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Abstract. Super-resolution (SR) is an effective and reasonable way to improve the spatial 
resolution of remote sensing images, which serve as an important information carriers for Earth 
observations. Compared to natural images, the more complex spatial distributions and more 
detailed ground information contained within remote sensing data place higher demands on the 
feature-representation ability of the model. Moreover, considering the deployment of these 
systems on mobile hardware, the complexity of the model is also an urgent issue. To overcome 
these problems, this study proposes the multi-size information distillation attention network 
(MSIDAN) for super-resolution reconstruction of remote sensing images. In the designed residual 
block, a multi-size information-distillation module is designed to distill and fuse multi-level 
semantic features step-by-step while reducing the number of model parameters. After this, an 
enhanced contrast-aware channel attention mechanism is employed to perceive high-frequency 
information by automatically encoding the weight values of candidate features. A large number 
of comparative experiments on four typical remote sensing image datasets demonstrate that 
MSIDAN outperforms other state-of-the-art approaches in both quantitative metrics and visual 
qualities. Compared to the information multi-distillation network (IMDN), MSIDAN improves 
the Peak Signal-to-Noise Ratio (PSNR) by 0.03312 dB, 0.06031 dB, 0.05319 dB, and 0.03812 dB 
on the RSSCN7, WHU-RS19, NWPU VHR-10, and COWC datasets, respectively. Moreover, in 
comparison to other comparable CNNs-based approaches, MSIDAN achieves a more favorable 
balance by jointly considering SR performance and model size. This technology provides valuable 
support for small target measurement and opens new opportunities in the field. 
Keywords: super-resolution reconstruction, attention mechanism, information distillation 
mechanism, remote sensing images. 

Nomenclature 

SR Super-resolution 
HR High-resolution 
LR Low-resolution 
CNNs Convolutional neural networks 
MSIDAN Multi-scale information distillation attention network 
MSIDAB Multi-scale information distillation attention block 
IMDN Information multi-distillation network 
MSID Multi-scale information distillation 
ECCAM Enhanced contrast-aware channel attention mechanism 
CAM Channel attention mechanism 
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CARN Cascading residual network 
IDN Information distillation network 
ECBSR Edge-oriented convolution block based super-resolution model 
CCAM Contrast-aware channel attention mechanism 
GAP Global average pooling 
PAN Pixel attention network 
LRL Local residual learning 
AP Average pooling 
PSNR Peak signal-to-noise ratio 
SSIM Structural similarity 
WDSR Widely activated super-resolution network 
MAFFSRN Multi-attentive feature fusion super-resolution network 
ESRGCNN Enhanced super-resolution group convolutional neural network 

1. Introduction 

With the rapid advancement of satellite and measurement technologies, remote sensing images 
play an increasingly important role in various fields, including intelligent transportation [1], urban 
planning, geological-resource exploration, and disaster monitoring [2]. However, due to a series 
of factors such as atmospheric interference, long-distance imaging, and channel transmission 
capabilities, the clarity of these images often needs to be improved. Generally, designing more 
accurate remote sensing cameras can improve the resolution of the images obtained, but this 
inevitably requires high transmission and maintenance costs. Therefore, there is an urgent need to 
investigate inexpensive and practically applicable image-processing techniques to improve the 
resolution of acquired remote sensing images. The image super-resolution (SR) reconstruction 
technique aims to restore high-resolution (HR) images from low-resolution (LR) images. 
Compared to upgrading hardware to increase image resolution, the SR reconstruction algorithm 
offers the advantages of lower cost, greater flexibility, and simpler maintenance, making it an 
efficient approach for enhancing image utilization in the field of remote sensing.  

In recent years, computer vision applications based on neural networks have been continuously 
evolving [3-5]. In the SR problem of general natural images, approaches utilizing convolutional 
neural networks (CNNs) have proved to be extremely promising [6, 7]. Dong et al. [6] built an SR 
convolutional neural network that uses a simple three-layer network to achieve better SR 
performance. Kim et al. [6] constructed a 20-layer CNN; their system introduces the strategy of 
residual learning, resulting in superior SR results compared to shallow-layer models. Building on 
the success of this research, Lim et al. [8] and Zhang et al. [9] designed SR models with 69-layer 
and 400-layer networks, respectively, achieving state-of-the-art performance. Nevertheless, these 
networks still have some limitations when dealing with the SR reconstruction task of remote 
sensing images. 

Firstly, the wide spatial span of remote sensing images typically encompasses a variety of 
ground scenes containing complex surface elements, presenting a complicated spatial-structure 
distribution. This means that the SR network is required to conduct a high-quality analysis of 
high-frequency details (e.g., contours and edges) in LR images. Moreover, in inherently LR 
remote sensing images, the feature information available for the SR network as a basis for 
inference is limited; thus, SR reconstruction of complex remote sensing images is a challenging 
task. 

Secondly, although excellent performance can be achieved by increasing the number of 
network layers, this leads to a larger number of model parameters, and the consequently greater 
computing burden restricts practical applications on resource-constrained mobile devices [8, 9]. 
Moreover, a complex network structure design makes training the model more difficult. Therefore, 
it is critical to create an efficient and rational architecture that is practical for solving these issues. 

To effectively address these challenges, this research proposes a novel remote sensing image 
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SR reconstruction approach using a multi-scale information distillation attention network 
(MSIDAN); this introduces the multi-scale information distillation attention block (MSIDAB) as 
a basic component. Inspired by the information multi-distillation network (IMDN) [10], the 
MSIDAB employs an information multi-distillation design, and its structure incorporates a 
multi-scale feature-extraction component and a modified attention mechanism. In comparison to 
the typical procedure of repeating the convolution layer, information distillation [10] can 
progressively and efficiently extract plentiful features on the premise of reducing the number of 
model parameters; this achieves a better balance between performance and model complexity. 
Specifically, the extracted features are divided into two parts: one is sent for further processing to 
extract long-path features, and the other is used to store reserved short-path features. 

However, the IMDN only uses single-scale convolution to extract image features before 
information distillation, which limits the learning capability of the network during feature transfer. 
To address this issue, a multi-scale information distillation (MSID) module is designed in the 
residual block. This module integrates the information distillation mechanism with the idea of 
multi-scale feature extraction, reducing the dimensionality of feature channels in the subsequent 
convolutional layers in the residual block through a channel separation operation, thus 
progressively refining and fusing multi-scale semantic features with a smaller number of 
parameters. Compared to previous SR approaches that incorporate multi-scale feature extraction 
within the information-distillation mechanism [11, 12], the proposed MSID places greater 
emphasis on the fusion and utilization of distilled features across different receptive fields. The 
success of the residual channel attention network [9] illustrates that the attention mechanism 
significantly enhances the SR performance of the network. Thus, an enhanced contrast-aware 
channel attention mechanism (ECCAM) is constructed, which employs the channel and spatial 
contrast values of the image to reflect the feature map information and further generates more 
balanced attention for the perception of high-frequency details.  

