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Abstract. Reducing the energy consumption of robot manufacturing systems has become one of 
the increasingly important issues in industry. However, for robot manufacturing systems, the 
traditional optimization method with energy consumption as the objective function always suffers 
from low efficiency. In view of this, a novel energy-saving optimization method is proposed for 
robot laser welding systems based on the multi-objective optimization in this paper. This method 
deconstructs the energy consumption objective into three computationally inexpensive feature 
objectives and uses these three feature objectives as the objective functions of optimization, thus 
significantly improving the optimization efficiency. And a comprehensive optimization model of 
robot laser welding systems, which simultaneously considers three factors: the layout pose of 
workpieces, the posture of laser tools, and the inverse kinematics solution of robots, is established 
by utilizing a task energy characteristic model based on the time-scaling method. Furthermore, an 
integrated optimization process based on the NSGA-II algorithm is presented. A case study is 
described in detail. The results of the case study demonstrate that the proposed optimization 
method leads to a remarkable increase of over 95 % in optimization efficiency, that three factors 
exhibit interdependence, and that the integrated optimization of these factors yields superior 
results compared to optimizing them individually. In the case study, at a 95 % confidence level, 
the optimization scheme reduces the energy consumption of idle motion by 34.91 % and the total 
energy consumption by 7.29 %, compared to the original scheme.  
Keywords: industrial robot, laser welding, energy saving, multi-objective optimization, and 
metaheuristic algorithm. 

1. Introduction 

In contemporary manufacturing, industrial robots have emerged as indispensable assets due to 
its exceptional flexibility, extensive working range, and cost-effectiveness [1], [2]. As of 2022, 
over 3.5 million industrial robots were in use across global factories. [3]. However, the widespread 
adoption of industrial robots also presents a significant challenge: an inevitable increase in energy 
consumption. Currently, reducing the energy consumption of robotic manufacturing systems has 
become a paramount priority, as it is crucial for achieving sustainable manufacturing and 
mitigating the impact of rising energy costs [4], [5]. 

Numerous scholars have conducted extensive research on energy-saving techniques of 
industrial robots, encompassing task allocation [6], operation scheduling [7], processing parameter 
optimization [8], path optimization [9], trajectory optimization [10], etc. And the energy 
consumption prediction of industrial robots is the basis of these techniques. Among these 
techniques, the energy-saving trajectory planning is one of main aspects [11]. Vergnano et al. [12] 
establish a parameterized energy consumption model of industrial robots and schedule the 
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trajectory to minimize energy consumption based on a time-scaling method. The time-scaling 
method has garnered significant attention due to its capability to optimize trajectories in the time 
domain and efficiently predict energy consumption [7], [13]-[16].  

However, this method does not modify the motion path of the end tool and the robotic 
configurations in the spatial domain. Therefore, the minimum energy consumption obtained by 
this method specifically belongs to the specified motion path of the end tool and the specified 
robotic configurations. And, according to robotic kinematics, the motion path of the end tool and 
the robotic configurations are influenced by the layout pose of workpieces, the posture of the end 
tool, and the inverse kinematics solutions of 6-axis robots at each path point (The inverse 
kinematics of 6-axis robots yields eight possible solutions at each path point of the end tool). 
Therefore, modifying these three factors aforementioned will affect the minimum energy 
consumption obtained by the time-scaling method.  

Optimizing these three factors represents a significant energy-saving approach for robotic 
manufacturing systems. Gadaleta et al. [17] achieved a reduction in energy consumption of robots 
by 16.4 % through optimizing the layout position of workpieces. Feng et al. [18] achieved a 
10.33 % reduction in robotic energy consumption by flexibly selecting robotic inverse kinematics 
solutions for cyclic pick-and-place tasks. However, prior studies have predominantly focused on 
the impact of individual factors and have not adequately considered the interplay among these 
three factors and their comprehensive effects. 

Robot laser welding technology has found extensive applications in diverse manufacturing 
industries [19]-[23]. Nevertheless, laser welding is characterized by high energy consumption and 
low energy efficiency [24]. Furthermore, the power consumption of laser devices and auxiliary 
chillers is significant and exerts a substantial impact on the energy consumption characteristics 
and optimization features of robot laser welding systems [20]. Therefore, it is necessary to 
optimize the overall energy consumption of such systems by taking into account the system-level 
energy consumption characteristics. However, current research on energy-saving optimization of 
robot laser welding systems, particularly for the welding of complex components, remains limited. 

