/𝑔 𝜓 ඥ𝑥଴/𝑔𝜑/𝜔୆ 𝜙ଶ 𝜙୆/𝜙଴ Ωଷ௬ 𝜔ଷ௬ඥ𝑥଴/𝑔   𝑥ଷ 𝑥େ/𝑥଴ 𝜆ଵ 𝜔ଵ௫/𝜔ଵ௬   𝑦ଷ 𝑦େ/𝑥଴ 𝜉ଵ௫ 𝑐௶௫/ඥ2𝑘௶௫𝑀஺   𝜙ଷ 𝜙େ/𝜙଴ 𝜉ଵ௬ 𝑐௶௬/ට2𝑘௶௬𝑀஺   𝛼୅ 𝑎୅/𝑥଴ 𝜉ଶ௫ 𝑐௶௫/ඥ2𝑘௶௫𝑀஻   𝛼୆ 𝑎୆/𝑥଴ 𝜉ଶ௬ 𝑐௶௬/ට2𝑘௶௬𝑀஻   𝛼େ 𝑎େ/𝑥଴ 𝜉ଷ௫ 3𝑐௶௶௫/ඥ12𝑘௶௶௫𝑀஼   𝛽୅ 𝑏୅/𝑥଴ 𝜉ଷ௬ 3𝑐௶௶௬/ට12𝑘௶௶௬𝑀஼   𝛽୆ 𝑏୆/𝑥଴     𝛽େ 𝑏େ/𝑥଴     𝜏 𝑡ඥ𝑥଴/𝑔     Λ 𝜀𝑥଴ଶ     

Note: 𝑎୅, 𝑎୆ and 𝑎େ respectively represent the width of machinery A, machinery B and machinery C, 𝑏୅, 𝑏୆ and 𝑏େ indicates the height of machinery A, machinery B and machinery C 

Substituting the above dimensionless parameters into Eq. (1), it can obtain the dimensionless 
kinetic equation: 
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𝐌෩𝐳ᇱᇱ + 𝐂෨𝐳ᇱ + 𝐊෩𝐳 + 𝐐෩ = 𝐅෨. (12)

Among them: 𝐳 = [𝑥ଵ,𝑦ଵ,𝜙ଵ, 𝑥ଶ,𝑦ଶ,𝜙ଶ, 𝑥ଷ,𝑦ଷ,𝜙ଷ]் . (13)

In Eq. (12), the superscripts ′ and ′′ denote the dimensionless time derivative and superscript ∙ ̃
indicates dimensionless parameter. 𝐌෩ , 𝐂෨ and 𝐊෩ represent the mass, damping and linear stiffness 
matrices of the system, respectively. 𝐐෩ represents the nonlinear restoring force.  𝐅෨ = [𝐅෨୅் 𝐅෨୆் 𝟎ଵ×ଷ]் represents the simple harmonic excitation of the system, where 𝐅෨୅ and 𝐅෨୆ 
are formulated as follows: 

ቊ𝐅෨୅ = [𝐹෨୅cosΩ୅𝜏, 0,0]் ,𝐅෨୆ = [𝐹෨୆cosΩ୆(𝜏 + 𝜓),0,0]் . (14)

Considering a floating raft device of a diesel generator set, it is feasible to determine the value 
and variation range of the dimensionless parameters. The upper vibration isolator I is arranged 
symmetrically about the machinery center, and the lower vibration isolator II is arranged 
symmetrically about the raft center. External excitation frequency is 𝜔୅ = 𝜔୆ = 𝜔ଵ௫. Excitation 
period is 𝑇 = 2𝜋/𝜔୅. Excitation amplitude is 𝐹୅ = 𝐹୆ = 𝑀୅𝑔. The values of dimensionless 
parameters involved in the kinetic equation are shown in Table 3. 