The contributions are listed as follows: 1) this work presents a unique CNN for the remote 
sensing image SR task, namely, MSIDAN, to deliver an end-to-end training strategy that is both 
convenient and efficient; 2) this work proposes the MSID module to gradually distill and extract 
multi-size features by integrating information multi-distillation with multi-scale feature 
representation; 3) this work constructs the ECCAM module in the residual block to further 
strengthen the attention of high-frequency features; 4) Extensive experiments demonstrate that 
MSIDAN outperforms other comparable CNNs-based approaches, achieving superior results with 
fewer parameters in both objective evaluation metrics and subjective visual quality. 

2. Related works 

Recently, deep-learning-based approaches have achieved impressive results in resolving the 
issue of SISR. Dong et al. [6] were the first to introduce the concept of the neural network to the 
SR problem, developing a simple three-layer convolution structure to fit the nonlinear mapping 
between LR images and their HR counterparts. As with the excellent performance of classical 
ResNet [13] in computer vision tasks, many advanced SR models employ a residual-learning 
strategy for simplicity of training. Since the skip connection in the residual network allows direct 
mapping within the residual units, it effectively avoids gradient disappearance and allows faster 
training. Considering this, Kim et al. [7] constructed a very deep SR network with 20 
convolutional layers, demonstrating that a deep network with residual learning can alleviate 
training difficulties and achieve better SR accuracy. Lim et al. [8] proposed an enhanced deep SR 
network, expanding the network to 69 layers by incorporating improved residual blocks. Then, 
Zhang et al. [9] formed a deeper SR network with more than 400 layers, in which a channel 
attention mechanism (CAM) is used in the residual-in-residual architecture. 

Although excellent performance can be achieved by increasing the number of network layers, 
as noted, the drawback of this is that the large numbers of model parameters and consequently 
greater computing burden restrict practical applications on resource-constrained mobile devices. 
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In response to this issue, Ahn et al. [14] presented a cascading residual network (CARN), which 
achieves a lightweight SR model by introducing a cascading mechanism to incorporate the 
features from multiple layers. Hui et al. [15] developed a novel information distillation network 
(IDN), which fuses local short-path information with long-path information by employing a 
channel-splitting strategy, thus obtaining better reconstruction performance with fewer 
parameters. Then, Hui et al. [10] extended the IDN to create the lightweight IMDN, which extracts 
fine-grained image features step-by-step and further streamlines the parameters of the network. 
Zhang et al. [16] designed an extremely effective block for any SR model: the edge-oriented 
convolution block (ECB). They further proposed ECB based SR model (ECBSR), which achieves 
promising real-time SR effects on mobile devices. Gao et al. [17] elegantly integrated CNN and 
Transformers, achieving a better balance between performance and model size. 

Attention mechanisms are a current topic of great interest in computer vision. Just as humans 
preferentially focus on the most important aspects of an image, the purpose of an attention 
mechanism in deep learning is to improve efficiency by obtaining important information more 
quickly and accurately while ignoring irrelevant details. Following the success of work [9], an 
increasing number of studies have utilized attention-based algorithms in CNNs to achieve superior 
SR performance. To better capture structure information in low-level vision tasks, Hui et al. [10] 
presented a contrast-aware channel attention mechanism (CCAM), which replaces the global 
average pooling (GAP) operation with the summation of the standard deviation and mean from 
their distillation blocks. Liu et al. [18] developed an enhanced spatial attention block that is 
lightweight and enables the network to focus on regions of key importance. To take advantage of 
the large spatial size, Muqeet et al. [19] optimized the ESA block by introducing dilated 
convolutions. Zhao et al. [20] proposed a pixel attention network (PAN) that generates 
three-dimensional attention maps instead of a one-dimensional vector or a two-dimensional map, 
resulting in improved SR outcomes with fewer additional parameters. 

3. Design of MSIDAN for remote sensing image SR reconstruction 

This section provides a detailed description of MSIDAN. Specifically, the system overview of 
the network framework and the design structure of MSIDABs will be presented in detail. 
Additionally, the loss function utilized during the training process is defined to optimize the 
objective. Here, 𝐼௅ோ ∈ ℝு×ௐ×஼ and 𝐼ௌோ ∈ ℝ௦ு×௦ௐ×஼ are respectively considered the LR input and 
SR output of MSIDAN, where: 𝐻 and 𝑊 denote the height and width of the input LR image, 
respectively; 𝑠 denotes the upscaling factor; and 𝐶 denotes the number of channels. Specifically, 𝐶 is set as 64, consistent with the work [10]. 

 
Fig. 1. Overview of the MSIDAN network structure 

3.1. System overview 

The overall architecture of the proposed MSIDAN model is illustrated in Fig. 1, including 
three parts: 1) shallow feature extraction, 2) deep feature extraction, and 3) reconstruction. 
According to a survey of previous reports [9], the output of the shallow feature extraction stage 
can be calculated as: 
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𝐹଴ =  𝐻ௌி(𝐼௅ோ), (1)

where, 𝐻ௌி(·) denotes the 3×3 convolution operation. The resulting 𝐹଴ is used in the subsequent 
deep feature-extraction part, which makes use of stacked MSIDABs. The MSIDABs serve as 
fundamental components for local residual feature connection. The output of the MSIDAB can be 
calculated as: 𝐹௕,௡ = 𝐻ெௌூ஽஺஻,௡(𝐹௕,௡ିଵ), (2)

where, 𝐻ெௌூ஽஺஻,௡(·) denotes the operation of the 𝑛th MSIDAB, and 𝐹௕,௡ିଵ and 𝐹௕,௡ are the inputs 
and outputs of the 𝑛th MSIDAB, respectively. As depicted in Fig. 2, the MSIDAB was developed 
using the MSID module, the ECCAM module, and a 1×1 convolution layer, which is employed 
to reduce the channel dimensionality of features. The MSID module fuses shallow and deep 
features while reducing the number of training parameters, and the ECCAM module allows the 
network to adaptively learn the weights of high-frequency detail information by generating more 
balanced attention information. 

