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Abstract. State estimation of a vehicle is an important direction under the research branch of 
automotive dynamics, with the aim of determining state variables that reflect vehicle handling 
stability and other characteristics. In order to solve the problem of poor estimation accuracy caused 
by heavy tailed non Gaussian noise in traditional state estimation methods, a new filtering 
algorithm based on the Maximum Correlation Entropy criterion (MCC) and the Square-root 
Cubature Kalman Filter (MCSCKF) is proposed. On the basis of establishing a nonlinear 3-DOF 
vehicle model, the yaw rate and the side slip angle as well as the longitudinal velocity of the 
vehicle were estimated. And the effectiveness of the algorithm was verified through joint 
simulation with Carsim and Matlab/Simulink. The results show that the MCSCKF algorithm can 
adapt to complex working conditions and has better accuracy in vehicle state estimation than 
traditional state estimation algorithms. Meanwhile, the MCSCKF algorithm can effectively reduce 
the impact of heavy tail non Gaussian noise and improve the accuracy of vehicle state estimation. 
Keywords: vehicle state estimation, square-root cubature Kalman Filter, maximum correntropy. 

1. Introduction  

During the driving process of a vehicle, it relies on a stable control system. A stable and reliable 
control system depends on accurately obtaining the state parameters of the vehicle, which is a key 
factor. The accurate estimation has a significant impact on the active safety system of automobiles. 
Accurately obtaining vehicle operating parameters is the foundation and prerequisite for vehicles. 
The intelligentization of automobiles has great advantages in improving driving safety, reducing 
traffic accidents, enhancing traffic efficiency, and promoting energy conservation and emission 
reduction. It has become a hot issue in the development of the global automotive industry. The 
process of intelligent vehicle movement and driving can be divided into environmental perception, 
decision-making and motion control. Among them, environmental perception is the basic link of 
intelligent vehicle decision-making and motion control, mainly including the perception of the 
surrounding environment of the vehicle and the perception of the own state of the vehicle. 
Therefore, the accuracy of the own state perception of the vehicle directly affects the accuracy of 
the intelligent decision-making planning and the stability of motion control. Conducting the 
perception of vehicle operating state parameters is of great significance for improving the stability 
of intelligent vehicle control operation. However, due to the limitations of sensing measurement 
technology and cost, some key state variables of vehicles cannot be directly measured by existing 
sensors or the measurement cost is too high. To overcome this problem, low-cost sensors are used 
to easily obtain information. And vehicle models combined with state estimation calculation 
methods are used to estimate the driving state of vehicles, which has become an important means 
of obtaining driving state parameters [1-3].  

The problem of vehicle state estimation has been widely studied. A brief review is presented 
in what follows. 