Therefore, this paper systematically investigates the energy-saving method for robotic laser 
welding of complex components by leveraging the functional redundancy of the robot, while 
effectively addressing the associated optimization challenges. The main contributions are as 
follows: 1) Through deconstructing the energy consumption objective, a novel energy-saving 
optimization method is proposed for robot laser welding systems based on multi-objective 
optimization. 2) A comprehensive optimization model, which simultaneously incorporates three 
factors, is developed for the robot laser welding system. 

2. Description and modeling of the problem 

2.1. Description of the problem 

A typical robot laser welding system primarily consists of an industrial robot, a laser, and a 
chiller, as shown in Fig. 1. Fig. 1 additionally illustrates a case of workpiece welding utilizing the 
robotic laser welding system. {CS଴} denotes the coordinate system of the robot base, {CS୘୭୭୪} 
represents the tool coordinate system, and {CS୛} signifies the workpiece coordinate system. The 
robot's motion from one stationary point to the next is defined as a sub-motion, which can be 
programmed using a standard robot motion instruction, during the workpiece welding process. 
Based on the operational state of the laser, the sub-motion is categorized into two types: the 
welding sub-motion and the idle sub-motion. 

In reference [20], we have studied the characteristics and modeling of energy consumption in 
robot laser processing systems in detail and analyzed energy-saving approaches for the processing 
of complex parts. For a given workpiece, the energy consumption and execution time of welding 
sub-motions are primarily determined by the planned welding process parameters, which remain 
invariant throughout the welding procedure. However, it is important to note that the minimum 
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energy consumption and execution time for each idle sub-motion, obtained through the 
time-scaling method under given constraints, are closely related to the layout pose of workpieces 
in {CS଴}, the posture of the laser tool along the tool center point’s motion path, and the inverse 
kinematics solutions of 6-axis robots at each path point of the end tool. A typical case is illustrated 
in Fig. 19 of reference [20]. In this case, the energy consumption of idle sub-motions under four 
different scenarios exhibits a difference of 42.13 % between the minimum and maximum values. 
Therefore, optimizing these three factors can significantly reduce the energy consumption of idle 
sub-motions during the welding of a workpiece. 

 
Fig. 1. The basic set-up of a typical robot laser welding system and a case of workpiece welding 

Furthermore, to illustrate how these three factors influence the minimum energy consumption 
of idle sub-motions obtained through the time-scaling method under constraints, the example of 
the linear path task in Fig. 18 of reference [20] is utilized. The energy consumption is calculated 
using the model established in reference [20], and the calculation result of the total energy 
consumption of the robot laser welding system (represented by the red solid line) is plotted in the 
figure. The new figure is designated as Fig. 2. In Fig. 2, EC represents the energy consumption, 
IR represents the industrail robot, and RLWS represents the robot laser welding system. 𝑇୫୧୬ 
represents the minimum execution time of the linear path task while satisfying kinematic 
constraints, 𝑇୉ି୭୮୲,ୖ୐୛ௌ represents the energy-optimal time of the RLWS, and 𝑇୉ି୭୮୲,୰୭ୠ୭୲ 
represents the energy-optimal time of the robot. 

 
Fig. 2. The changes of the energy consumption of each subsystem  

and the total energy consumption with execution time 

As illustrated in Fig. 2, the huge power consumption of the laser and the chiller results in the 𝑇୉ି୭୮୲,ୖ୐୛ୗ being smaller than 𝑇୫୧୬; obviously, a shorter execution time for tasks can lead to a 
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reduction in overall system energy consumption. If the layout pose of workpieces, the posture of 
laser tools, and the inverse kinematics solution of robots are unreasonable, the corresponding 𝑇୫୧୬ 
will be large, thus resulting in a high energy consumption. Therefore, optimizing these three 
factors to effectively reduce the energy consumption of idle sub-motions is a critical energy-saving 
strategy for robot laser processing systems. Next, a comprehensive mathematical model will be 
developed. 