After completing the calculations of 𝑀 MSIDABs, all intermediate features are fused using a 
concatenation operation: 𝐹௖௢௡௖௔௧ =  𝐶𝑜𝑛𝑐𝑎𝑡(𝐹௕,ଵ, … ,𝐹௕,௡, … ,𝐹௕,ெ), (3)

where, 𝐶𝑜𝑛𝑐𝑎𝑡(·) denotes the feature-map concatenation operation. After combining the features 
of each block, a 1×1 convolution layer is employed to reduce the channel dimensionality of the 
concatenated features and fuse the spliced channels. Then, an adaptive activation function is 
adopted to reduce the redundant parameters, and the features are further obtained by a 3×3 
convolutional layer. These operators can be expressed as: 𝐹௙௨௦௘ௗ =  𝐻௙௨௦௘(𝐹௖௢௡௖௔௧), (4)

where, 𝐻௙௨௦௘(·) denotes a 1×1 convolution operation followed by a LeakyReLU function and a 
3×3 convolution operation, and 𝐹௙௨௦௘ௗ denotes the fused features. 

Finally, the fused features 𝐹௙௨௦௘ௗ are fed to the reconstruction part, which can map LR images 
to high-dimensional space and generate high-quality SR images. As many CNNs-based SR 
approaches, the sub-pixel up-sampling operation is adopted to reconstruct HR image; this has been 
shown to be superior to other up-scaling approaches in terms of the balanced optimization of the 
SR effect and computational complexity. Furthermore, considering the fusion with shallow 
features to implement a global residual-learning approach [7], the up-sampling operator can be 
expressed as: 𝐼ௌோ = 𝐻௦௨௕௣௜௫௘௟(𝐻௟௘௔௥௡௔௕௟௘(𝐹௙௨௦௘ௗ + 𝐹଴)), (5)

where, 𝐻௟௘௔௥௡௔௕௟௘(·) denotes a 3× learnable layer, 𝐻௦௨௕௣௜௫௘௟(·) denotes the sub-pixel up-sampling 
operation, and 𝐼ௌோ is the estimated super-resolution image. 

3.2. Design of MSIDAB  

3.2.1. Design of MSID structure 

As noted, deepening the network structure generally improves the SR effect but also increases 
complexity, potentially causing convergence problems. Considering this, the IDN guarantees 
recovery results while reducing the number of parameters and increasing test speed by 
compressing the dimensionality of the feature-map channels in the network. Based on the IDN, 
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the IMDN constructs a progressive refinement module to retrain distilled features, and it further 
processes other remaining features multiple times. Specifically, the residual blocks in the IMDN 
divide the 64 feature channels output by the convolutional layer into two parts by 1:3, of which 
16 feature channels are directly input into the concatenation operation as distilled features, and the 
other 48 feature channels serve as input for the next convolutional layer. Using such a channel 
spliting strategy, the IMDN achieves a better balancing of SR effect against applicability. 
Nevertheless, there remains room for improvement in the extraction and utilization of intermediate 
features. 

 
Fig. 2. Detailed structure of MSIDAB; 64, 48, and 16 denote the numbers  

of output channels of the convolution layers 

The wide spatial spans of ground objects in remote sensing images result in a diverse range of 
scales and shapes, and this requires a network with greater awareness of high-frequency features. 
However, a traditional CNN usually uses a single-scale convolutional layer to detect the feature 
information, which often leads to insufficiently accurate information. The success of GoogLeNet 
[21] was due to the realization that feature extraction could be facilitated by paralleling 
convolution kernels of different scales. Consequently, a large number of researchers have focused 
on how to obtain image features on different scales to improve the SR effect. Generally speaking, 
a large-sized convolution kernel can perceive complex features but tends to lose detailed 
information, where a small-sized convolution kernel is sensitive to detailed information but lacks 
the capacity to perceive complex features. Considering this, by fusing the information 
multi-distillation strategy and the idea of multi-scale feature representations, MSID is leveraged 
to both reduces the number of model parameters and captures more high-frequency information. 
Compared to previous SR approaches that fuse multi-scale feature extraction in the 
information-distillation mechanism [11, 12], the proposed MSID focuses more on the fusion and 
utilization of distilled features across various receptive fields. 

In the MSID module (as marked with the gray background in Fig. 2), the input features are 
initially processed using a pyramid convolution operation for further multiple successive refining 
distillation steps. For each step, the preceding extracted features are divided into two parts by 
adopting a channel-splitting strategy. One part is preserved as the local refined features, and the 
other part will be processed in the next computing unit as the remaining features. Given the input, 
this procedure in the MSIDAB can be viewed as: ൣ𝐹௥௘௙௜௡௘ௗିଵି௜௡ ,𝐹௥௘௠௔௜௡௜௡௚ିଵି௜௡ ൧ = 𝑆𝑝𝑙𝑖𝑡ଵ௡൫𝐶𝑜𝑛𝑣ଵି௜௡ (𝐹௜௡௡ )൯, (6)ൣ𝐹௥௘௙௜௡௘ௗିଶି௜௡ ,𝐹௥௘௠௔௜௡௜௡௚ିଶି௜௡ ൧ = 𝑆𝑝𝑙𝑖𝑡ଶ௡ ቀ𝐶𝑜𝑛𝑣ଶି௜௡ ൫𝐹௥௘௠௔௜௡௜௡௚ିଵି௜௡ ൯ቁ, (7)



MULTI-SCALE INFORMATION DISTILLATION ATTENTION NETWORK FOR SUPER-RESOLUTION RECONSTRUCTION OF REMOTE SENSING IMAGES.  
BO HUANG, LIAONI WU, YIQING CAO, MINGEN ZHONG 

