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Abstract. Accurately analysing features in infrared images of equipment is one of the current 
directions in the field of power equipment detection and identification. Because infrared images 
of power equipment have poor resolution, low contrast, and visual blurring problems, this work 
proposes the use of the squirrel search algorithm to optimize the detection strategy of YOLOv5. 
First, due to the shortcomings of the squirrel search algorithm, which easily falls into local optima 
and has a slow convergence speed, in this work, the Henon Consine Seagull search algorithm 
(HCSSA) is proposed; this algorithm uses Henon chaotic mapping for population initialization 
and optimizes the predator probability based on the cosine function to improve the algorithm's 
performance. Second, in the YOLOv5 model, CSP_Faster is used for feature information 
recognition and to reduce the computational burden, the SKNet mechanism is introduced to ensure 
the integrity of the image feature information, the SIoU loss function in target classification is 
used to obtain a better classification effect, and finally, the HCSSA algorithm is optimized for the 
two hyperparameters of the YOLOv5 model, which are the learning rate and the weight decay. In 
the simulation experiments, the recognition effect of the proposed algorithm is improved by 
8.87 %, 7.67 % and 5.11 % compared with those of YOLOv3, YOLOv4, and YOLOv5, 
respectively, which shows that the model has a better target detection effect.  
Keywords: chaotic mapping, cosine function, target detection. 

1. Introduction 

Computer vision, as one of the important directions in the field of deep learning, is receiving 
increasing attention from researchers. Target recognition is an important component of computer 
vision, which focuses on accurately finding the target information from the content of a given 
image or video and is currently applied primarily in the fields of transportation applications [1-2], 
equipment operation [3], and medical image processing [4-5]. Power equipment is an important 
component of a power system, and there is an inseparable relationship between its normal 
operation and the entire power grid. Due to the unpredictability of the occurrence of equipment 
failure, the development of methods for accurately and quickly detecting and identifying the 
equipment failure state has become an important research direction. At present, the infrared image 
recognition method for equipment fault detection is widely used because it is noncontact, fast and 
safe [6]. However, this method is subject to interference from artificial factors, especially when 
the image itself has poor resolution and low contrast, and the appearance of visual blurring can 
easily lead to a reduction in the accuracy of detection. Although scholars have attempted to make 
some technical improvements [7-10], these algorithms have high complexity themselves, which 
increases the difficulty of image analysis and detection. 

With the rapid development of digital technology, the mutual integration of artificial 
intelligence technology and image processing technology has become the main direction of 
current research [11]. In recent years, YOLO [12] has emerged as an excellent target detection 
algorithm that applies the idea of regression to border localization and object category attribute 
judgement, reduces the complexity of candidate box extraction, and greatly accelerates the speed 
of detection. In addition, there are different versions of the YOLO model [13], indicating that it 
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has broader application prospects [14]. However, the YOLO model also suffers from the problem 
that the model performance is easily degraded by background misdetection and that small targets 
are easily missed. Equipment fault diagnosis for power systems relies mainly on the observation 
and identification of infrared images of power equipment to determine whether there is a 
possibility of equipment failure; however, infrared images of power equipment are easily affected 
by the influences of temperature and light, which reduce the recognition accuracy. To better detect 
targets in infrared images of power equipment, the YOLOv5 model was chosen, as it strikes a 
good balance between model size and accuracy and has a fast training speed, high accuracy, and 
a relatively simple structure for target detection when compared to the many YOLO versions 
applied to target characterization. Additionally, based on the properties of the relevant 
metaheuristic algorithms in [15], this work proposes the optimization of the model parameters 
with the use of metaheuristic algorithms to improve the recognition performance of the model. In 
recent years, the sparrow search algorithm [16] has been widely used in various fields due to its 
advantages, which include a fast convergence speed, simple parameter settings and a simple 
algorithm structure. Based on the above considerations, this work proposes a power equipment 
fault diagnosis strategy based on the YOLOv5 neural network with SSA optimization to help 
power enterprises quickly identify faults in power equipment. The primary contributions of this 
research are as follows: 

1) With respect to the characteristics of power equipment with different volume sizes and 
shapes, YOLOv5 is used for infrared image recognition and is able to extract features from power 
equipment images in extreme and complex weather. 

2) Due to the shortcomings of the SSA algorithm, which easily falls into local optima and 
slowly converges, Henon chaotic mapping perturbation is chosen for population initialization, and 
predator probability optimization based on the cosine function is used to improve the performance 
of the algorithm. 

3) In the current YOLOv5 model, the CSP module is replaced with CSP_Faster, the SKNet 
attention mechanism is introduced to ensure the completeness of the image feature information, 
and the SIoU loss function is used in the target classification to obtain better classification results. 

4) Simulation experiments illustrate that our proposed algorithm exhibits a significant 
performance improvement over YOLOv3, YOLOv4, and YOLOv5. 

The remainder of this paper is organized as follows: Section 2 describes the current state of 
research on target detection; Section 3 describes the SSA and YOLOv5 used in this paper; 
Section 4 describes the YOLOv5 model optimized based on the SSA; Section 5 describes the 
simulation experiments conducted on the model proposed in this paper, which are used to validate 
its effectiveness; and Section 6 concludes the paper. 

2. Related work 

Image target detection methods include traditional methods and deep learning-based methods. 
The former includes a priori knowledge, template matching and manual feature detection methods, 
while the latter includes candidate region-based methods and regression-based methods. 