Guo et al. combined the estimation algorithm of unscented Kalman filter with the estimation 
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algorithm of lightweight convolutional neural network, and proposed a confidence based fusion 
strategy of vision and vehicle dynamics, which achieved the estimation of road adhesion 
coefficient [4]. Compared with EKF, the UKF can be applied to nonlinear distributed systems, 
achieving higher computational accuracy [5-10]. However, prior knowledge of system noise 
statistics significantly affects the performance of UKF. If the design of system noise statistical 
characteristics is not accurate, the filtering results of UKF will deteriorate or even diverge [11, 12]. 
Similar to UKF, the cubature Kalman filter (CKF) also requires accurate design of the statistical 
characteristics of system noise [13, 14]. Hu et al. presented a novel direct filtering approach to 
INS/GNSS (Inertial Navigation System / Global Navigation Satellite System) integration [15]. 
Cubature-Kalman filter is widely used for nonlinear dynamic estimations due to its high accuracy 
and numerical stability [16-20]. Adaptive Unscented Kalman Filter (AUKF) is an effective system 
error estimation method that can suppress the interference of inaccurate system noise statistics on 
the filtering results. However, the above AUKF method mainly weakened the impact of system 
errors by improving the statistical characteristics of system noise, without directly estimating and 
compensating for the system errors of the observation model, resulting in limited ability to 
suppress the impact of observation model system errors. Meng et al. presented an adaptive UKF 
with noise statistic estimator to overcome the limitation of the standard UKF [21]. Wan et al. 
introduced the Huber cost function to the UKF algorithm for correction of measurement noise. 
The experiment showed that the algorithm effectively suppressed the influence of abnormal noise 
[22]. Zhang et al. proposed CKF based on high-order cubature rules, but complex and lengthy 
high-order criteria could affect the real-time performance of the algorithm [23]. Liu et al. 
combined EKF with fuzzy algorithm to achieve adaptive adjustment of EKF estimation, which 
improved the accuracy and robustness of driving state estimation [24]. Zhou et al. integrated 
genetic algorithm and adaptive neural fuzzy inference system for vehicle state estimation [25]. 
Chen et al. proposed a hierarchical series state estimation of EKF based on the established 3-DOF 
vehicle dynamics model, and conducted joint simulation verification [26]. Liu et al. proposed a 
machine learning regression algorithm for particle swarm optimization neural networks, which 
used low-cost sensors to obtain easily measurable parameters for model training and estimated the 
required variables [27]. Gao et al. designed a HNN hybrid neural network architecture for vehicle 
motion state estimation, which was robust to changes in road adhesion coefficient and achieved 
deep learning estimation of vehicle motion state [28]. At present, there was still relatively little 
research on Support Vector Regression (SVR) in estimating the driving state of automobiles. 
However, the SVR algorithm had been applied in other fields such as predictive analysis and 
parameter estimation, and had achieved good estimation results [29, 30]. Hao et al. used a standard 
EKF method to estimate the yaw rate and side slip angle based on a 3-DOF vehicle model, and 
verified its effectiveness through simulation. However, its noise characteristics were obtained 
through experiments and experience, making it difficult to verify its accuracy and affecting the 
filtering effect [31]. Li et al. proposed an EKF vehicle state estimation method based on the fusion 
of multiple sensor information. Although it considered multiple sets of noise characteristics, it 
essentially assumed that the statistical characteristics of the noise were known, which limited its 
applicability [32]. Li et al. proposed an adaptive volumetric Kalman filter, which combines the 
standard cubic Kalman filter with the Sage Husa suboptimal estimation algorithm to estimate some 
vehicle parameters in real-time online. Although this method solved the problem of estimating 
noise covariance, the Sage Husa suboptimal estimation method could easily cause the noise 
covariance to lose its positive definiteness and lead to filter divergence [31]. Cubature-Kalman 
filter is widely used for nonlinear dynamic estimations due to its high accuracy and numerical 
stability. 

The above research mainly focuses on algorithms such as KF, EKF, UKF and CKF. These 
algorithms exhibit good state estimation performance under Gaussian noise conditions. However, 
in practical applications, noise often presents a non Gaussian distribution, and system model 
nonlinearity can lead to increased estimation errors. Therefore, the paper proposes a MCSCKF 
method. And simulation experiment is conducted through Carsim and Matlab/Simulink to verify 
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the accuracy and robustness of the algorithm. At the same time, the above literature had effectively 
identified vehicle parameters through various methods, but some methods used were difficult to 
achieve effective estimation for systems with many parameters and strong nonlinearity. And the 
vehicle state and parameters were considered less when estimating vehicle parameters. The 
vehicle quality directly affected the yaw moment of inertia, center of mass position and height, 
lateral load transfer, which in turn affected the tire lateral force, and ultimately affected variables 
that characterized the vehicles state, such as speed, acceleration, yaw rate, and center of mass 
lateral angle. 

2. Mathematical model of vehicle dynamics 

2.1. 3-DOF vehicle model 

The vehicle state estimation model is established based on a 3-DOF vehicle model: 

 
Fig. 1. 3-DOF vehicle model 

The dynamic equation of the 3-DOF vehicle model is as follows [34]: 

𝜔ሶ ௥ = 𝑎ଶ𝑘ଵ + 𝑏ଶ𝑘ଶ𝐼௭ 𝜔௥𝑢 + 𝑎𝑘ଵ − 𝑏𝑘ଶ𝐼௭ 𝛽 − 𝑎𝑘ଵ𝐼௭ 𝛿, (1)𝛽ሶ = 𝑎𝑘ଵ − 𝑏𝑘ଶ − 𝑚𝑢ଶ𝑚 𝜔௥𝑢ଶ + 𝑘ଵ + 𝑘ଶ𝑚 𝛽𝑢 − 𝑘ଵ𝛿𝑚𝑢 , (2)𝑢ሶ = 𝑎௫ + 𝑣𝑥, (3)𝑎௬ = 𝑎𝑘1 − 𝑏𝑘2𝑚𝑢 𝜔௥ + 𝑘ଵ + 𝑘ଶ𝑚 𝛽 − 𝑘ଵ𝑚 𝛿. (4)