 JOURNAL OF MEASUREMENTS IN ENGINEERING 7 

ൣ𝐹௥௘௙௜௡௘ௗିଷି௜௡ ,𝐹௥௘௠௔௜௡௜௡௚ିଷି௜௡ ൧ = 𝑆𝑝𝑙𝑖𝑡ଷ௡ ቀ𝐶𝑜𝑛𝑣ଷି௜௡ ൫𝐹௥௘௠௔௜௡௜௡௚ିଶି௜௡ ൯ቁ, (8)𝐹௥௘௙௜௡௘ௗିସିଷ௡ = 𝐶𝑜𝑛𝑣ସିଷ௡ ൫𝑆𝑢𝑚(𝐹௥௘௠௔௜௡௜௡௚ିଷି௜௡ )൯, (9)

where, 𝐶𝑜𝑛𝑣௞ି௜௡ (·) and 𝑆𝑝𝑙𝑖𝑡௞௡(·) respectively denote the 𝑘th convolution layer (followed by a 
LeakyReLU activation function) with a kernel size of 𝑖×𝑖 and the 𝑘th channel separation of the 𝑛th MSIDAB; 𝐹௥௘௙௜௡௘ௗି௝ି௜௡  and 𝐹௥௘௠௔௜௡௜௡௚ି௝ି௜௡  respectively denote the 𝑗th refined and remaining 
features of the branch with a convolutional kernel size of 𝑖×𝑖 in the MSIDAB; and 𝑆𝑢𝑚(·) denotes 
the pixel-by-pixel summation operation on the feature map. Such a pyramid structure with parallel 
convolutions can extract diverse features of different levels, which allows the exploration of 
detailed information in low-dimension space to reach an optimal solution. Specifically, the 
pyramidal convolution is implemented internally by grouping convolution to reduce the 
computational consumption. The values of 𝑖 in the 𝑘th convolutional layer are set to 3, 5, and 7, 
corresponding to feature-map groups 1, 2, and 4, respectively. Then, the multi-scale extracted 
features from each pyramid convolutional layer are fused, and followed by a concatenation 
operation on the fused features at each step to generate the final refined features. These operations 
can be expressed as: 𝐹ௗ௜௦௧௜௟௟௘ௗ௡ = 𝐶𝑜𝑛𝑐𝑎𝑡൫𝑆𝑢𝑚൫𝐹௥௘௙௜௡௘ௗିଵି௜௡ ൯, 𝑆𝑢𝑚൫𝐹௥௘௙௜௡௘ௗିଶି௜௡ ൯, 𝑆𝑢𝑚൫𝐹௥௘௙௜௡௘ௗିଷି௜௡ ൯,𝐹௥௘௙௜௡௘ௗିସିଷ௡ ൯, (10)

where, 𝑆𝑢𝑚(·) denotes the feature-map summation operation, and 𝐶𝑜𝑛𝑐𝑎𝑡(·) denotes the 
feature-channel concatenation operation.  

The concatenated output of the retained feature maps 𝐹ௗ௜௦௧௜௟௟௘ௗ௡  is fed into the ECCAM module, 
then a local-residual-learning (LRL) operation is utilized to preserve the hierarchical features and 
facilitate the flow of information. The output of the MSIDAB is obtained as: 𝐹௢௨௧௡ = 𝐻௖௢௠௣௥௘௦௦(𝐸𝐶𝐶𝐴𝑀(𝐹ௗ௜௦௧௜௟௟௘ௗ௡ ) + 𝐹ௗ௜௦௧௜௟௟௘ௗ௡ ) + 𝐹௜௡௡ , (11)

where, 𝐸𝐶𝐶𝐴𝑀(·) denotes feature extraction using the ECCAM operation, and 𝐻௖௢௠௣௥௘௦௦(·) 
fuses the obtained features using a 1×1 convolution layer. 

3.2.2. Design of ECCAM structure 

Classical CNN-based approaches treat all extracted feature channels equally, which leads to a 
certain loss of high-frequency information during the transformation from LR space to HR space. 
Inspired by SENet [22], the residual channel attention network deepens the perception of 
high-frequency information in images by introducing the CAM, thus HR images are recovered. 
Furthermore, the IMDN presents a CCAM to significantly improve the SR reconstruction 
performance by adding contrast variables from the original feature map. Based on CAM and 
CCAM, the ECCAM module is designed by introducing the role of spatial features in the 
description of global information. As shown in Fig. 3, the input 𝐹 = (𝐹ଵ, … ,𝐹௞, … ,𝐹஼) consists 
of 𝐶 channel descriptors with size 𝐻 × 𝑊, along the spatial axis of 𝐹, the channel-feature 
descriptor 𝐷஼௛௔௡௡௘௟௞  of 𝐹௞ is calculated by a GAP operation: 

𝐷஼௛௔௡௡௘௟௞  =  1𝐻 ×  𝑊෍෍𝐹௞(𝑖, 𝑗),ௐ
௝ୀଵ

ு
௜ୀଵ  (12)

where, 𝐹௞(𝑖, 𝑗) denotes the pixel value at location (𝑖, 𝑗) of 𝐹௞. By the GAP operation, the 
channel-wise statistics 𝐷஼௛௔௡௡௘௟ = (𝐷஼௛௔௡௡௘௟ଵ , … ,  𝐷஼௛௔௡௡௘௟௞ , … ,𝐷஼௛௔௡௡௘௟஼ ) can be obtained, 
corresponding to 𝐹 = (𝐹ଵ, … ,𝐹௞, … ,𝐹஼), respectively. 
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Taking into account the variation in the spatial distribution of a remote sensing image, we 
supplement one spatial-feature descriptor 𝐷ௌ௣௔௧௜௔௟ with size 𝐻×𝑊 by applying an 
average-pooling (AP) operation along the channel axis of 𝐹: 

𝐷ௌ௣௔௧௜௔௟(𝑖, 𝑗)  =  1𝐶෍𝐹௞(𝑖, 𝑗),஼
௞ୀଵ  (13)

where, 𝐷ௌ௣௔௧௜௔௟(𝑖, 𝑗) denotes the aggregated spatial descriptor at position (𝑖, 𝑗) of 𝐹. The enhanced 
contrast information value is then calculated as: 

𝑅஼௛௔௡௡௘୪௞  = ඩ 1𝐻 ×  𝑊෍෍(𝐹௞(𝑖, 𝑗) −  𝐷஼௛௔௡௡௘௟௞ )ଶ ௐ
௝ୀଵ

ு
௜ୀଵ  

      + ඩ 1𝐻 ×  𝑊෍෍൫𝐹௞(𝑖, 𝑗) −  𝐷ௌ௣௔௧௜௔௟(𝑖, 𝑗)൯ଶௐ
௝ୀଵ

ு
௜ୀଵ  +  𝐷஼௛௔௡௡௘௟௞ , (14)

where, 𝑅஼௛௔௡௡௘௟௞  denotes the 𝑘th channel element output. In this way, compared to the CCAM, the 
deviation in the proposed method can better reflect the relative spatial importance of each feature 
map in a whole layer. 

