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Abstract. In single crystal diamond tool grinding, cutting-edge quality is affected by various 
parameters, with tool vibration playing a crucial role. Due to environmental factors and the 
complexity of the process, vibration signals are often noisy and non-stationary. This study 
proposes a denoising method that optimizes the wavelet threshold function using an Improved 
Genetic Algorithm (IGA). The method introduces a configurable value α in the wavelet threshold 
function, which is optimized with IGA to improve denoising. MATLAB R2018b simulations 
show that this approach achieves better denoising, a higher signal-to-noise ratio, and lower mean 
square error.  
Keywords: improved wavelet threshold, IGA, vibration signal, denoising method. 

1. Introduction 

Grinding single crystal diamond is critical. During the process, redundant motion between the 
tool and grinding disc can affect the tool's quality. Vibration signals are important for monitoring 
tool quality and wear, helping control vibrations, and improving grinding efficiency and tool 
lifespan. However, in practice, noise from equipment, tools, and the environment often affects the 
process [1]. Effectively removing this noise can enhance information quality and ensure signal 
accuracy. 

The wavelet threshold denoising algorithm is a common signal processing method. Traditional 
threshold functions, such as soft and hard thresholds, were introduced by Donoho and Johnstone 
[2] in 1995 to denoise signals by processing wavelet coefficients. However, this method can lead 
to unsmooth signals and constant deviations. Q. Qian [3] et al. proposed an improved threshold 
function with two factors for fault signal denoising. To address noise in bearing vibration signals, 
M. Qin [4] suggested using a genetic algorithm to optimize the wavelet threshold function and 
find the best parameter combination. H. Ma [5] et al. used the hard threshold method for vibration 
signal denoising and determined the threshold value based on the signal's standard deviation. 

To reduce noise and improve the signal-to-noise ratio, this paper introduces an improved 
wavelet threshold function with adjustable parameters. These parameters enhance adaptability, 
but their selection impacts denoising. To optimize this, IGA is used to find the best parameters. 
GA, introduced by John Holland [6], is based on biological evolution but can suffer from quick 
convergence, local optima, and limited global search. To address this, the fitness function and 
genetic strategy are refined to improve global search and maintain stable convergence. 

2. Wavelet threshold denoising 

2.1. The basic principle of wavelet threshold denoising 

Wavelet threshold denoising decomposes a signal using the wavelet transform to target 
high-frequency noise. The wavelet coefficients are next treated using a threshold: hard 
thresholding puts coefficients below the threshold to zero, and soft thresholding decreases 
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coefficients above the threshold while setting those below to zero. The treated coefficients are 
reassembled to generate the denoised signal. The flow chart for this procedure is depicted in 
Fig. 1 [7]. 

 
Fig. 1. Flow chart of wavelet threshold denoising 

2.2. Soft and hard threshold functions 

Soft threshold functions and hard threshold functions as shown in Eq. (1) and Eq. (2). 𝜔௝,௞ and 𝜔ෝ௝,௞ respectively represent the coefficients before and after denoising, and 𝜆 is the predetermined 
threshold: 

𝜔ෝ௝,௞ = ቊsgn൫𝜔௝,௞൯ ⋅ ൫ห𝜔௝,௞ห − 𝜆൯,    ห𝜔௝,௞ห ≥ 𝜆,0,     ห𝜔௝,௞ห < 𝜆,  (1)

𝜔ෝ௝,௞ = ቊ𝜔௝,௞,     ห𝜔௝,௞ห ≥ 𝜆,0,     ห𝜔௝,௞ห < 𝜆.  (2)

The soft threshold function has the advantage of being smoothed and maintaining continuity 
at the threshold setting. However, there is a fixed discrepancy between the wavelet coefficient 
processed by the soft threshold function and the actual signal, resulting in distortion of the 
reconstructed signal. 

The hard threshold function can effectively preserve the original signal's edge characteristics, 
yet it suffers from discontinuity. Specifically, discontinuities arise at threshold values of +𝜆 and  
–𝜆, leading to oscillations and significant variance in the reconstructed signal, ultimately causing 
signal deviation [8]. 

2.3. Improved wavelet threshold function 

Eq. (3) demonstrates the proposed improved wavelet threshold function in this study, which 
integrates the advantages and limitations of the conventional wavelet threshold function: 

𝜔ෝ௝,௞ = ൝sgn൫𝜔௝,௞൯ ⋅ ቂห𝜔௝,௞ห − 𝜆(𝛼 + 1)൫𝛼 + expห𝜔௝,௞ − 𝜆ห൯ିଵቃ ,    ห𝜔௝,௞ห ≥ 𝜆,0,     ห𝜔௝,௞ห < 𝜆.  (3)

In the Eq. (3), the wavelet coefficient after threshold processing is denoted as 𝜔ෝ௝,௞, while the 
wavelet coefficient before threshold processing is denoted as 𝜔௝,௞. The set threshold is represented 
by 𝜆, and the adjustable parameter is denoted by 𝛼. The three denoising functions are shown in 
Fig. 2. 