2.1. Traditional target detection algorithms 

2.1.1. A priori knowledge-based approach 

Relying on expert experience, the geometric characteristics of the target and the contextual 
connection between the target and the background for reasoning, the detection effect is evaluated 
through the representation and inference of a priori knowledge and the construction of a new 
knowledge rule base. The judgement process of the a priori knowledge-based method is relatively 
repetitive and easily influenced by individuals, and the judgement time is long; therefore, this 
approach cannot provide timely feedback on the detection results. 
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2.1.2. Method based on template matching 

The method is implemented in two steps: First, a template image for each category is 
constructed via manual design or is learned from the dataset. Then, the template image is 
superimposed on the given image, the degree of difference between all of the regions in the 
original image where the target is likely to appear and the template image is calculated, and the 
degree of difference is used as a metric to determine the location of the target. For example, 
Leninisha et al. [17] proposed a geometrically deformable model based on width and colour for 
extracting traffic road information from images. Han [18] et al. used additional information 
provided by a visual sensor system to improve the reliability of template matching, and 
experiments illustrated the effectiveness of the method. The template matching-based method has 
simple steps, but it is too dependent on the template used for detection, is not suitable for detecting 
multicategory targets, and has poor robustness. 

2.1.3. Methods based on manual features 

This method involves three steps: First, the candidate region is obtained, and the region in the 
image where the target may exist is initially located. Due to the uncertainty of the location, shape 
and size of the target appearing in the image, the sliding window algorithm is usually used to 
obtain the corresponding region of the target. A representative method is selective search (SS), 
which combines small-scale regions with similar features into large-scale regions with similar 
features, which are then merged into a large-scale region, thus obtaining an object image with 
consistent internal features and a high recall rate [19]. The second is feature extraction, i.e., using 
manually designed target feature description algorithms to extract local features from selected 
candidate regions, among which the more typical feature descriptors are HOG (Histogram of 
Oriented Gradient) [20] and SIFT (scale-invariant feature transform) [21]. In the third step, 
classification and localization, the features extracted from the candidate region are classified and 
judged by classifiers, where the commonly used classification algorithms are SVM [22], random 
forest [23] and various cascade classifiers [24]. Finally, the final target of interest is obtained via 
non-maximum suppression of the overlapping target candidate frames. Manual feature-based 
target detection methods can meet the needs of natural image target detection to a certain extent, 
but due to the difficulty of using manually designed features to express the high-dimensional 
semantic information of an image, they suffer from the problems of weak generalisability and 
weak robustness in target detection. 

2.2. Deep learning-based target detection algorithm 

Deep learning-based target detection methods automatically extract features through DCNNs, 
do not rely excessively on expert knowledge, and have strong mobility and robustness. The 
methods can be divided into candidate region-based methods and regression-based methods. 

2.2.1. Candidate region-based method 

This method focuses on feature selection of candidate regions; this process is based mainly on 
the CNN algorithm, which divides the detection process into two parts. In the first part, the 
candidate regions that may contain the target are extracted from the image, and in the second part, 
the candidate regions are corrected and classified to obtain the desired result. Girshick [25] 
proposed the Fast-CNN method, which is based on the CNN, but its computational complexity is 
excessive. He et al. [26] proposed Faster R-CNN, which uses a region-generating network to 
obtain candidate frames from feature maps and completes all of the steps of target detection in a 
single deep network, applying the detection mode from the input image directly to the output 
result. Dai [27] used a fully convolutional neural network for application to Faster R-CNN; in this 
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approach the individual categories are evaluated via location-sensitive feature maps to obtain the 
corresponding category probability, which accelerates the speed of network detection while 
ensuring the accuracy of positioning. 

2.2.2. Regression-based methods 

These methods do not need to generate candidate frames but directly extract the features in the 
image to predict the target’s category and location information; the representative methods are 
YOLO and SSD. In YOLO, Zhao [28] proposed the use of clustering method to estimate the 
prediction bounding box of the target on the basis of YOLOv3, and used Markov chain to 
determine the distance between the initial cluster and each candidate point, and simulation 
experiments illustrated that the algorithm has a significant performance improvement. Xiong [29] 
used background subtraction combined with YOLO to obtain the locations and features of small 
dynamic targets, and the results revealed that the algorithm has good accuracy and low recall. Zhai 
[30] proposed a trainable Spiking-YOLO for low-latency and high-performance target detection, 
and the simulation results revealed that this algorithm has low latency and recall, high performance 
and detection, and significantly improved precision. Wu [31] proposed the YOLO object detection 
algorithm based on complex environments, which performs well on mAP values. Zakria [32] and 
others used a single-stage deep learning target detection model to study an improved YOLOv4 
algorithm, and the results revealed improved target detection accuracy and robustness. Luo [33] 
proposed the YOLOv5-Aircraft method based on the YOLOv5 network, finding that the algorithm 
can improve the accuracy and speed of target detection, and Xu [34] added a small-scale detection 
layer, a bottleneck transformer and a CBAM mechanism to the YOLOv7 structure to improve the 
small-scale target capability of the model. Furthermore, related studies have been conducted on 
YOLOv8 [35-37]. The above findings indicate that the YOLO family of algorithms constitutes a 
relatively classical algorithm in the field of target detection, which is prone to reduced target 
localisation accuracy due to the lack of a priori information when predicting the target position. 
This phenomenon is due mainly to the lack of the key step of region sampling, which leads to less 
satisfactory results when detecting images with small targets. In terms of the SSD, Gong [38] 
proposed the enhanced SSD (FCR-SSD) based on feature cross-strengthening, and simulation 
experiments revealed that it has high accuracy and good detection speed in the small target 
detection task. Zhai [39] proposed the DF-SSD algorithm, which uses DenseNet-S-32-1 instead 
of VGG-16, and introduces a multiscale feature-layer fusion mechanism. The experimental results 
show that the method has higher detection results for small objects and objects with specific 
relationships. Huo [40] proposed an SSD algorithm for small object detection based on self-
attention combined with feature fusion-SAFF-SSD, and simulation experiments revealed that the 
method produces good detection results. The above findings indicate that the SSD algorithm 
independently inputs the image features extracted from different convolutional layers into the 
corresponding network detection branches, which tends to cause repeated detection, leading to 
poor detection of small targets in images. 