After this, similar to SENet, all the channel-wise features are adaptively recalibrated by a 
multi-layer perceptron structure. Through this operation, valuable information are emphasized 
among the channels while suppressing useless information. The final output of the ECCAM 
module is obtained as: 𝐹ா஼஼஺ெ௞  =  𝑓ఙ ቂ𝑊௎ ቀ𝑅𝑒𝐿𝑈൫𝑊஽൫𝑅஼௛௔௡௡௘௟௞ ൯ + 𝑏஽൯ቁ + 𝑏௎ቃ  ⊗  𝐹௞, (15)

where, 𝑓ఙ[·] and 𝑅𝑒𝐿𝑈(·) denote the Sigmoid gating and ReLU activation functions, respectively; 𝑊஽ ∈ ℝ಴ೝ×஼×ଵ×ଵ  and 𝑏஽ ∈ ℝ಴ೝ  denote the weights and bias in the first 1×1 convolution layer, 
which decreases the channel dimensions of 𝑅஼௛௔௡௡௘௟ by the reduction ratio 𝑟; 𝑊௎ ∈ ℝ஼×಴ೝ×ଵ×ଵ  
and 𝑏௎ ∈ ℝ஼ denote the weights and bias in another 1×1 convolution layer, which increases the 
channel dimensions back to the original number; and ⊗ denotes an element-wise multiplication 
operation. Specifically, the reduction ratio 𝑟 is defined as 16, which is consistent with the IMDN. 

× × 

× × 

× × 

GAP

× × 
× × 

AP

× × 

GAP

× × 
× × 

GAP

× × 

 
Fig. 3. Detailed structure of ECCAM 

3.2.3. Loss function 

The loss function in this approach is used to update the gradient parameters by minimizing the 



MULTI-SCALE INFORMATION DISTILLATION ATTENTION NETWORK FOR SUPER-RESOLUTION RECONSTRUCTION OF REMOTE SENSING IMAGES.  
BO HUANG, LIAONI WU, YIQING CAO, MINGEN ZHONG 

 JOURNAL OF MEASUREMENTS IN ENGINEERING 9 

distance between the reconstruction result and the ground truth. Following the approach of 
previous work [10], the L1-norm loss between the ground-truth HR image and the reconstructed 
HR image is used to measure this distance. Given a training set ൛𝐼௅ோ௜ , 𝐼ுோ௜ ൟ௜ୀଵே  that contains 
matching LR-HR pairs, the loss function of MSIDAN can be formulated as: 

𝐿(Θ) = 1𝑁෍‖𝐻୑ୗ୍ୈ୅୒൫𝐼௅ோ௜ ൯ − 𝐼ுோ௜ ‖ଵே
௜ୀଵ , (16)

where, Θ denotes the training-parameter set of MSIDAN, ‖ ∙ ‖ଵ denotes the L1 norm, and 𝐻୑ୗ୍ୈ୅୒(·) denotes the proposed image SR model. 

4. Experiments 

This section will firstly describe the experimental settings, including the datasets, 
image-quality evaluation indexes, and implementation details of the model. Then, quantitative and 
qualitative experimental comparisons and a detailed analysis of the results will be reported. 

4.1. Data 

Following recent works [23], to facilitate experimental comparisons with other SR networks, 
the publicly available, high-quality remote sensing dataset, Aerial Image Dataset (AID) [24], was 
selected as the training dataset, which includes 30 classes of scene images, and each class has 
approximately 220-420 pieces (a total of 10000 pieces) with 600×600 in the RGB space. The 
training images are augmented via three strategies: (1) horizontal flipping; (2) vertical flipping; 
and (3) 90° rotation. After training, the SR models are evaluated using four remote sensing image 
datasets: RSSCN7 [25], WHU-RS19 [26], NWPU VHR-10 [27], and Cars Overhead With Context 
(COWC) [28]. In the experiments, 100 samples were randomly selected from the original datasets 
to create four new datasets for performance evaluation. To generate the image pairs for training 
and testing, LR samples were created by downsampling the corresponding HR images using a 
Bicubic interpolation algorithm with scale factors of 2, 3, and 4.  

4.2. Evaluation indexes 

The average peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) [29] are two 
image-quality evaluation metrics that are commonly employed to objectively evaluate SR models. 
The PSNR describes the distortion of the reconstructed images caused by random noise; it is 
expressed as: 

𝑃𝑆𝑁𝑅(𝑥,𝑦) = 10logଵ଴ ቌ 𝐼௠௔௫ଶ1𝑊 ×  𝐻∑ ∑ [𝑥(𝑖, 𝑗) − 𝑦(𝑖, 𝑗)]ଶௐ௝ୀଵு௜ୀଵ ቍ, (17)

where, 𝑥 and 𝑦 denote a ground truth and its super-resolved version of size 𝑊×𝐻, respectively; 
and 𝐼௠௔௫ denotes the peak pixel value (which is 255 for RGB images). The PSNR is measured in 
dB, and a higher PSNR score indicates that the super-resolved image has higher pixel fidelity and 
image quality. 

The SSIM index measures the degree of structural similarity between two images by 
estimating luminance, contrast, and structure. Thus, the evaluation mechanism of SSIM is closer 
to the human visual system in terms of overall image composition. The SSIM value is computed 
as: 
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𝑙(𝑥,𝑦) = 2𝜇௫𝜇௬ + 𝑐ଵ𝜇௫ଶ + 𝜇௬ଶ + 𝑐ଵ, (18)𝑐(𝑥,𝑦) = 2𝜎௫𝜎௬ + 𝑐ଶ𝜎௫ଶ + 𝜎௬ଶ + 𝑐ଶ, (19)𝑠(𝑥,𝑦) = 𝜎௫௬ + 𝑐ଷ𝜎௫𝜎௬ + 𝑐ଷ, (20)𝑆𝑆𝐼𝑀(𝑥,𝑦) = [𝑙(𝑥,𝑦)ఈ ∙  𝑐(𝑥,𝑦)ఉ  ∙  𝑠(𝑥,𝑦)ఊ], (21)

where, 𝜇௫, 𝜇௬, 𝜎௫, 𝜎௬, and 𝜎௫௬ denote the average values, variance values, and covariance of the 
original HR image 𝑥 and reconstructed SR image 𝑦, respectively; 𝑐ଵ, 𝑐ଶ, and 𝑐ଷ are constants set 
to avoid calculation instability. In general, the values 𝛼 = 𝛽 = 𝛾 = 1 are set. The value of SSIM 
ranges from 0 to 1, a higher SSIM value represents a better-quality SR image. Specifically, as with 
previous works [8, 9], the SR results are typically evaluated with the PSNR and SSIM values on 
the luminance (𝑌) channel in the transformed YCbCr color space. 