The side slip angle is: 𝛽 = arctan 𝜈𝑢. (5)

2.2. Tire model 

The lateral forces of front and rear wheels can be expressed as: 

൜𝐹௬௙ = 𝑐௙𝛼௙,𝐹௬௥ = 𝑐௥𝛼௥,  (6)
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where 𝑐௙ and 𝑐௥ are the lateral stiffness values of the front and rear tires. 𝛼௙ and 𝛼௥  are the front 
and rear slip angles: 

⎩⎪⎨
⎪⎧𝑐௙ = 𝜕𝐹௬௙𝜕𝛼௙ ቤ 𝛼௙ = 0,
𝑐௥ = 𝜕𝐹௬௥𝜕𝛼௥ ฬ 𝛼௥ = 0.  (7)

3. The DCKF observation algorithm 

3.1. Standard SCKF algorithm 

The state and observation equations based on vehicle model are as following: ൜𝐱ሶ ሺ𝑡ሻ = 𝑓ሾ𝐱ሺ𝑡ሻ,𝐮ሺ𝑡ሻሿ + 𝐰ሺ𝑡ሻ,𝐳ሺ𝑡ሻ = ℎሾ𝐱ሺ𝑡ሻ,𝐮ሺ𝑡ሻሿ + 𝐯ሺ𝑡ሻ,  (8)

where 𝐱(𝑡), 𝐮(𝑡) and 𝐳(𝑡) are the state, control and observation variables respectively; 𝐰(𝑡) and 𝐯(𝑡) are the process and observation noise respectively. And 𝐱(𝑡) = [𝑣௫, 𝑣௬,𝜔௥]்;  𝐮(𝑡) = [𝑎௫,𝑎௬,𝜔௥ ,𝐹௫௜௝ ,𝐹௬௜௝]்; 𝐳(𝑡) = [𝑎௫,𝑎௬,𝜔௥]். 
The nonlinear discrete-time state and measurement equations are: ൜𝐱௞ = 𝑓(𝐱௞ିଵ,𝐮௞ିଵ) + 𝐰௞ିଵ,𝐳௞ = ℎ(𝐱௞,𝐮௞) + 𝐯௞,  (9)

where 𝐱௞, 𝐮௞ and 𝐳௞ are the state, input and observation vector; 𝐰௞ is the process noise; 𝐯௞ is the 
measurement noise. And the uncorrelated covariance is: 

ቊ𝐸൫𝐰௞ିଵ,𝐰௝ିଵ் ൯ = 𝐐௞ିଵ,𝐸൫𝐯௞,𝐯௝ିଵ் ൯ = 𝐑௞𝛿௞௝ ,  (10)

where 𝐐௞ିଵ and 𝐑௞ are non negative definite and positive definite matrix respectively; 𝛿௞௝ is the 
Kronecker function, 𝐐 and 𝐑 are the measurement noise matrix and the process noise matrix 
respectively. 

The specific implementation process of the SCKF algorithm is as follows: 
1) Initialization. 
2) Time updating: 

ቊ𝐱௞ିଵ|௞ିଵ௜ = 𝐱ො௞ିଵ|௞ିଵ + 𝐒௞ିଵ|௞ିଵ𝛇௜ ,𝐱௞ିଵ|௞ିଵ௜∗ = 𝑓൫𝐱௞ିଵ|௞ିଵ௜ ൯,      𝑖 = 1,2,⋯ ,2𝑛, (11)

where 𝛇௜ is the 𝑖th column of the volume point weight matrix [√𝑛𝐈௡,−√𝑛𝐈௡]; 𝐈௡ is an identity 
matrix of 𝑛 × 𝑛; 𝑛 is the dimension of the state variable. 