The adjustable parameter α is introduced in the modified wavelet threshold function, which is 
based on the traditional threshold function. This addition can enhance the function’s flexibility to 
accommodate a range of signals, and the size of 𝛼 can be suitably adjusted for different signal 
processing scenarios. The improved wavelet threshold function approaches the hard threshold 
function more closely the greater 𝛼, and vice versa. Between the soft and hard threshold functions 
lies the improved wavelet threshold function. As 𝜔௝,௞ approaches infinity, 𝛼 + expห𝜔௝,௞ − 𝜆ห also 
approaches infinity, making 𝜔ෝ௝,௞ approach 𝜔௝,௞. This improved wavelet threshold algorithm 
addresses the consistent deviation and distortion in the reconstructed signal associated with the 
soft threshold technique. When 𝜔௝,௞ approaches the threshold 𝜆, 𝛼 + expห𝜔௝,௞ − 𝜆ห approaches 
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𝛼 + 1, this improvement tackles the signal discontinuity issue previously linked to the hard 
threshold function. 

Due to the different selection of adjustable parameter 𝛼, the denoising effect will be very 
different, so IGA is selected to optimize the adjustable parameter 𝛼, which forms the denoising 
effect. To produce the best denoising effect, the wavelet threshold function with the higher SNR 
is built. 

 
Fig. 2. Soft threshold, hard threshold and improved wavelet threshold function 

3. IGA optimizes adjustable parameters 

By imitating the process of biological evolution in nature, GA continuously optimizes 
individuals in the space through selection, crossover and mutation operations, so as to find the 
optimal solution or approximately optimal solution to the problem. The benefits of GA include 
excellent computing efficiency, high robustness, and high application. Nevertheless, there are 
several issues with the traditional GA in real-world applications, namely its slow convergence 
time and susceptibility to local optimal difficulties, which calls for improvements. 

3.1. Improvement of fitness function 

The fitness function evaluates individuals and affects their selection probability, influencing 
evolution and optimization. Normalizing the fitness function scales the values, improving 
selection and population evolution [9]. This paper uses normalization to enhance the fitness 
function. 

Every individual’s fitness value is computed after the fitness function’s initial value range has 
been established. These values are then mapped to the interval [0, 1] using a linear normalization 
method, as shown in Eq. (4). Where min and max are the minimum and maximum fitness function 
values respectively, and 𝑓ᇱ(𝑥) is the normalized fitness function value. Finally, the normalized 
fitness function value is calculated as the new fitness value of each individual in the genetic 
algorithm: 

𝑓ᇱ(𝑥) = 𝑓(𝑥) − min(𝑓)max(𝑓) − min(𝑓). (4)

The improved genetic algorithm ensures that individual fitness values are on a uniform scale, 
avoiding instability from different fitness ranges, and enhances both convergence speed and 
optimization results. 
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3.2. Improvement of genetic strategies 

Since the solutions obtained by the genetic algorithm are random, elite and roulette choices 
are used to avoid sub-optimal solutions. Elite selection keeps the most suitable individuals in the 
group, while roulette selection individuals based on their fitness ratio. 

In each generation, the elite individuals are first retained and copied into the next generation 
to maintain their genetic traits. Roulette selection is then used to choose the remaining individuals 
based on their fitness values to form the parent population for crossover and mutation. Crossover 
creates new offspring from the selected parents, and mutation randomly alters the offspring’s 
genes with a set probability. Finally, the elite individuals are combined with the new offspring to 
form the next generation, which will continue to evolve. 

Elite selection makes sure the optimal individual is not overlooked and enhances the 
algorithm’s capacity for worldwide search. Roulette selection preserves population diversity and 
prevents premature convergence to local optimality. Together, they balance population diversity 
and convergence rate. 

3.3. IGA optimization parameter steps 

(1) Initialize the population and determine the optimal interval through chromosome coding. 
(2) The fitness function is determined to be the SNR, whose function expression is shown in 

Eq. (5). Where, 𝑠(𝑖) is the original signal, 𝑠̂(𝑖) is the signal processed by the wavelet threshold 
function, and 𝑛 is the signal length: 

𝑆𝑁𝑅 = 10lg൭ ∑ 𝑠ଶ(𝑖)௡௜ୀଵ∑ (𝑠(𝑖) − 𝑠∧(𝑖))ଶ௡௜ୀଵ ൱. (5)

(3) The fitness value is calculated by the fitness function of the normalized treatment. 
According to the obtained fitness values, individuals are selected with an improved selection 
strategy. 