Table 3. Dimensionless parameters value 
Parameter Expression Parameter Expression Parameter Expression 𝑥଴ 0.084 Ωଵ௫ 1.00 𝐹෨୅ 1.00 𝜙଴ 0.092 Ωଶ௫ 1.00 𝐹෨୆ 1.00 𝛼୅ 12.77 Ωଷ௫ 1.88 Ω୅ 1.00 𝛼୆ 12.77 Ωଵ௬ 0.89 Ω୆ 1.00 𝛼େ 34.60 Ωଶ௬ 0.89 𝜓 𝜋/2 𝛽஺ 2.09 Ωଷ௬ 1.50   𝛽୆ 2.09 λଵ 1.12   𝛽େ 8.65 𝜉ଵ௫ 0.015   𝜂 0.80 𝜉ଵ௬ 0.015   Λ 0.30 𝜉ଶ௫ 0.015   

  𝜉ଶ௬ 0.015   
  𝜉ଷ௫ 0.015   
  𝜉ଷ௬ 0.015   

3. Bifurcation characteristics of the floating raft vibration isolation system 

Parameter analysis is carried on bifurcation characteristics of the floating raft vibration 
isolation system with quasi-zero-stiffness. Since machineries A and B are arranged symmetrically, 
only the movement of machinery A and raft C is considered. The fourth-order Runge-Kutta 
method is used to solve the nonlinear dynamic equations, with the time step is specified as 𝑇/125. 

3.1. The influence of the distance between the centroids 

Centroid distance 𝑠 is a dimensionless parameter reflecting the installation distance between 
machinery A and machinery B. Fig. 2 shows the bifurcation diagram of the steady-state 
displacement response of machinery A as the centroid distance varies. 
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a) Vertical response bifurcation diagram of machinery A 

 
b) Horizontal response bifurcation diagram of machinery A 

 
c) Rotation response bifurcation diagram of machinery A 

Fig. 2. Bifurcation diagrams of machinery A with 𝑠 

As shown in Fig. 2, the motions of machinery A in vertical and horizontal direction have close 
trend with the centroid distance 𝑠. Since the excitation direction is vertical, the vibration amplitude 
of vertical motion is larger. When the centroid distance 𝑠 > 19.68, the motion of machinery A 
shows an alternating state of periodic motion and chaotic motion. When the centroid distance𝑠is 
between 19.94 and 20.02, the motion of machinery A in three directions transforms into quasi-
periodic motion. As the centroid distance𝑠continues to increase, the motion goes through a period 
of alternating periodic motion and chaotic motion, and then transforms into periodic motion. It is 
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worth noting that machinery A has no single-period motion. That is because the vertical and 
horizontal directions of machinery A provide coupling stiffness for the rotation direction. The 
rotation response of machinery A is affected by the movement in the other two directions, and the 
movement state is more complicated. 

In general, under the motivation of vertical equal-amplitude double excitation with a phase 
difference of 𝜋/2, the motion of machinery A conforms to the law of period-chaos-period 
according to the centroid distance𝑠. 

 
a) Vertical response bifurcation diagram of floating raft C 

 
b) Horizontal response bifurcation diagram of floating raft C 

 
c) Rotation response bifurcation diagram of floating raft C 

Fig. 3. Bifurcation diagrams of raft C with 𝑠 
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Fig. 3 is the bifurcation diagram of the steady-state displacement response of raft C as the 
distance from the mass center varies. Similar to the movement of machinery A, the movement of 
raft C in all directions varies according to the centroid distance𝑠. The variation rules are basically 
similar With the centroid distance𝑠, the motion of the raft C in all directions first shows a stable 
periodic motion, followed by an alternating state of periodic motion, quasi-periodic motion, multi-
periodic motion, and chaotic motion. Compared with machinery A, the vibration amplitude of raft 
C in all directions is smaller. However, in the unstable quasi-periodic motion state, the bifurcation 
of the raft C is more complex and the nonlinear vibration characteristics are more obvious. 

In summary, when the value of the centroid distance𝑠 approaches 20, the movement of the 
floating raft vibration isolation system will be greatly affected. The system movement will 
produce more obvious quasi-periodic motion and chaotic motion, and the movement in the three 
directions will become more unstable. Especially for horizontal movement and rotation, the 
vibration amplitude will be greatly increased. 

Therefore, in order to avoid the nonlinear motion state in the process of system motion, this 
value range 𝑠 = 19.6-20.2 should be excluded in the design of floating raft isolation system. It can 
be seen from the above that 𝑠 = 𝐿 𝑥଴⁄ , 𝑥଴ = 𝑀୅𝑔 2𝑘஁௫⁄ , so 𝑠 can be optimized by designing the 
vertical stiffness coefficient 𝑘஁௫ of the upper vibration isolator. 