3. Basic algorithms 

3.1. Squirrel search algorithm 

The squirrel search algorithm [16] is a new swarm intelligence optimization algorithm 
proposed by Indian scholar Mohit Jain in 2019; it mainly simulates the dynamic gluttony strategy 
and gliding action of southern squirrels. Compared with existing swarm intelligence optimization 
algorithms, the algorithm is characterized by greater search efficiency and a simple algorithm 
structure. This approach requires the following assumptions: there are 𝑛 squirrels and 𝑛 trees in 
the forest, and each squirrel stays on one tree; there are only three types of trees in the forest, i.e., 
hickory trees, oak trees, and common trees. Among them, hickory and oak trees are food sources, 
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and common trees have no food. There is only one hickory tree 𝑁ிௌ, one oak tree (𝑁ிௌ ∈ (1,𝑛)), 
and the rest are common trees, and each squirrel searches for food individually and finds the best 
food source through dynamic foraging behaviour. 

Under the above assumptions, the implementation of the SSA is divided into random 
initializations of the location, fitness ranking and classification, squirrel location updating, 
seasonal monitoring and random winter relocation. 

3.1.1. Random initialization location 

The SSA starts with a random initial location. The location of the squirrels is represented by 
an 𝑑-dimensional vector, there are 𝑛 squirrels in the forest, and the initial location of each squirrel 
is expressed as follows: 𝐹𝑆௜,௝ = 𝑢𝑏௝ + 𝑈(0,1) × ൫𝑢𝑏௝ − 𝑙𝑏௝൯, (1)

where 𝐹𝑆௜,௝ denotes the 𝑗 (𝑗 ∈ (1,𝑑))-dimensional position of the 𝑖 (𝑖 ∈ (1,𝑛))th squirrel, 𝑈(0,1) denotes a random number between 0 and 1 that follows a uniform distribution, and 𝑢𝑏௝ 
and 𝑙𝑏௝ denote the upper and lower bounds of the 𝑖th squirrel in the 𝑗-dimension, respectively. 

3.1.2. Adaptation degree ranking and classification 

After initializing the position vector for each squirrel, the decision variables are entered into 
the fitness function, and the resulting fitness value is 𝑓𝑠 = (𝑓𝑠ଵ, 𝑓𝑠ଶ,⋯𝑓𝑠௡), where the fitness 
value for each squirrel is represented as follows: 𝑓𝑠௜ = 𝑓௜൫𝐹𝑆௜,ଵ,𝐹𝑆௜,ଶ,⋯𝐹𝑆௜,ௗ൯. (2)

The fitness value indicates the quality of the food source searched by the squirrels. All of the 
fitness values are sorted in ascending order via Eq. (3), and the squirrels are categorized according 
to the sorting results. The squirrel with the smallest fitness value is in the hickory tree 𝐹𝑆௛௧, the 
three squirrels whose fitnesses are sorted between 2-4 are in the oak tree 𝐹𝑆௔௧, and the rest of the 
squirrels are in the common tree 𝐹𝑆௡௧, which are defined in Eq. (4)-(6) as follows: ሾ𝑓𝑖𝑡𝑛𝑒𝑠𝑠, 𝑖𝑛𝑑𝑒𝑥ሿ = 𝑠𝑜𝑟𝑡(𝑓𝑠), (3)𝐹𝑆௛௧ = 𝐹𝑆൫𝑖𝑛𝑑𝑒𝑥(1)൯, (4)𝐹𝑆௡௧(1: 3) = 𝐹𝑆൫𝑖𝑛𝑑𝑒𝑥(2: 4)൯, (5)𝐹𝑆௡௧(1:𝑛 − 4) = 𝐹𝑆൫𝑖𝑛𝑑𝑒𝑥(5:𝑛)൯, (6)

where 𝑖𝑛𝑑𝑒𝑥 denotes the location of a specific squirrel. 

3.1.3. Squirrel location update 

Squirrels glide back and forth between different trees in search of food, and this foraging 
behaviour is affected by the probability 𝑃ௗ௣ that a predator is present. There are three possible 
scenarios for squirrel position updating in foraging behaviour: 

Scenario 1: Squirrels in Oak Trees Move Towards Hickory Trees. 
A squirrel flies from the oak tree towards the hickory tree, and the new position of the squirrel 

is expressed as follows: 

𝐹𝑆௔௧௧ାଵ = ቊ𝐹𝑆௔௧௧ + 𝑑௚ × 𝐺௖ × (𝐹𝑆௛௧௧ − 𝐹𝑆௔௧௧ ),      𝑅ଵ ≥ 𝑃ௗ௣,𝑙𝑏 + 𝑈(0,1) × (𝑢𝑏 − 𝑙𝑏),                     𝑅ଵ < 𝑃ௗ௣, (7)
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where 𝐹𝑆௔௧௧  denotes the position of the squirrel on the oak tree in generation 𝑡, 𝐹𝑆௛௧௧  denotes the 
position of the squirrel on the hickory tree in generation 𝑡, 𝑡 denotes the current number of 
iterations, 𝑑௚ is the sliding distance, 𝐺௖ is the sliding constant (usually taken as 1.9), 𝑅ଵ is the 
random number obeying the uniform distribution between (0, 1), and 𝑃ௗ௣ is 0.1. 