4.3. Implementation details 

To ensure a fair comparison, all models in this study were retrained using the training set 
mentioned above, without any pre-training and fine-tuning processes. In each training batch, 16 
random patches of size 48×48 pixels were cropped from the LR samples as the input for model 
training, and their HR counterparts of 96×96, 144×144, and 192×192 pixels were generated with 
scale factors of ×2, ×3, and ×4, respectively. Following the previous work [23], the initial learning 
rate is 1×10-4 and decreases to 10 % every 500 epochs in the process of back-propagation. The 
Adam algorithm with 𝛽ଵ = 0.9, 𝛽ଶ = 0.999, and 𝜖 = 10-8 was adopted to optimize the SR model 
parameters. All SR networks were trained for 1500 epochs in total. The number of MSIDABs was 
set to 6, in accordance with the IMDN approach. All experiments involved in this paper were 
conducted on the same device, i.e., a single NVIDIA RTX 3090 GPU and a 3.40 GHz AMD Ryzen 
5700X CPU. More setting detail of experiments are listed in Table 1. 

Table 1. Setting parameters for proposed MSIDAN 
Batch size 48×48 
Patch size 16 

The numbers of MSIDABs 6 
Initial learning rate 1×10-4 

Channels 64 
Channels-refined (split)  16 

Optimizer (Adam) 𝛽ଵ = 0.9, 𝛽ଶ = 0.999 

4.4. Experimental results 

4.4.1. Comparisons with other methods 

This section presents a comparison of MSIDAN with other advanced SISR methods: Bicubic 
interpolation, widely activated super-resolution network (WDSR) [30], multi-attentive feature 
fusion super-resolution network (MAFFSRN) [19], IMDN [10], edge-oriented convolution block 
based super-resolution model (ECBSR) [16], and enhanced super-resolution group convolutional 
neural network (ESRGCNN) [31]. Bicubic interpolation is a representative interpolation 
algorithm; and others are comparable deep CNN-based approaches. 

4.4.1.1. Quantitative results 

Table 2 displays the quantitative evaluation results (PSNR/SSIM), with the optimal and 
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second-best values highlighted in bold and underline, respectively. It is clear that MSIDAN 
achieves the best results for all four datasets. With upscaling factors of ×2 and ×4 on the RSSCN7 
dataset, the PSNR gains achieved by MSIDAN in comparison to the second-best algorithm 
(WDSR) are 0.03989 dB and 0.01394 dB, respectively. For an upscaling factor of ×3 on the 
RSSCN7 dataset, MSIDAN obtains a gain of 0.00263 dB compared to the second-best algorithm 
(ESRGCNN). With upscaling factors of ×2 and ×3 on the WHU-RS19 dataset, the PSNR gains 
achieved by MSIDAN in comparison to the second-best algorithm (MAFFSRN) are 0.03780 dB 
and 0.01895 dB, respectively. For an upscaling factor of ×4 on the WHU-RS19 dataset, MSIDAN 
obtains a gain of 0.01874 dB compared to the second-best algorithm (WDSR). With an upscaling 
factor of ×2 on the NWPU VHR-10 dataset, the PSNR gain achieved by MSIDAN in comparison 
to the second-best algorithm (ECBSR) is 0.04332 dB. For upscaling factors of ×3 and ×4 on the 
NWPU VHR-10 dataset, MSIDAN obtains values 0.01962 dB and 0.00675 dB higher than the 
second-best algorithm (WDSR), respectively. With upscaling factors of ×2 and ×3 on the COWC 
dataset, the PSNR gains achieved by MSIDAN in comparison to the second-best algorithm 
(IMDN) are 0.04717 and 0.03364 dB, respectively. For an upscaling factor of ×4 on the COWC 
dataset, MSIDAN obtains a value 0.00433 dB higher than the second-best algorithm (ESRGCNN). 
Compared with the IMDN, the MSIDAN improves the PSNR by 0.03312 dB, 0.06031 dB, 
0.05319 dB, and 0.03812 dB on the RSSCN7, WHU-RS19, NWPU VHR-10, and COWC datasets, 
respectively, and the SSIM by 0.0011, 0.0011, 0.0012, and 0.0010 respectively. 

Table 2. Comparison of SR used different methods. Bold and underlining represent  
optimal and second-best performance, respectively 

Scale Method RSSCN7 [25] WHU-RS19 [26] NWPU VHR-10 [27] COWC [28] 

×2 

Bicubic 30.82776/0.8460 34.68401/0.9232 32.79005/0.9094 32.21539/0.8772 
WDSR [30] 32.33108/0.8811 36.48032/0.9444 35.22087/0.9322 34.25776/0.8976 

MAFFSRN [19] 32.31966/0.8812 36.51930/0.9448 35.21966/0.9323 34.23883/0.8978 
IMDN [10] 32.32418/0.8811 36.48802/0.9444 35.21106/0.9320 34.29290/0.8982 

ECBSR [16] 32.32222/0.8813 36.49464/0.9447 35.22308/0.9325 34.22104/0.8977 
ESRGCNN [31] 32.32399/0.8813 36.49642/0.9446 35.22092/0.9324 34.25008/0.8980 

MSIDAN  32.36407/0.8821 36.55710/0.9452 35.26640/0.9329 34.34007/0.8991 

×3 

Bicubic 28.42559/0.7313 30.82741/0.8294 29.62905/0.8271 30.03914/0.8064 
WDSR [30] 29.48540/0.7752 32.53147/0.8744 31.93973/0.8712 31.51455/0.8335 

MAFFSRN [19] 29.47462/0.7753 32.53849/0.8744 31.91697/0.8706 31.49830/0.8334 
IMDN [10] 29.47146/0.7741 32.50749/0.8736 31.91500/0.8705 31.55127/0.8338 

ECBSR [16] 29.46520/0.7746 32.50125/0.8738 31.89514/0.8704 31.49211/0.8331 
ESRGCNN [31] 29.48778/0.7754 32.53231/0.8744 31.92378/0.8713 31.54567/0.8342 

MSIDAN  29.49041/0.7755 32.55744/0.8747 31.95935/0.8715 31.58491/0.8345 

×4 

Bicubic 27.21346/0.6543 28.76653/0.7477 27.92820/0.7634 28.76707/0.7546 
WDSR [30] 28.04068/0.6975 30.28405/0.8071 29.88932/0.8172 30.13465/0.7881 

MAFFSRN [19] 28.03602/0.6975 30.28001/0.8067 29.87874/0.8165 30.10831/0.7874 
IMDN [10] 28.01410/0.6963 30.24089/0.8056 29.83619/0.8156 30.10782/0.7872 

ECBSR [16] 28.01418/0.6964 30.24093/0.8058 29.82262/0.8155 30.11199/0.7874 
ESRGCNN [31] 28.03523/0.6972 30.27773/0.8068 29.85653/0.8167 30.13846/0.7880 

MSIDAN  28.05462/0.6977 30.30279/0.8073 29.89607/0.8174 30.14279/0.7882 

Fig. 4 shows a comparison of the PSNR values between the MSIDAN and the other networks 
using the RSSCN7 dataset in the epoch range of 0 to 100. As depicted in Fig. 4, MSIDAN (blue 
lines) shows notably superior SR accuracy and faster convergence than ESRGCNN (orange line), 
WDSR (purple line), IMDN (red line), and MAFFSRN (green line). This further demonstrates the 
improvements provided by MSIDAN in remote sensing image reconstruction. 