3.2. The influence of the mass ratio 

Mass ratio 𝜂 is a dimensionless parameter reflecting the mass ratio between raft C and 
machinery A. Fig. 4 is the bifurcation diagram of the steady-state displacement response of 
machinery A as the mass ratio varies. 

 
a) Vertical response bifurcation diagram of machinery A 

 
b) Horizontal response bifurcation diagram of machinery A 
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c) Rotation response bifurcation diagram of machinery A 

Fig. 4. Bifurcation diagrams of machinery A with 𝜂 

It can be seen from the Fig. 4 that the displacement response of machinery A in each direction 
varies with the mass ratio 𝜂. There are multiple discontinuous quasi-periodic motion intervals and 
chaotic motion intervals in the variation. When the mass ratio 𝜂 ൏ 0.890, the motion state of 
machinery A is stable. The motion of machinery A comes into a quasi-periodic state when the 
mass ratio 𝜂 is between 0.716 and 0.750 and at 0.766. It is in periodic motion in the rest of the 
value range. When the mass ratio 𝜂 is in the range of 0.892 and 1.398, the motion of machinery A 
in all directions entered an obvious nonlinear motion state. In particular, its horizontal response 
entered chaos through period-doubling bifurcation, and the vibration amplitudes in all directions 
oscillated over a large range. Quasi-periodic motion states and chaotic motion states appears 
alternately, and the vibration amplitude in the horizontal direction reaches the same order of 
magnitude as that in the vertical direction. After the mass ratio 𝜂 exceeding 1.400, quasi-periodic 
motion and chaotic motion states only appear between 1.530-1.606 and 1.944-2.000, and the rest 
of the value range is periodic motion. 

In general, the motion of machinery A shows a pattern of alternating periodic-quasi-periodic-
chaotic appearance according to the increment of mass ratio 𝜂. 

Fig. 5 is the bifurcation diagram of the steady-state displacement response of raft C as the mass 
ratio 𝜂 changes. Similar to the movement of machinery A, the movement of raft C in all directions 
varies with the mass ratio. As the mass ratio 𝜂 increases, the motion of the raft C in all directions 
first shows a stable periodic motion, followed by periodic motion, quasi-periodic motion, multi-
periodic motion, and chaotic motion. Compared with machinery A, the vibration amplitude of raft 
C in all directions is smaller. At the same time, the rotation response of raft C also has the 
phenomenon of entering a chaotic state by period-doubling bifurcation. 

Fig. 4(c) and Fig. 5(c) reveal that the rotational response of machinery A and raft C varies with 
the mass ratio 𝜂. In the bifurcation characteristics, there is also a period-doubling bifurcation 
phenomena, which is also caused by the coupling stiffness in the rotation direction. 

In summary, in order to avoid the nonlinear motion state during the system motion, the mass 
ratio 𝜂 should avoid the value ranges of 0.892-1.398, 1.530-1.606 and 1.944-2.000. The mass ratio 𝜂 is optimized by designing the raft mass 𝑀େ and the machinery A mass 𝑀୅. 

4. Chaotic characteristics of the floating raft vibration isolation system 

In nonlinear systems, the Lyapunov exponent is a quantitative analysis method to identify 
chaotic motion. When the maximum Lyapunov exponent is positive, the system is in a chaotic 
state; otherwise, the system is in a periodic or quasi-periodic motion state. From the analysis in 
Section 3.2, we can see that the mass ratio, 𝜂 has more obvious and complex impact on the 
vibration characteristics of the system. Therefore, it is necessary to use the Lyapunov exponent to 
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further analyze the nonlinear characteristics of the system. 