Scenario 2: Squirrels in Common Trees Move Towards Oak Trees. 
A squirrel flies from the normal tree towards the oak tree, and the new position of the squirrel 

is expressed as follows: 

𝐹𝑆௡௧௧ାଵ = ቊ𝐹𝑆௡௧௧ + 𝑑௚ × 𝐺௖ × (𝐹𝑆௔௧௧ − 𝐹𝑆௡௧௧ ),      𝑅ଶ ≥ 𝑃ௗ௣,𝑙𝑏 + 𝑈(0,1) × (𝑢𝑏 − 𝑙𝑏),                     𝑅ଶ < 𝑃ௗ௣, (8)

where 𝐹𝑆௡௧௧  denotes the position of the squirrel on the common tree in generation 𝑡 and where 𝑅ଶ 
is a random number that obeys a uniform distribution between (0, 1). 

Scenario 3: Squirrels in Common Trees Move Towards Hickory Trees. 
A squirrel flies from the normal tree towards the hickory tree, and the new position of the 

squirrel is expressed as follows: 

𝐹𝑆௡௧௧ାଵ = ቊ𝐹𝑆௡௧௧ + 𝑑௚ × 𝐺௖ × (𝐹𝑆௛௧௧ − 𝐹𝑆௡௧௧ ),      𝑅ଷ ≥ 𝑃ௗ௣,𝑙𝑏 + 𝑈(0,1) × (𝑢𝑏 − 𝑙𝑏),                     𝑅ଷ < 𝑃ௗ௣, (9)

where 𝑅ଷ is a random number that obeys a uniform distribution between (0, 1). 

3.1.4. Seasonal monitoring and random winter relocation 

The foraging behaviour of squirrels is strongly influenced by the season. Compared with 
frequent activities in summer, in mid-winter, squirrels are less active to conserve energy, leading 
to stagnation. Seasonal monitoring is thus introduced into the algorithm to prevent the algorithm 
from falling into local optima, and the number of seasons is calculated as follows: 

𝑆௖௧ = ඨ෍ (𝐹𝑆௔௧,௞௧ − 𝐹𝑆௛௧,௞)ଶௗ௞ୀଵ ,    𝑡 = 1,2,3. (10)

The minimum value of the seasonal constant is as follows: 

𝑆୫୧୬ = 1.0 × 10ିହ365௧ (௧ౣ౗౮ ଶ.ହ⁄ )⁄ , (11)

where 𝑡 and 𝑡୫ୟ୶ denote the current iteration number and the maximum iteration number, 
respectively. When 𝑆௖௧ < 𝑆௠௜௡, the winter season is over, and Eq. (12) is used to randomly locate 
the position of the squirrels in the common tree who cannot find food: 𝐹𝑆௡௧௡௘௪ = 𝑙𝑏 + 𝑙𝑒𝑣𝑦ᇱ(𝑛) × (𝑢𝑏 − 𝑙𝑏). (12)𝑙𝑒𝑣𝑦ᇱ flight is a mathematical tool for enhancing the global optimization algorithm, which can 
cause the population to evolve away from or avoid falling into local optima. In this algorithm, 𝑙𝑒𝑣𝑦ᇱ(𝑛) is expressed as follows: 𝑙𝑒𝑣𝑦ᇱ(𝑛) = 0.01 × 𝑟௔ × 𝜎|𝑟௕|ଵ ఉ⁄ , (13)

where 𝑟௔ and 𝑟௕ obey a normal uniformly distributed random number between (0, 1) and 𝛽 is 1.5: 
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𝜎 = ⎝⎛
Γ(1 + 𝛽) × sin ൬𝜋𝛽2 ൰Γ ൬1 + 𝛽2 ൰ × 𝛽 × 2൬ఉିଵଶ ൰⎠⎞

ଵ ఉ⁄  , (14)

where Γ(𝑥) = (𝑥 − 1)! 
3.2. YOLOv5 model 

YOLOv5 is a single-stage target detection algorithm that divides input images into countless 
regions by using a single convolutional neural network and calculates each region class probability 
and target frame. It contains four primary components: the input, backbone, neck and output. 

3.2.1. Input side 

This component mainly consists of three parts. The first part is mosaic data enhancement, that 
is, random scaling, cropping, lining up and splicing of images, which can improve the robustness 
of the detection model. In the second part of the adaptive anchor frame calculation, the initial 
anchor frame is set before training, and an inverse update of the model parameters is completed 
according to comparison with the real frame during training. In the third part of adaptive image 
scaling, i.e., when the letterbox function is improved, by calculating the most suitable image size, 
the image features are better preserved, and the detection speed is improved. 

3.2.2. Backbone 

The backbone is the main part of the YOLOv5 model. It primarily extracts the feature 
information from the target area, and it uses CSPDarknet as the backbone, which aims to fully 
extract the target feature information in the detection area through the Focus and CSP structure to 
improve the detection performance of the whole model. 