2.2. Problem modeling 

Assume that a workpiece with 𝑁୵ୣ୪ୢ welding seams needs to be processed, and there are 𝑁୧ୢ୪ୣ 
non-welding strokes during the processing. According to [12], when the reference trajectory is 
pre-planned, the energy consumption of each sub-motion can be expressed as a polynomial 
function with respect to execution time, known as the task energy characteristic model, based on 
the time-scaling method. The minimum energy consumption (𝐸′୧ୢ୪ୣ) of idle sub-motions, which 
is obtained by the time-scaling method under constraints, can be expressed as follows [20]: 

𝐸′୧ୢ୪ୣ = ෍ ⎣⎢⎢⎢
⎡൫𝑃୐ୈ_୮୰ୣ + 𝑃തୡ୭୭୪ + 𝜇଴,୧ୢ୪ୣ,௝ᇱ ൯𝑇′୧ୢ୪ୣ,௝ + 𝜇ଵ,୧ୢ୪ୣ,௝ᇱ + 𝜇ଶ,୧ୢ୪ୣ,௝ᇱ 1𝑇′୧ୢ୪ୣ,௝+𝜇ଷ,୧ୢ୪ୣ,௝ᇱ 1𝑇′୧ୢ୪ୣ,௝ଶ + 𝜇ସ,୧ୢ୪ୣ,௝ᇱ 1𝑇′୧ୢ୪ୣ,௝ଷ ⎦⎥⎥⎥

⎤ே౟ౚౢ౛
௝ୀଵ , (1)

𝑇′୧ୢ୪ୣ,௝= max ൝𝑇୫୧୬,୧ୢ୪ୣ,௝(𝑃𝑜𝑠𝑒୵,𝑃𝑜𝑠𝑡𝑢𝑟𝑒୲୭୭୪௝,ଵ ,⋯ ,𝑃𝑜𝑠𝑡𝑢𝑟𝑒୲୭୭୪௝,ே౪౥౥ౢ , 𝐼𝐾𝑆௝,ଵ,⋯ , 𝐼𝐾𝑆௝,ே౪౥౥ౢ),𝑇୉ି୭୮୲,୧ୢ୪ୣ,௝(𝑃𝑜𝑠𝑒୵,𝑃𝑜𝑠𝑡𝑢𝑟𝑒୲୭୭୪௝,ଵ ,⋯ ,𝑃𝑜𝑠𝑡𝑢𝑟𝑒୲୭୭୪௝,ே౪౥౥ౢ , 𝐼𝐾𝑆௝,ଵ,⋯ , 𝐼𝐾𝑆௝,ே౪౥౥ౢ)ൡ, (2)

where 𝑁୧ୢ୪ୣ represents the number of idle sub-motions, the polynomial coefficients 𝜇଴,୧ୢ୪ୣ,௝ᇱ , 𝜇ଵ,୧ୢ୪ୣ,௝ᇱ , 𝜇ଶ,୧ୢ୪ୣ,௝ᇱ , 𝜇ଷ,୧ୢ୪ୣ,௝ᇱ , 𝜇ସ,୧ୢ୪ୣ,௝ᇱ  are the task energy consumption coefficients of the 𝑗-th idle sub-
motion. Further details of the polynomial coefficients are provided by Eqs. (13-34) in reference 
[20]. 𝑃୐ୈ_୮୰ୣ is the input power of lasers in the lasing-preparation state, 𝑃തୡ୭୭୪ is the average power 
of the chiller. 𝑇′୧ୢ୪ୣ,௝ is the execution time corresponding to minimum energy consumption of the 𝑗-th idle sub-motion under constraints, and 𝑇୫୧୬,୧ୢ୪ୣ,௝ is the minimum execution time of the 𝑗-th 
idle sub-motion with satisfying constraints. 𝑇୉ି୭୮୲,୧ୢ୪ୣ,௝ is the energy-optimal time of the 𝑗-th idle 
sub-motion. 𝑃𝑜𝑠𝑒୵ represents the workpiece layout pose. 𝑃𝑜𝑠𝑡𝑢𝑟𝑒୲୭୭୪௝,௜  (𝑖 = 1, …, 𝑁୲୭୭୪) and 𝐼𝐾𝑆௝,௜ represent the tool posture and the inverse kinematics solution of robots at the sampling 
point 𝑖 along the 𝑗-th idle sub-motion path curve, respectively. 𝑁୲୭୭୪ is the sampling point number. 