When the volume point 𝐱௞|௞ିଵ௜∗  after propagation is determined, the state prediction value 𝐱ො௞|௞ିଵ and the square root number 𝐒௞|௞ିଵ of the prediction error covariance matrix can be 
calculated accordingly: 

𝐱ො௞|௞ିଵ = 12𝑛෍ 𝐱௞|௞ିଵ௜∗ଶ௡௜ୀଵ , (12)𝐒௞|௞ିଵ = 𝑇𝑟𝑖𝑎൫ൣ𝑋௞|௞ିଵ௜∗ , 𝑐ℎ𝑜𝑙(𝐐௞ିଵ)൧൯, (13)
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where 𝐱௞|௞ିଵ௜∗  represents the weighted center matrix; 𝐒 is the lower triangular matrix: 𝐒 = 𝑇𝑟𝑖𝑎(𝐀) = 𝐑். (14)

3) Measurement updating. 
Updating volume points: 𝐱௞|௞ିଵ௜ = 𝐱ො௞|௞ିଵ + 𝐒௞|௞ିଵ𝛇௜ ,       𝑖 = 1,2,⋯ ,2𝑛. (15)

The propagation volume point of the measurement equation is calculated: 𝐳௞|௞ିଵ௜ = ℎ൫𝐱௞|௞ିଵ௜ ൯. (16)

The square root of the covariance matrix of the innovation error and the measurement 
prediction value are calculated: 

𝑧̂௞|௞ିଵ = 12𝑛෍ 𝑧௞|௞ିଵ௜ଶ௡௜ୀଵ , (17)𝑆௭௭,௞|௞ିଵ = 𝑇𝑟𝑖𝑎([𝑍௞|௞ିଵ, 𝑐ℎ𝑜𝑙(𝑅௞)]), (18)

where 𝑍௞|௞ିଵ is the weighted central matrix. 
Then the cross covariance matrix is calculated: 𝐏௫௭,௞|௞ିଵ = 𝛘௞|௞ିଵ𝐙௞|௞ିଵ் , (19)

where 𝛘௞|௞ିଵ is the weighted central matrix. 
Then the gain matrix is calculated: 

𝐊௞|௞ିଵ = 𝐏௫௭,௞|௞ିଵ 𝐒௫௭,௞|௞ିଵ்⁄𝐒௫௭,௞|௞ିଵ . (20)

The state variables and the error covariance matrix are updated: 𝐱ො  ೖ|ೖ = 𝐱ො  ೖ|ೖషభ + 𝐾 ೖ|ೖషభ ቀ𝐳 ೖ − 𝑧̂ ೖ|ೖషభቁ, (21)𝑆௞|௞ = 𝑇𝑟𝑖𝑎൫ൣ𝑥௞|௞ − 𝐾௞𝑧௞|௞ିଵ,𝐾௞𝑐ℎ𝑜𝑙(𝑅௞)൧൯. (22)

3.2. Maximum correlation entropy criterion 

Firstly, the prior value of the noise covariance of SCKF needs to be determined. Due to the 
unknown prior statistics of noise and the uncertainty of the system model, the accuracy will 
significantly reduce under non Gaussian noise conditions. In order to solve the problem, SCKF is 
re-derived based on the MCC to improve its estimation accuracy and adaptability under non 
Gaussian noise conditions. 

Correlation entropy is a kind of variable which measures the generalized similarity between 
two random variables [35]: 𝑉(𝑋,𝑌) = 𝐸[𝜅(𝑋,𝑌)] = ∫ 𝜅(𝑋,𝑌)𝜌௑௒(𝑥,𝑦), (23)

where 𝐸(⋅) represents expectation; 𝜅(⋅) represents the Mercer kernel function which can be 
replaced by the Gaussian kernel function: 
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𝜅(𝑥,𝑦) = 𝐺(𝑒) = expቆ− 𝑒ଶ2𝜎ଶቇ, (24)

where 𝑒 = 𝑥 − 𝑦; 𝜎 is the core bandwidth. 
Due to the difficulty in obtaining the joint distribution function 𝜌௑௒(𝑥,𝑦) in most cases, the 

sample mean is used here to approximate the joint distribution function: 