3.2.3. Neck 

The neck structure makes full use of the target feature information extracted by the backbone 
network in the detection area and further performs weighted fusion of this feature information and 
processing; finally, the output results are classified and localized by the output. 

3.2.4. Output 

The output is responsible for classifying and predicting the feature information extracted from 
the target area in the backbone network after compression and fusion by the neck. The network 
uses 3 sets of 1×1 convolutional structures with output feature mappings of 76×76, 38×38 and 
19×19. Each detection layer finally outputs a 30-channel vector. 

4. YOLOv5 model based on SSA optimization 

To further improve the detection performance of the YOLOv5 model for image targets, we 
first improved the structure of YOLOv5 and then optimized its parameters by using the improved 
SSA algorithm to increase the overall performance. 
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4.1. Improved YOLOv5 model 

4.1.1. CSP module optimization 

The backbone network of the YOLOv5 architecture consists of several CSP modules. This 
module mainly reduces the computational cost and memory usage during network training and 
maintains the performance of the model. By dividing the feature map into two parts and processing 
them independently at different stages, the number of computations can be reduced, and the 
accuracy and precision of the model can be improved; however, due to the large number of 
parameters in the convolutional kernel of the module, a large number of computations are needed 
to detect the target. On this basis, the design of the Faster Net network structure inspired the 
optimization of the CSP module, and this work proposes the CSP_Faster module instead of 
CSP1_1, CSP1_2 and CSP1_3. In this module, to maintain consistency in terms of the number of 
channels in the output feature map and the ordinary convolution operation, the point-by-point 
convolution operation is attached to the local convolution, which can pay more attention to the 
centre of the image, thus reducing the amount of computation. The improved CSP_Faster structure 
is shown in Fig. 1. 

 
Fig. 1. CSP_Faster structure 

4.1.2. Introduction of the SKNet attention mechanism 

In the traditional convolutional neural network, the size of the convolutional kernel is not 
consistent, so it cannot effectively capture the image features of different scales; therefore, the 
SKNet attention mechanism is incorporated in the YOLOv5 model, and a mechanism is 
introduced into the last layer of the backbone to connect it with the neck. This connection can 
ensure the completeness of the information of the image features and can improve the feature 
information expression ability of the graph, as shown in Fig. 2. 

 
Fig. 2. SKNet attention mechanism 

4.1.3. Using the SIoU loss function 

A problem in target detection is that the background in which the target image is located is 
complex and generates more false detection frames. Therefore, the SIoU function, which 
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introduces the vector angle between the real and predicted frames and redefines the correlation 
damage function, can effectively reduce the total degrees of freedom of the loss and improve the 
training speed and accuracy. A description of the relevant parameters is provided in the [41]. 

4.2. Improved SSA 

The SSA has the advantages of strong global search ability and adaptive ability, but like most 
metaheuristic algorithms, the algorithm is prone to falling into local optima as the number of 
iterations continues to increase, resulting in lower convergence performance. To further improve 
the performance of this algorithm, it was optimized to different degrees from two aspects: 
population initialization and cosine-based migration behaviour. 

4.2.1. Henon chaos-based initialization 

The squirrel search algorithm generates initialized populations randomly in the search space, 
which cannot traverse the search space uniformly, resulting in some limitations in the search range. 
To solve this problem, the algorithm is optimized by using the improved Henon chaos algorithm, 
which has better uniformity and faster iteration speeds than a single chaotic mapping. The formula 
is as follows: ൜𝑥௡ାଵ = 1 + sin𝑦௡ − 𝑎𝑥௡ଶ,𝑦௡ାଵ = sin𝑏𝑥௡,  (15)

where 𝑎 and 𝑏 are the parameters. 

4.2.2. Predator probability optimization 

In the process of updating the positions of individual squirrels, the predator probability 𝐴 
causes the squirrels to use different search strategies. In the early stage of the algorithm, a global 
search is needed to expand the whole solution space, and in the late stage of the algorithm's 
optimization search, the individual squirrels tend to gather near the optimal solution, which causes 
the algorithm to fall into a local optimum; therefore, more local development of the algorithm is 
needed. To address this issue, an adaptive optimization strategy is adopted to optimize the predator 
probability 𝐵 according to Eq. (16), which can ensure that 𝐶 is able to find a balance between the 
global search and local exploitation of the algorithm as the number of iterations increases: 𝑃ௗ௣ = 𝑃୫ୟ୶ − 𝑃୫୧୬ × ൫1 − cos(𝑡 𝑡୫ୟ୶⁄ )൯, (16)

where 𝑃୫ୟ୶ and 𝑃୫୧୬ are the maximum and minimum values of predator probability, respectively, 
and where 𝑡୫ୟ୶ is the maximum number of iterations. 

4.3. Complexity analysis 

The time complexity of the algorithm is related mainly to the number of individuals in the 
population, the maximum number of iterations, and the problem dimension. When initializing the 
population position, the time complexity is approximately 𝑂 (number of squirrels × number of 
dimensions). During the iterative process, each iteration traverses all of the individuals for the 
fitness calculation, position update and other operations, and its time complexity is 𝑂 (maximum 
number of iterations × number of squirrels × number of dimensions). Taken together, the time 
complexity of the whole algorithm is usually on the order of 𝑂 (maximum number of iterations × 
number of squirrels × number of dimensions). 