4.4.1.2. Qualitative comparisons 

Fig. 5 shows some super-resolved examples of the different methods. Specifically, for clearer 
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presentation and easier comparison, some regions are denoted by a red rectangle in the original 
HR samples, and the corresponding super-resolved results are enlarged. From Fig. 5, MSIDAN 
obtains the best PSNR and SSIM, which is closer to original HR images than other models. 

Fig. 5(a) lists the qualitative comparison of various methods for “Industry” scene ×4 SR 
reconstruction. The building reconstructed by the Bicubic is quite blurry, and the results do not 
effectively present the original spatial structure. Compared to WDSR, MAFFSRN, IMDN, 
ECBSR, and ESRGCNN, MSIDAN achieves the highest structural integrity while exhibiting 
minimal distortion. Fig. 5(b) lists the qualitative comparison of various methods for “Airplane” 
scene ×4 SR reconstruction. The lines recovered by Bicubic have a mosaic effect and become 
serrated. The MAFFSRN has the second worst result, only slightly higher than the Bicubic 
method. More recent methods (WDSR, IMDN, ECBSR, and ESRGCNN) can obtain global 
contrast information, but with significant unreal artifacts. In comparison to other approaches, 
MSIDAN achieves clearer edges and produces a sharper image. Due to the low quality of LR 
images, most models are unable to generate more spatial details of remote sensing images, 
resulting in blurred boundaries of reconstructed objects. In contrast, MSIDAN represents a 
significant improvement in the restoration of LR input images, and this is consistent with 
quantitative comparisons. 

 
a) Upscaling factor of ×2 

 
b) Upscaling factor of ×3 

 
c) Upscaling factor of ×4 

Fig. 4. Curves for different approaches representing the PSNR  
with the RSSCN7 dataset in the epoch range 0 to 100 

4.4.1.3. Comparison of trade-offs 

The model size is an important parameter to consider when evaluating a lightweight SR model. 
To better represent the parametric efficiency of the algorithms, other commonly used lightweight 
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models such as VDSR [7], PAN [20], IDN [15], CARN [14], RFDN [18], and LBNet [17] are also 
statistically used for comparative analysis. Fig. 6(a) shows the trade-off of PSNR vs. number of 
parameters on the WHU-RS19 dataset with an upscaling factor of ×2. The 𝑥-axis represents the 
SR model size, and the 𝑦-axis represents the average PSNR value. On the one hand, the proposed 
MSIDAN achieves an optimal PSNR indicator with a model size that is roughly half that of 
ECBSR. On the other hand, although VDSR and PAN have smaller numbers of parameters, the 
SR results of these two models are significantly worse than those from MSIDAN. 

 
a) “Industry_011” scene form RSCNN7 dataset with an upscaling factor of ×4 

 
b) “Airplane_003” scene form NWPU VHR-10 dataset with an upscaling factor of ×4 

Fig. 5. Qualitative comparisons of super-resolved results  

Fig. 6(b) shows the trade-off of PSNR vs. inference time on the WHU-RS19 dataset with an 
upscaling factor of ×2. Obviously, the MSIDAN achieves the best PSNR results under the premise 
of comparable execution time. From these findings, it can be concluded that MSIDAN achieves 
better parameter efficiency, making it more feasible to deploy it on mobile devices. 

4.5. Analysis of MSIDAB 

MSIDAB consists of two main modules: MSID and ECCAM. To validate the necessity of 
these components, several MSIDAN ablation experiments were performed with an upscaling 
factor of ×2. The baseline structure for comparison is set as follows: The MSID was replaced with 
a single-scale convolution (3 × 3) information-distillation operation and the ECCAM was 
removed. Table 3 lists the ablation results. 
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a) Model size 

 
b) Inference time 

Fig. 6. Comparison of trade-offs of different SR networks  
on the WHU-RS19 dataset with an upscaling factor of ×2 

Table 3. Ablation comparison of MSIDAN with ×2 upscale. Bold indicates the optimal performance 
MSID ECCAM RSSCN7 [25] WHU-RS19 [26] NWPU VHR-10 [27] COWC [28] ⨉ ⨉ 32.30724/0.8808 36.45777/0.9443 35.19072/0.9320 34.20195/0.8972 
✓ ⨉ 32.35897/0.8819 36.54685/0.9450 35.26435/0.9328 34.33416/0.8991 ⨉ ✓ 32.33146/0.8812 36.49090/0.9444 35.21422/0.9320 34.29329/0.8982 
✓ ✓ 32.36407/0.8821 36.55710/0.9452 35.26640/0.9329 34.34007/0.8991 

To perform a comprehensive analysis of MSID, a series of model variants with various 
convolutional kernel settings under different branches was designed, and a quantitative 
comparison of the results is presented in Table 4. It is clear from these results that the models with 
multiple branches (when the number of branches is 2 or 3) achieve better performance. In other 
words, the network achieves better feature-information acquisition through the structural design 
of multiple branches with different convolutional-kernel scales. 