𝑉෠(𝑋,𝑌) = 1𝑁෍ 𝐺ఙ൫𝑒(𝑖)൯ே௜ୀଵ , (25)

where 𝑒(𝑖) = 𝑥(𝑖) − 𝑦(𝑖). And the 𝑥, 𝑦 satisfying ሼ𝑥(𝑖),𝑦(𝑖)ሽ௜ୀଵே . By expanding with Taylor 
series, the following equation can be obtained: 

𝑉(𝑋,𝑌) = ෍ (−1)௡2௡𝜎ଶ௡𝑛!𝐸[(𝑋 − 𝑌)ଶ௡]ஶ௡ୀ଴ . (26)

The kernel bandwidth 𝜎 is expressed as higher-order moments of second order or higher. 

3.3. Maximum correlation entropy SCKF 

The specific process of re-deriving for SCKF based on maximum correlation entropy is as 
follows [36]: ൤𝐱ො௞∣௞ିଵ𝑧௞ ൨ ቂ 𝐱௞ℎ(𝐱௞,𝐮௞)ቃ + 𝛟௞, (27)

where, the covariance matrix 𝛟௞ can be obtained by Eq. (28): 𝛟௞ = ൤𝐱ො௞|௞ିଵ − 𝐱௞𝐫௞ ൨, (28)𝐁௞𝐁௞் = ቈ𝐒௞|௞ିଵ𝐒௞|௞ିଵ் 00 𝐒ோ,௞𝐒ோ,௞் ቉. (29)

Eq. (30) can be obtained by multiplying both sides of Eq. (27) by 𝐁௞ିଵ: 𝐃௞ = 𝑔(𝐱௞,𝐮௞) + 𝐞௞. (30)

The cost function can be rewritten as: 𝐽ெ஼஼(𝐱௞) = ෍ 𝐺ఙ൫𝐞௜,௞൯௡ା௠௜ୀଵ = ෍ 𝐺ఙ ቀ𝐝௜,௞ − 𝑔௜(𝐱௞,𝐮௞)ቁ௡ା௠௜ୀଵ , (31)

where 𝐝௜,௞ represents the 𝑖th element of 𝐃௞. 
The optimal value of state estimation can be solved by maximizing the cost function as follows: 𝐱ො௞ = argmax௫ೖ ෍ 𝐺ఙ൫𝐞௜,௞൯௡ା௠௜ୀଵ .           (32)

First-order derivative of Eq. (32) is implemented and is set to zero. 
Eq. (33) can be obtained by setting 𝐶௜,௞ = 𝐺ఙ(𝐞௜,௞): 
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𝐂௞ = diag ቀ𝐺ఙ൫𝐞ଵ,௞൯,⋯ ,𝐺ఙ൫𝐞௡ା௠,௞൯ቁ = ൤𝐂௫,௞ 00 𝐂௬,௞൨. (33)

Eq. (34) can be obtained by reweighting the covariance matrix of the residuals using 𝐂௞ and 
reconstructing the measurement equation named 𝛙෩௞: 

𝛙෩௞ = ቈ𝐏෩௞|௞ିଵ 00 𝐑෩௞቉ = 𝐁௞ ⋅ 𝐂௞ି ଵ ⋅ 𝐁௞் . (34)

Eqs. (28-29) can be rewritten based on Eq. (34) as: 𝛙෩௫,௞ = 𝐒௞|௞ିଵ ⋅ 𝐈 ⋅ 𝐒௞|௞ିଵ் = 𝐏௞|௞ିଵ, (35)𝐑෩௞ = 𝐒ோ,௞𝐂௬,௞ିଵ 𝐒ோ,௞் . (36)

Then 𝐑௞ is replaced by substituting 𝐑෩௞ calculated by Eq. (36) into Eq. (18). 
The measurement innovation 𝛍௞ is defined as the error between the actual value of the 

measurement variable and its predicted value [37-39]: 𝛍௞ = 𝑧௞ − 𝑧̂௞|௞ିଵ. (37)

The predicted value of the measurement variable can be calculated by Eq. (38): 

𝑧̂௞|௞ିଵ = 12𝑛෍ ℎ(𝐱௞|௞ିଵ௜ ,𝐮௞)ଶ௡௜ୀଵ . (38)