The space complexity of the algorithm primarily depends on the storage of information related 
to the individuals within the population, as it is necessary to store information such as the position 
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of each individual squirrel (corresponding to the population individuals), the optimal position of 
the individual, and the optimal value. Since there are a number of individual squirrels in the 
population and each individual involves the number of dimensions, the space complexity is 
roughly of the order of 𝑂 (the number of squirrels × the number of dimensions). 

4.4. Optimizing the YOLOv5 model based on the SSA 

The 2 hyperparameters, the learning rate and weight decay, are among the most important 
components that affect the performance of YOLOv5; therefore, the SSA is used to optimize the 
model parameters, and the specific steps are as follows: 

Step 1: Define the objective function. The image accuracy of the YOLOv5 model is set as the 
objective function of the SSA algorithm. 

Step 2: Initialize the squirrel individuals. Each squirrel individual is represented as a set of 
parameters consisting of the learning rate and weight decay parameters. 

Step 3: Set the fitness function. According to each squirrel individual, calculate the model 
performance metric (classification accuracy) as the fitness function of the individual. 

Step 4: Set the individual position as the current population optimal position. 
Step 5: Perform population initialization and predator probability optimization. 
Step 6: Execute the locomotor migration behaviour. 
Step 7: Perform aggressive behaviour. 
Step 8: Update the global optimal solution. The individual squirrel with the highest fitness is 

selected as the global optimal solution. 
Step 9: Iterative update: Repeat Steps 6 to 7 until a preset stopping condition is reached, such 

as when the maximum number of iterations is reached or the target accuracy rate is reached. 
Step 8: Output the optimal solution. The neural network parameter settings corresponding to 

the global optimal solution, i.e., the best parameters of the optimized YOLOv5 neural network, 
are output. 

The HCSSA-YOLOv5 algorithm is used to perform detection on the infrared images of power 
equipment in the process shown in Fig. 3. 

 
Fig. 3. Flowchart of the algorithm proposed in this paper 
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5. Simulation experiment 

To illustrate the effectiveness of the model proposed in this paper in terms of detecting targets 
in infrared images of electric power equipment, the simulation environment employed a CPU Core 
I7, 32 GB of memory, and a hard disk capacity of 2T. The two parts of the experiment proceeded 
as follows: the first part verified the performance of the HCSSA algorithm proposed in this paper, 
which was accomplished through the MATLAB 2012 simulation software, and the second part 
verified the improved algorithmic model for detecting the effect of the selection of the GPU. In 
this experiment, the selected GPU was the RTX3050, and the Python software programming was 
also used. The TensorFlow 1.10.0 open-source framework and the Windows 10 operating system 
were also used. Fig. 4 shows infrared images of commonly used pieces of equipment. 

 
a) Surge arrester 

 
b) Circuit breakers 

 
c) Transformers 

 
d) Insulators 

Fig. 4. Some commonly used electrical equipment 

5.1. HCSSA algorithm performance 

To illustrate the performance of the HCSSA algorithm, the ACO, PSO and SSA were chosen 
as comparison algorithms and the Ackley function, Step function and Sphere function were chosen 
as test functions, respectively. The number of iterations of the four algorithms was set to 100, and 
they were run 30 times. In the ACO algorithm, the number of ants was 50, the pheromone 
evaporation rate was 0.5, the pheromone factor was 1, the heuristic factor was 2, and the 
probability was 0.9. In the PSO algorithm, the number of particles was set to 50, the inertia weight 
was 0.7, and the cognitive coefficient and social coefficient were 1.4. In the SSA algorithm, the 
number of squirrels was 30, the lower bound was –5, the upper bound was 5, the step factor was 
0.1, and the stochastic factor was 0.5. In the HCSSA algorithm, the initial value in the Henon 
chaotic mapping was 0.1; parameters a and b were 1.4 and 0.3, respectively; the maximum value 
of the predation probability was 0.8; and the minimum value was 0.2. Table 1 shows the 
maximum, minimum, average, and standardized values of the four algorithms for the conditions 
of 2 dimensions, 10 dimensions and 50 dimensions and the standard value comparison results. 
Fig. 5 presents the box plots of the three benchmarking functions in 100 dimensions, and Fig. 6 
shows the optimal fitness value curves for the three benchmark test functions in 100 dimensions. 
According to the results recorded in Table 2, the HCSSA algorithm has good results in different 
dimensions in the three test functions, especially in the 2-dimensional condition of the Step 
function, and both the HCSSA and SSA reach 0. However, in the 5-dimensional and 
10-dimensional conditions, the HCSSA has a better metric effect than the SSA does, and the four 
algorithms in the Ackley function and the Sphere function only obtain a minimum value of 0 in 2 
dimensions. In the high-dimensional case, the indicator results for the ACO and PSO algorithms 
are not as good as those of the SSA and HCSSA, and the HCSSA has a more obvious advantage 
over the SSA, which shows that the performance effect of the HCSSA algorithm is obvious. The 
results shown in Fig. 5 indicate that the ACO algorithm is in a higher position in all three functions, 
which indicates that the optimal solution to the algorithm is relatively poor. In the Step function, 
the ACO algorithm has a wider box, while the PSO, SSA and HCSSA algorithms have a smaller 
box and lower position. The SSA and HCSSA algorithms present the smallest boxes, which 
indicates that the SSA and HCSSA algorithms are more stable. In the Sphere function, the ACO 
algorithm has wider boxes, whereas the other three algorithms have exceptionally narrow boxes, 
which also indicates that the PSO, SSA and HCSSA algorithms are stable in terms of the Sphere 
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function. The PSO algorithm has wider boxes in the Ackley function, and the ACO, SSA and 
HCSSA algorithms have narrower boxes, but the HCSSA algorithm is even narrower, which 
indicates that the HCSSA algorithm is very stable. According to the results shown in Fig. 6, the 
ACO algorithm has the weakest optimal value for all three test functions, whereas the SSA and 
HCSSA have better advantages over the PSO, especially for the Ackley function. The HCSSA 
algorithm obtains the optimal solution due to the other three algorithms. 