Table 4. Comparison using various convolutional kernel settings in the MISD module  
with ×2 upscale. Bold indicates the optimal performance 

3×3 5×5 7×7 RSSCN7 [25] WHU-RS19 [26] NWPU VHR-10 [27] COWC [28] 
✓   32.30724/0.8808 36.45777/0.9443 35.19072/0.9320 34.20195/0.8972 
 ✓  32.27799/0.8804 36.42902/0.9440 35.14493/0.9315 34.18073/0.8971 
  ✓ 32.24320/0.8798 36.40860/0.9438 35.10586/0.9311 34.14091/0.8966 
✓ ✓  32.34245/0.8816 36.52401/0.9449 35.24245/0.9326 34.27895/0.8983 
✓  ✓ 32.33847/0.8814 36.51078/0.9447 35.23264/0.9324 34.28733/0.8982 
 ✓ ✓ 32.31441/0.8810 36.47043/0.9444 35.20010/0.9321 34.25179/0.8977 
✓ ✓ ✓ 32.35897/0.8819 36.54685/0.9450 35.26435/0.9328 34.33416/0.8991 

Table 5. Comparison using different attention mechanisms  
with an upscaling factor of ×2. Bold indicates the optimal performance 

Mechanism RSSCN7 [25] WHU-RS19 [26] NWPU VHR-10 [27] COWC [28] 
/ 32.30724/0.8808 36.45777/0.9443 35.19072/0.9320 34.20195/0.8972 

CAM 32.32394/0.8811 36.48303/0.9442 35.21061/0.9320 34.28494/0.8980 
CCAM 32.32418/0.8811 36.48802/0.9444 35.21106/0.9320 34.29290/0.8982 

ECCAM 32.33146/0.8812 36.49090/0.9444 35.21422/0.9321 34.29329/0.8982 

To further demonstrate the improvements brought about by the ECCAM module, the impact 
of the different attention mechanisms on model performance was also verified. Specifically, the 
multi-scale convolutions operation was removed for quick verification. It can be seen from Table 5 
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that the ECCAM module outperforms the CAM and CCAM modules on all datasets. The CAM 
module uses a GAP operation to generate channel-wise statistics. Although the GAP operation 
indeed leads to performance improvements in terms of PSNR values (e.g., 0.01670 dB on 
RSSCN7, 0.02526 dB on WHU-RS19, 0.01989 dB on NWPU VHR-10, and 0.08299 dB on 
COWC), it lacks the information sensitivity regarding high-frequency details (e.g., structures, 
edges, and textures) that is essential for SR recovery of remote sensing images. Considering this, 
the CCAM module replaces the GAP operation with the summation of the standard deviation and 
mean of each feature map to correct the attention value. In this way, the CCAM module achieves 
better performance gains in terms of PSNR values (e.g., 0.01694 dB on RSSCN7, 0.03025 dB on 
WHU-RS19, 0.02034 dB on NWPU VHR-10, and 0.09095 dB on COWC). Compared with the 
CCAM module, the deviation in the ECCAM module further reflects the relative spatial 
importance of each feature map in a whole layer by introducing the spatial-feature descriptor, thus 
generating more balanced attention for the perception of high-frequency details. In summary, 
these comparisons consistently demonstrate the superiority of our proposed MSID and ECCAM. 

In general, deeper networks achieve better SR performance. MSIDAB is used as a deep 
feature-extraction component to enhance the perception of high-frequency information in LR 
spaces. Therefore, to verify the influence of using different numbers of MSIDABs in MSIDAN, 
we trained models with different depths (𝑀 = 6, 9, and 12), and a corresponding quantitative 
comparison of the results is presented in Table 6. These results show that a deeper network 
achieves a better SR reconstruction effect. The PSNR gains of MSIDAN-M12 over MSIDAN-M6 
are 0.00752, 0.12675, 0.11851, and 0.12904 dB with an upscaling factor of ×2 on RSSCN7, 
WHU-RS19, NWPU VHR-10, and COWC, respectively. From this finding, we can observe that 
the MSIDAB can serve as a commendable feature-extraction component in LR space for training 
deep SR models, and it allows the depth of the network to be flexibly adjusted to the capabilities 
of specific hardware devices. 

Table 6. Comparison using different network depths with  
an upscaling factor of ×2. Bold indicates the optimal performance 

Network depths RSSCN7 [25] WHU-RS19 [26] NWPU VHR-10 [27] COWC [28] 
MSIDAN-M6 32.32394/0.8811 36.48303/0.9442 35.21061/0.9320 34.28494/0.8980 
MSIDAN-M9 32.39592/0.8826 36.59280/0.9455 35.31486/0.9335 34.38315/0.8996 
MSIDAN-M12 32.40296/0.8827 36.60978/0.9456 35.32912/0.9336 34.41398/0.9000 

5. Conclusions 

The technique of super-resolution reconstruction is crucial for measurement engineering 
applications, as high-resolution images can provide more accurate boundary and spatial 
information of land features, which helps to perform accurate quantitative analysis and 
interpretation of surface features. This paper presents a MSADAN for remote sensing imagery 
super-resolution, aiming to overcome some critical limitations inherent in the existing CNN-based 
SR methods. The MSIDAN framework effectively stacks several MSIDABs together, in which 
the hierarchical features are progressively refined step-by-step while the number of model 
parameters is decreased by a channel-splitting operation. The core modules of MSIDAB are MSID 
and ECCAM. In this system, inspired by the strategies of information distillation and multi-size 
feature learning, the MSID module is employed to distill and fuse multi-level semantic features 
step-by-step while reducing the number of model parameters. The ECCAM module is then 
capable of perceiving high-frequency information in remote sensing images by automatically 
encoding the weight values of candidate features. The experimental results on RSSCN7, 
WHU-RS19, NWPU VHR-10, and COWC datasets indicate that: (1) MSIDAN achieves 
significant improvements in both the quantitative evaluation indicators and qualitative 
visualization results compared to other comparable approaches. Compared with IMDN, MSIDAN 
improves the PSNR by 0.03312 dB, 0.06031 dB, 0.05319 dB, and 0.03812 dB on the RSSCN7, 
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WHU-RS19, NWPU VHR-10, and COWC datasets, respectively. (2) In comparison with other 
advanced SR methods, MSIDAN achieves a more appropriate balance by jointly considering SR 
performance and model size. A statistical comparison of PSNR vs. number of parameters on the 
WHU-RS19 dataset with an upscaling factor of ×2 shows that MSIDAN achieves an optimal 
PSNR indicator with a model size that is roughly half that of ECBSR. (3) MSIDAB is structured 
in a rational and efficient way, and it can be used as a building block for deep SR reconstruction 
networks. Future work will focus on achieving end-to-end joint optimization of different networks 
for measurement applications with other tasks. Furthermore, the ground object segmentation based 
on supervised learning will be studied to expand the application scenarios of the proposed 
MSIDAN.  

Nevertheless, the MISDAN does have some shortcomings. Supervised training requires a large 
number of paired datasets. However, difficult to obtain high quality images corresponding to 
degraded images. Therefore, the use of semi-supervised or unsupervised methods is an important 
research direction for subsequent attention in this work. 
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