Based on the methodology for rigid body pose description, 𝑃𝑜𝑠𝑒୵ can be represented by six 
variables: 𝑥୵, 𝑦୵, 𝑧୵, 𝜃େ, 𝜃୆, and 𝜃୅. 𝜃େ, 𝜃୆, and 𝜃୅ are the rotational angles of {CS୛} about the 𝑋, 𝑌, and 𝑍 axes of {CS଴}, respectively, which describe the posture of the workpiece in {CS଴}. (𝑥୵,𝑦୵, 𝑧୵)் is the position vector of the origin of {CS୛} in {CS଴}, describing the position of the 
workpiece in {CS଴}. Similarly, the laser tool pose in {CS୛} can be represented by six variables: 𝑥, 𝑦, 𝑧, 𝐶, 𝐵, and 𝐴. 𝐶, 𝐵, and 𝐴 represent the rotational angles of {CS୘୭୭୪} about the 𝑋, 𝑌, and 𝑍 
axes of {𝐶𝑆ௐ}, respectively, which describe the laser tool posture in {CS୛}. (𝑥,𝑦, 𝑧)் is the 
position vector of the origin of {CS୘୭୭୪} (namely the tool centre point) in {CS୛}, which represents 
the position of the laser tool in {CS୛}. 

For a specified workpiece, the target positions that the tool centre point (TCP) of the laser tool 
needs to achieve in {CS୛} are specific. However, at each target position, the posture of the laser 
tool can be adjusted. Moreover, for a given pose of the laser tool, the inverse kinematics of robots 
have eight possible solutions (𝒒#ଵ, 𝒒#ଶ, 𝒒#ଷ, 𝒒#ସ, 𝒒#ହ, 𝒒#଺, 𝒒#଻, 𝒒#଼), which are automatically 
numbered during the solving process. However, optimizing the posture of laser tools and the 
inverse kinematic solution at each target point of continuous path motion will introduce countless 
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decision variables. Therefore, only the postures of laser tools and the inverse kinematic solutions 
at the starting and ending points of continuous path motion are considered, thus ensuring a 
reasonable number of decision variables.  

Therefore, for the problem of optimizing the minimum energy consumption of robot laser 
welding systems obtained by the time-scaling method, the decision variable set is {𝑥୵, 𝑦୵, 𝑧୵, 𝜃୅, 𝜃୆, 𝜃େ, 𝐴௝,ୱ, 𝐵௝,ୱ, 𝐶௝,ୱ, 𝐴௝,ୣ, 𝐵௝,ୣ, 𝐶௝,ୣ, 𝑐𝑓௝,ୱ, 𝑐𝑓௝,ୣ|𝑗 = 1, …, 𝑁୧ୢ୪ୣ}. (𝐴௝,ୱ,𝐵௝,ୱ,𝐶௝,ୱ) and (𝐴௝,ୣ,𝐵௝,ୣ,𝐶௝,ୣ) are the attitude angles of the laser tool at the starting and ending points of the 𝑗-th 
idle sub-motion, respectively. 𝑐𝑓௝,ୱ and 𝑐𝑓௝,ୣ are the decision variables of inverse kinematic 
solutions at the starting and ending points, respectively. The general mathematical model can be 
expressed as follows: min   𝐸′୧ୢ୪ୣ = 𝐸൫𝑥୵,𝑦୵, 𝑧୵,𝜃୅,𝜃୆,𝜃େ,⋯ ,𝐴௝,ୱ,𝐵௝,ୱ,𝐶௝,ୱ, 𝑐𝑓௝,ୱ,𝐴௝,ୣ,𝐵௝,ୣ,𝐶௝,ୣ, 𝑐𝑓௝,ୣ,⋯ ൯, 𝑗 = 1,2, … ,𝑁୧ୢ୪ୣ, (3)𝑠. 𝑡.     𝑥୵,୫୧୬ ≤ 𝑥୵ ≤ 𝑥୵,୫ୟ୶,      𝑦୵,୫୧୬ ≤ 𝑦୵ ≤ 𝑦୵,୫ୟ୶,      𝑧୵,୫୧୬ ≤ 𝑧୵ ≤ 𝑧୵,୫ୟ୶,𝜃୅,୫୧୬ ≤ 𝜃୅ ≤ 𝜃୅,୫ୟ୶,       𝜃୆,୫୧୬ ≤ 𝜃୆ ≤ 𝜃୆,୫ୟ୶,       𝜃େ,୫୧୬ ≤ 𝜃େ ≤ 𝜃େ,୫ୟ୶,  (4)𝐴௝,ୱ,୫୧୬ ≤ 𝐴௝,ୱ ≤ 𝐴௝,ୱ,୫ୟ୶,       𝐵௝,ୱ,୫୧୬ ≤ 𝐵௝,ୱ ≤ 𝐵௝,ୱ,୫ୟ୶,       𝐶௝,ୱ,୫୧୬ ≤ 𝐶௝,ୱ ≤ 𝐶௝,ୱ,୫ୟ୶,𝐴௝,ୣ,୫୧୬ ≤ 𝐴௝,ୣ ≤ 𝐴௝,ୣ,୫ୟ୶,       𝐵௝,ୣ,୫୧୬ ≤ 𝐵௝,ୣ ≤ 𝐵௝,ୣ,୫ୟ୶,       𝐶௝,ୣ,୫୧୬ ≤ 𝐶௝,ୣ ≤ 𝐶௝,ୣ,୫ୟ୶, 𝑗 = 1, … ,𝑁୧ୢ୪ୣ, (5)𝑐𝑓௝,ୱ,   𝑐𝑓௝,ୣ ∈ {#1, #2, . . . , #8},      𝑗 = 1, … ,𝑁୧ୢ୪ୣ, (6)𝑞௜,୫୧୬ ≤ 𝑞௜ ≤ 𝑞௜,୫ୟ୶,       ∀𝑖 = 1,⋯ ,6, (7)|𝑞ሶ௜| ≤ 𝑉୪୧୫(௜) ,       |𝑞ሷ௜| ≤ 𝐴୪୧୫(௜) ,       |𝑞௜| ≤ 𝐽୪୧୫(௜) ,       ∀𝑖 = 1,⋯ ,6, (8)𝑥ሶ ≤ 𝑉୪୧୫,       |𝑥ሷ | ≤ 𝐴୪୧୫,       |𝑥| ≤ 𝐽୪୧୫, (9)෍ 𝑇′୧ୢ୪ୣ,௝ே೔೏೗೐
௝ୀଵ ≤ 𝑇୧ୢ୪ୣ_୪୧୫, (10)