Table 1. Comparison of the metrics of the four algorithms on three benchmark functions 
Test function Algorithm DIM Max-value Min-value Ave-value Std-value 

Ackley 

ACO 
2 21.5703 16.0409 21.4883 0.5902 
10 21.5703 20.7074 21.5557 0.0978 
50 21.5703 21.1165 21.5636 0.0474 

PSO 
2 12.7432 0 0.4731 1.9324 
10 19.8277 5.0897 6.3206 2.6953 
50 20.0060 15.7413 16.0748 0.7579 

SSA 
2 1.0153 0.0160 0.2830 0.2124 
10 7.6349 4.7038 6.5071 0.7507 
50 9.8280 8.9490 9.4833 0.2222 

HCSSA 
2 2.5228 0.0285 0.9124 0.6139 
10 3.6634 2.5651 3.2911 0.2860 
50 3.7065 3.4891 3.6434 0.0551 

Sphere 

ACO 
2 2147.4836 74.4132 2118.9259 220.8498 
10 10737.4182 3037.9726 10658.9750 769.9345 
50 53687.0912 17603.7898 53326.2582 3608.3301 

PSO 
2 2.0332 0.0000 0.0672 0.3486 
10 663.8604 0.0211 13.1938 71.5154 
50 7484.7075 706.0328 1017.6451 1015.1604 

SSA 
2 0.0416 0.0006 0.0091 0.0104 
10 24.9005 8.1003 14.6762 3.9213 
50 252.9942 211.6295 234.0806 11.8494 

HCSSA 
2 0.5709 0.0006 0.0451 0.1032 
10 28.2985 8.8187 18.0450 4.9776 
50 271.0158 186.4901 233.2787 18.1956 

Step 

ACO 
2 2178.0000 180.0000 2150.3700 213.2217 
10 10890.0000 3001.0000 10811.1100 788.9000 
50 54450.0000 19562.0000 54101.1200 3488.8000 

PSO 
2 29.0000 0 0.5300 3.3798 
10 1236.0000 39.0000 78.6200 166.1495 
50 6488.0000 1034.0000 1249.0600 739.8844 

SSA 
2 0 0 0 0 
10 22.0000 9.0000 15.4333 4.1745 
50 272.0000 202.0000 248.4000 15.8802 

HCSSA 
2 0 0 0 0 
10 24.0000 6.0000 16.8000 3.6141 
50 252.0000 160.0000 227.3000 22.4717 

To illustrate the performance of the HCSSA algorithm, four improved algorithms, the SSA, 
DSSA [42], HSSA [43], and ASSA [44], were chosen as the comparison algorithms in this work. 
Under 100-dimensional conditions, the tests were conducted using the above three benchmark 
functions, and the curve changes in the fitness values of the four algorithms are shown in Fig. 7. 
The results in the figure indicate that with the gradual increase in the number of iterations, the 
fitness function values of the four algorithms exhibit a decreasing trend compared with those of 
the SSA, DSSA, HSSA, and ASSA, whereas the HCSSA algorithm has smaller fitness function 
values, illustrating the good performance of the algorithms. 
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a) Step function b) Sphere function 

 
c) Ackley function 

Fig. 5. Box plots of the four algorithms 

 
a) Step function 

 
b) Sphere function 

 
c) Ackley function 

Fig. 6. Fitness values of the four algorithms 

 
a) Step function 

 
b) Sphere function 

 
c) Ackley function 

Fig. 7. Fitness values of the five algorithms 

5.2. HCSSA-IYOLOv5 model target detection performance 

To further illustrate that the algorithms proposed in this paper have good detection 
performance, two ablation experiments and different scene experiments were conducted to 
compare the three different improved YOLOv3 [31], YOLOv4 [32], and YOLOv5 [33] algorithms 
the HCSSA algorithm. Moreover, the recall rate (𝑅) and precision rate (𝑃) were used as 
discriminative methods of model accuracy, and their respective formulas are as follows: 

𝑅 = 𝑇௣𝑇௣ + 𝐹௡, (17)𝑃 = 𝑇௣𝑇௣ + 𝐹௣, (18)

where, 𝑇௣ and 𝐹௣ denote the number of correctly identified positive and negative samples, 
respectively; 𝐹௡ denotes the number of positive samples misclassified as negative; and 𝑛 denotes 
the number of all samples labelled as positive. 
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5.2.1. Ablation experiment 

To further illustrate the effect of the improved measures on the performance of the algorithms, 
the three improved measures for YOLOv5 were compared with HCSSA-IYOLOv5, and the results 
of the comparison are shown in Fig. 8. The figure shows that the 𝑃 value of all four algorithms 
gradually decreases with increasing 𝑅 value, but the 𝑃 value of HCSSA-IYOLOv5 is better than 
the results of the other three improvement measures, which indicates that the algorithm proposed 
in this paper has better performance. 