The normalised measurement innovation is defined as: 𝛍ഥ௞ = (𝐏௞|௞ିଵ௭௭ )ିଵ ଶ⁄ 𝛍௞. (39)

A scale factor 𝜂௞ is introduced to comprehensively evaluate the relationship between the 
optimal kernel width and the standardised measurement innovation: 

𝜂௞ = ට𝛍ഥ௞்𝛍ഥ௞ = ට𝛍௞்(𝐏௞|௞ିଵ௭௭ )ିଵ𝛍௞. (40)

Furthermore, the adaptive kernel width can be defined as: 

𝜎௞ = exp(−𝜂௞ଶ)𝜂௞ . (41)

Combining Eq. (37) to Eq. (41), it can be seen that the adaptive kernel width 𝜎௞ can be 
adaptively adjusted based on the measurement variables 𝑧௞, the measurement prediction 𝑧̂௞|௞ିଵ 
and the measurement covariance matrix 𝐏௞|௞ିଵ௭௭ . 

4. Numerical simulation and experimental verification 

4.1. Numerical simulation 

The CarSim software is used to verify the performance of the proposed algorithm.  
The CarSim simulation platform interface consists of three main parts: Vehicle parameters and 

simulation condition settings: This part mainly inputs vehicle and road data, simulation conditions, 
external environment and other parameters. Mathematical model solving: This part, also known 
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as the main running program, is the core part of mathematical model solving operations. By setting 
simulation time, simulation step size, and other information, accurate and rapid analysis of 
automotive dynamics models can be carried out. Calculation results: The main function of this 
section is to view the animation and curves of the simulation results. The dynamic response 
characteristics of the vehicle will be presented in a curve form that is intuitive and vivid, making 
it convenient for users to perform post-processing on the calculation results. At present the CarSim 
software is mainly used for research on automotive safety and intelligent driving. And a small 
number of scholars have also applied it to road geometry design. CarSim software provides some 
original models of sedans, SUVs, light trucks, and multi-purpose transport vehicles. Users can 
first select the vehicle model, modify the vehicle parameters, and then set the test conditions for 
simulation analysis using a mathematical model solver. In the calculation results and post-
processing interface, animation display and curve drawing can be used to analyze the performance 
of the vehicle simulation model. 

Carsim is a globally leading software for simulating automotive dynamic behavior, which can 
accurately simulate and analyze the motion state of vehicles in various driving situations in a 
virtual environment. CarSim software, as the mainstream software for automotive kinematic 
simulation, comes with various test models and has good scalability. It can be connected with 
external software such as Simulink to conduct relevant testing and analysis of automotive handing 
performance through joint modeling, algorithm selection, and input of real vehicle parameters. 
The accurate setting of parameters is of great significance for simulation operations. 

The initial speed of the vehicle is set as 80 km/h, and road adhesion coefficient is set as 0.8. 
The measurement noise matrix 𝐐 and the process noise matrix 𝐑 are set as 𝐐 = diag[0.105 0.105 0.105], 𝐑 = 0.1 ⋅ diag[0.205 0.205 0.205]. The double lane 
changing road is set as the simulation condition. The input signal is shown in Fig. 2.  

 
Fig. 2. Input signal of the steering angle 

Fig. 3 is the simulation result of yaw rate. From the figure, it can be seen that the estimation 
results obtained by both the EKF and the MCSCKF algorithms are relatively satisfactory. 
However, when the road curvature changes, the estimation error of the EKF algorithm fluctuates 
indicating an increasing trend. The fitting degree between the data values output by MCSCKF and 
Carsim is relatively high, and the overall fluctuation of MCSCKF algorithm is smaller compared 
to the EKF algorithm. This is because the SCKF algorithm based on the maximum entropy 
correlation criterion uses the maximum entropy principle to select the most uncertain state 
distribution, which can better adapt to non Gaussian noise and measurement errors. At the same 
time, the orthogonal triangular decomposition method ensures the positive definiteness of the 
covariance matrix, which can suppress the impact of non Gaussian noise on estimation 
performance effectively. 