 
a) Vertical response bifurcation diagram of floating raft C 

 
b) Horizontal response bifurcation diagram of floating raft C 

 
c) Rotation response bifurcation diagram of floating raft C 

Fig. 5. Bifurcation diagrams of raft C with 𝜂 

This section adopts the Benettin method [33]to calculate the maximum Lyapunov index of the 
floating raft vibration isolation system based on the orbit perturbation principle. The initial 
condition of the phase trajectory is 𝐳଴ = 𝟎ଽ×ଵ, 𝐳′଴ = 𝟎ଽ×ଵ, 𝐳ଵ = [10ି଻,𝟎ଵ×଼]். Fig. 6 plots the 
curve of maximum Lyapunov exponent versus mass ratio 𝜂 . By comparing Fig. 6 with Fig. 4, it 
can be found that the maximum Lyapunov exponent of the system is basically consistent with the 
period-doubling bifurcation diagram. As the mass ratio increases, when the system motion is in a 
periodic motion state, the maximum Lyapunov exponent is negative, when the system motion is 
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in a chaotic motion state, the maximum Lyapunov exponent is positive. 
In general, it also shows the evolution law of nonlinear vibration characteristics with 

alternating periodic motion, quasi-periodic motion, and chaotic motion. The local stability of the 
system can be further analyzed based on the Lyapunov exponent. 

 
Fig. 6. LLE diagram of floating raft system with 𝜂 

Fig. 7 shows the time history diagram, spectrum diagram, phase diagram and Poincaré map of 
the vertical vibration response of machinery A when mass ratio 𝜂 = 1.002. The time history 
diagram in Fig. 7(a) depicts the steady-state vibration response, and the vibration amplitude 
fluctuates periodically within a certain range. The spectrum diagram in 7(b) shows that there are 
obvious double frequency components in the system. The phase diagram in Fig. 7(c) plots the 
steady-state vibration response and the velocity numerical solution, and the phase trajectory forms 
a ring with a certain width. Fig. 7(d) Poincaré map with 2000 intervals 𝑇. The points of the curve 
are drawn, and their Poincaré mapping points form a closed curve. Based on the results in Fig. 7, 
machinery A is in a quasi-periodic motion state at this time. 

 
a) Time history 

 
b) Frequency spectrum 

 
c) Phase portrait 

 
d) Poincaré map 

Fig. 7. Machinery A is in a quasi-periodic motion at 𝜂 = 1.002 
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Fig. 8 shows time history diagram, spectrum diagram, phase diagram and Poincaré map of the 
vertical vibration response of machinery A when the mass ratio 𝜂 = 1.050. Fig. 8(a) depicts the 
steady-state vibration response, and the vibration amplitude fluctuates periodically within a certain 
range. The spectrum diagram in 8(b) shows that there are complex frequency components in the 
system and continuous frequency. Fig. 8(c) plots the steady-state vibration response and the 
velocity numerical solution, and the phase trajectory is messy which indicates unstable state. 
Fig. 8(d) plots Poincaré map with 2000 intervals 𝑇. The points scattered in a certain area. Based 
on the results in Fig. 8, machinery A is currently exhibiting chaotic motion state. 

 
a) Time history 

 
b) Frequency spectrum 

 
c) Phase portrait 

 
d) Poincaré map 

Fig. 8. Machinery A is in chaotic motion at 𝜂 = 1.050 

5. Conclusions 

The nonlinear dynamic behavior of a floating raft isolation system coupled with quasi-zero-
stiffness isolators under multiple disturbance sources is carried out. In this study, based on the 
multi-rigid body dynamic theory, the mathematical model of the 9-degree-of-freedom system is 
developed. And its nonlinear dynamic characteristics are analyzed by applying the Runge-Kutta 
method. The dynamic responses are mainly investigated by using time history diagram, spectrum 
diagram, phase diagram, Poincaré diagram, and the bifurcation diagram. The results of this 
research significantly extend and enrich the understanding of the behavior of the system. Based 
on the results of the numerical simulations, the following conclusions can be summarized. First, 
the floating raft exhibits alternate phenomenon of periodic motion, quasi-periodic motion, and 
chaotic motion when the center distance and mass ratio vary. The motion state of the floating raft 
vibration isolation system is more sensitive to the mass ratio than to the center distance. Second, 
the horizontal and rotational responses of the system become very intense in the chaotic state, with 
the response amplitudes in the horizontal and vertical directions reaching the same order of 
magnitude. Above all, the dynamic characteristics can provide theoretic supporting for the 
dynamics, vibration control, and parametric optimization of the floating raft isolation system 
coupled with quasi-zero-stiffness isolators. This study is based on the basic assumption that the 
external excitation phase difference is 𝜋/2, which cannot fully reflect the real system working 
scenario. In the future, it is planned to carry out research on different phase differences. 
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