 
Fig. 8. Comparative results of the ablation experiments 

5.2.2. Experimental comparison of different scenes 

To further illustrate the recognition effect of the algorithms on infrared images in different 
weather conditions (heavy rain, lightning, gusty wind, and hail), the lightning arrester infrared 
image was chosen as the research object, and the PR results of the four algorithms are shown in 
Fig. 9.  

 
a) Heavy rain 

 
b) Lightning 

 
c) Gusty wind 

 
d) Hail 

Fig. 9. PRs of the four algorithms in different scenarios 

According to the detection results, in four different scenarios, the corresponding PR values of 
our proposed algorithms have better results than the other three improved YOLO algorithms, 
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which have better application results, illustrating that CSP_Faster improves feature information 
recognition, the SKNet mechanism ensures the integrity of the image feature information, and the 
SIoU loss function obtains better classification results. After the optimization of the SSA 
algorithm, the model’s performance improves, and the feature acquisition ability of infrared 
images is obviously enhanced. 

5.2.3. Comparison of the recognition time 

To further illustrate the performance of this algorithm, we collected 100 infrared images of 
four kinds of power equipment in different scenes to compare the recognition time of the four 
algorithms, and the results are shown in Table 2. The results in the table indicate that these 
algorithms have different results in terms of the power equipment recognition time, but the 
advantages of the proposed algorithm are more obvious. When detecting targets in images of surge 
arresters, compared with those of the YOLOv3, YOLOv4, and YOLOv5, the recognition rates 
increased by 2.95 %, 2.61 % and 1.85 %, respectively. Furthermore, the recognition rates for 
circuit breakers increased by 6.49 %, 5.61 % and 2.54 %, respectively; the recognition rates for 
mutual inductors increased by 3.07 %, 2.63 % and 1.95 %, respectively; and the recognition rates 
for the insulator improved by 2.13 %, 1.94 % and 1.32 %, respectively. These results indicate that 
the optimization of the CSP module, the introduction of the SKNet attention mechanism and the 
use of the SIoU loss function in the YOLOv5 model increase the performance of the model and 
thus reduce the identification time. 

Table 2. Comparison of the time consumed by the algorithms  
while identifying four types of power devices 

Algorithm Surge arrester (S) Circuit breakers (S) Transformers (S) Insulators (S) 
YOLOv3 12.21 15.92 16.43 16.26 
YOLOv4 12.17 15.79 16.36 16.23 
YOLOv5 12.08 15.33 16.25 16.13 

HCSSA-IYOLOv5 11.86 14.95 15.94 15.92 

5.2.4. Comparison of detection target effects 

Figs. 10-13 present the results of the target detection experiments for the four algorithms on 
infrared images of the four devices. Fig. 10 shows the lightning arrester detection results; the 
YOLOv3 detection result is 0.821, the YOLOv4 detection result is 0.834, the YOLOv5 detection 
result is 0.854, and the ISOA-IYOLOv5 detection result is 0.893. 

 
a) YOLOv3 

 
b) YOLOv4 

 
c) YOLOv5 

 
d) HCSSA-IYOLOv5 

Fig. 10. Recognition by the four algorithms on surge arrester infrared images 

 
a) YOLOv3 

 
b) YOLOv4 

 
c) YOLOv5 

 
d) HCSSA-IYOLOv5 

Fig. 11. Recognition by the four algorithms on infrared images of circuit breakers 
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Fig. 11 shows the circuit breaker detection results; the YOLOv3 detection result is 0.794, the 
YOLOv4 detection result is 0.801, the YOLOv5 detection result is 0.825, and the 
HCSSA-IYOLOv5 detection result is 0.852. The detection results of the transformer are shown in 
Fig. 12, where the YOLOv3 detection result is 0.788, the YOLOv4 detection result is 0.793, the 
YOLOv5 detection result is 0.815, and the HCSSA-IYOLOv5 detection result is 0.863. In Fig. 13, 
the insulator detection results are shown, and the YOLOv3 detection result is 0.812, the YOLOv4 
detection result is 0.823, the YOLOv5 detection result is 0.834, and the HCSSA-IYOLOv5 
detection result is 0.892. According to the above detection results, the HCSSA-IYOLOv5 
algorithm proposed in this paper outperforms YOLOv3, YOLOv4, and YOLOv5 by 8.87 %, 
7.67 %, and 5.11 %, respectively, on average. These results show that the algorithm has good 
target detection and recognition effects. 

 
a) YOLOv3 

 
b) YOLOv4 

 
c) YOLOv5 

 
d) HCSSA-IYOLOv5 

Fig. 12. Recognition by the four algorithms on infrared images of transformers 

 
a) YOLOv3 

 
b) YOLOv4 

 
c) YOLOv5 

 
d) HCSSA-IYOLOv5 

Fig. 13. Recognition by the four algorithms on insulator infrared images 

6. Conclusions 

This work proposes the HCSSA-IYOLOv5 target detection algorithm. Simulation experiments 
illustrate the detection effect of the algorithm, but because power equipment is affected by the 
complexity of the natural environment, the existence of defects, information transmission, and 
other delays and problems, the algorithm’s recognition effect is lower than it could be, which is 
an important research direction. In the near future, with the optimization and quantization of the 
YOLOv5 model, the recognition accuracy and computational efficiency will continue to improve, 
adapting to the diversity and complexity of different power equipment. Thus, more intelligent and 
automated equipment inspection and fault detection can be realized, and the operation and 
maintenance efficiency and safety of electric power facilities can be improved. 
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