Fig. 4 is the simulation result of the side slip angle. From the figure it can be seen that the 
estimated values of the side slip angle obtained by the EKF and MCSCKF algorithm are extremely 
close to the value obtained by Carsim. And the mean of absolute error of side slip angle obtained 
by the MCSCKF algorithm is lower than that of the EKF algorithm. This is because the MCSCKF 
algorithm can effectively reduce the impact of non Gaussian noise, thereby reducing system errors 
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caused by noise and improving the accuracy and robustness. 

 

 

 
Fig. 3. Simulation result of yaw rate 
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Fig. 4. Simulation result of side slip angle 

Fig. 5 is the simulation result of longitudinal velocity. It can be seen that the EKF algorithm 
has significant errors in estimating longitudinal velocity. On the one hand, this is due to the 
continuous turning of the vehicle at high speed and the continuous variation of road adhesion 
coefficients, which leads to system uncertainty. On the other hand, it is affected by non Gaussian 
noise, resulting in significant errors in the estimated data. However, the MCSCKF algorithm can 
better fit the reference data, indicating better adaptability and stronger robustness. At the same 
time, the MCSCKF algorithm can more stably and accurately estimate various parameters of the 
vehicle during driving process, with higher accuracy and anti-interference ability. 

 

 

 
Fig. 5. Simulation result of longitudinal velocity 

4.2. Effectiveness verification 

The input of front steering angle under the double lane changing condition is shown in Fig. 6. 
The comparison results of different methods are shown in Fig. 7. 
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From the comparison results of different methods, it can be seen that compared with the CKF 
method and the IFRCKF method proposed in Reference [15], the estimation value of the 
MCSCKF method is more closer to the reference value indicating the superiority of the proposed 
method of the article. 

 
Fig. 6. Input of front steering angle 

 
a) Lateral speed 

 
b) Yaw rate 

Fig. 7. Comparison results of different methods 

4.3. Experimental verification 

A real vehicle test is conducted to verify the effectiveness of the algorithm. The real 
experiment vehicle is shown in Fig. 8.  

  
Fig. 8. Real test vehicle 
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During the experiment, the gyroscope which is shown in Fig. 9(a) is used to collect signals to 
obtain yaw rate signals of the vehicle. The steering torque/angle tester which is shown in Fig. 9(b) 
is used to collect the steering angle signal. 

 
a) 

 
b) 

Fig. 9. Measurement equipments 

 
a) Input signal of the steering angle 

 
b) Yaw rate 

 
c) Longitudinal velocity 

Fig. 10. Comparison of the estimated and test values 

Fig. 10 is the comparison results of the yaw rate and the longitudinal. From Fig. 10 it can be 
seen that the longitudinal velocity change rate estimated by MCSCKF is relatively low. And also, 
there are errors between the test value and the simulation value both for the yaw rate and the 
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longitudinal velocity. However, the change trends of the yaw rate and the longitudinal velocity 
are consistent with the test values. Based on the real vehicle verification, it can be seen that the 
MCSCKF algorithm achieves good accuracy in estimating vehicle state parameters under real 
vehicle conditions, further verifying the effectiveness of the proposed estimation algorithm. 

5. Conclusions 

This article proposes the MCSCKF algorithm to address the problem of decreased filtering 
accuracy of traditional Kalman filters under non Gaussian noise conditions. Based on a nonlinear 
3-DOF vehicle dynamics model this article improves the SCKF using the maximum correlation 
entropy criterion to estimate the states of the yaw rate and the side slip angle as well as the 
longitudinal velocity of the vehicle. The effectiveness of the proposed algorithm is verified under 
double lane changing condition and compared with the EKF algorithm. The simulation results 
show that compared with the traditional EKF algorithm, the algorithm has a significant 
improvement in filtering accuracy. And the algorithm has higher accuracy and shorter running 
time. Real vehicle experiment is implemented to verify the effectiveness of the algorithm proposed 
in this paper, which has certain reference significance for engineering practice. The estimation 
algorithm based on the maximum correlation entropy criterion proposed in this article has high 
accuracy and provides ideas for improving vehicle state estimation, with good engineering 
application value. The MCSCKF algorithm can better fit the reference data, indicating better 
adaptability and stronger robustness. At the same time, the MCSCKF algorithm can more stably 
and accurately estimate various parameters of the vehicle during driving process, with higher 
accuracy and anti-interference ability. 
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