(4) If the termination condition is satisfied, the optimal parameters can be output, and the 
improved wavelet threshold function can be determined to denoise the signal. 

4. Simulation experiment analysis 

To demonstrate the method’s effectiveness, experiments are conducted using MATLAB 
R2018b on a PC. Vibration signals collected by a ULT20 sensor on a DAP-VI grinding machine 
are denoised. 

Comparisons are made between the soft threshold function, hard threshold function, improved 
wavelet threshold function, GA-optimized wavelet threshold function, and IGA-optimized 
wavelet threshold function. At the same time, the denoising index Eq. (5) SNR and Eq. (6) MSE 
are introduced for comparative verification. Where, 𝑠(𝑖) is the original signal, 𝑠̂(𝑖) is the signal 
processed by the wavelet threshold function, and n is the signal length: 

𝑀𝑆𝐸 = ඨ1𝑛෍ (𝑠(𝑖) − 𝑠̂(𝑖))ଶ௡௜ୀଵ . (6)

The original signal is shown in Fig. 3. Five different denoising functions are applied to the 
collected signal using the db4 wavelet basis function, with 5 decomposition layers and the same 
threshold [10]. The denoising results for each function are displayed in Fig. 4-6. 

Subsequently, the better wavelet threshold function is optimized using the IGA method 
described in this research. The genetic algorithm parameter is set, the parameter 𝛼୫୧୬ = –1, 
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𝛼୫ୟ୶ = 0 is chosen, the population initialization size is 20, and there are 20 iterations. Fig. 7 and 
FIG. 8 illustrate the impact of the improved wavelet threshold function that was optimized using 
GA and IGA. 

The denoising findings demonstrate that the signal processed by the improved wavelet 
threshold function may preserve the smoothness of the signal while retaining its peak 
characteristics, resulting in a good denoising effect. 

 
Fig. 3. Original signal 

 
Fig. 4. Soft threshold function 

 

  
Fig. 5. Hard threshold function 

  
Fig. 6. Improved wavelet threshold function 

 

  
Fig. 7. GA-Improves wavelet threshold function 

  
Fig. 8. IGA-Improves wavelet threshold function 

As indicated in Table 1, the denoising performance is measured using the SNR and MSE. With 
an SNR that is 3.72 % higher than the soft threshold and 1.67 % higher than the hard threshold, 
the improved wavelet threshold function performs noticeably better than the conventional wavelet 
threshold function. Compared to the GA-optimized function, the SNR of the IGA-optimized 
function is 2.12 % higher. Furthermore, the IGA-optimized wavelet threshold function has 5.93 % 
lower MSE than the GA-optimized function, and the improved wavelet threshold function has the 
lowest MSE, 6.45 % lower than the soft threshold and 8.63 % lower than the hard threshold. 

Table 1. Comparison of denoising indicators of each function 
 SNR MSE 

Soft threshold function 34.242 dB 0.713×10-2 
Hard threshold function 34.935 dB 0.730×10-2 

Improved wavelet threshold function 35.517 dB 0.667×10-2 
GA optimization improves the wavelet threshold function 35.964 dB 0.657×10-2 
IGA optimization improves the wavelet threshold function 36.726 dB 0.618×10-2 

5. Conclusions 

For the noisy vibration signals from grinding single crystal diamond tools, an improved 
wavelet threshold function is proposed, with the adjustable parameter α optimized by IGA for 
better denoising: 

1) Function Improvement: Analyzing the pros and cons of soft and hard threshold functions 
led to the development of an improved wavelet threshold function. The introduction of parameter 
α makes the function adaptable for different signals, providing smoother and distortion-free results 
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compared to traditional wavelet threshold functions. 
2) IGA Optimization: To enhance denoising, IGA optimizes the parameter 𝛼, improving the 

GA’s fitness function and genetic strategy. This addresses issues of slow convergence and weak 
global search ability found in traditional GA. 

3) Verification: To validate the approach, MATLAB R2018b was utilized. As compared to 
soft and hard threshold functions, the IGA-optimized wavelet threshold function obtains a 3.72 % 
and 1.67 % higher SNR, respectively, and an MSE reduction of 6.45 % and 8.63 %, according to 
the results. The IGA-optimized function has a 2.12 % better SNR and a 5.93 % lower MSE than 
the GA-optimized function, indicating the superiority of the suggested approach. 
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