where Eqs. (4-5) address the basic constraints of workspace and laser tool postures. Since the 
robotic workspace is a non-ideal cube, the flexibility outside the flexible space is limited, and the 
intricate spatial interferences exist, any alteration in 𝑥୵, 𝑦୵, 𝑧୵, 𝜃୅, 𝜃୆, 𝜃େ, 𝐴௝,ୱ, 𝐵௝,ୱ, 𝐶௝,ୱ, 𝐴௝,ୣ, 𝐵௝,ୣ, or 𝐶௝,ୣ will inevitably lead to variations in the feasible domains of other variables. Therefore, 
the setting values for parameters 𝑥୵,୫୧୬, 𝑦୵,୫୧୬, 𝑧୵,୫୧୬, 𝜃୅,୫୧୬, 𝜃୆,୫୧୬, 𝜃େ,୫୧୬, 𝐴௝,ୱ,୫୧୬, 𝐵௝,ୱ,୫୧୬, 𝐶௝,ୱ,୫୧୬, 𝐴௝,ୣ,୫୧୬, 𝐵௝,ୣ,୫୧୬, 𝐶௝,ୣ,୫୧୬, 𝑥୵,୫ୟ୶, 𝑦୵,୫ୟ୶, 𝑧୵,୫ୟ୶, 𝜃୅,୫ୟ୶, 𝜃୆,୫ୟ୶, 𝜃େ,୫ୟ୶, 𝐴௝,ୱ,୫ୟ୶, 𝐵௝,ୱ,୫ୟ୶, 𝐶௝,ୱ,୫ୟ୶, 𝐴௝,ୣ,୫ୟ୶, 𝐵௝,ୣ,୫ୟ୶, and 𝐶௝,ୣ,୫ୟ୶ are redundant. The purpose is to encompass all 
feasible domains of the corresponding variables. Due to the dependence of the space required for 
processing a workpiece on the geometric shape and size of the tool, it cannot be ensured that the 
space required will entirely fall within the robotic workspace, even if the workpiece is located 
within the robotic workspace. Therefore, satisfying Eqs. (4-5) does not guarantee the attainability 
of all processing poses. Eq. (7) represents the joint position constraints. If there exists at least one 
inverse solution that satisfies all the joint position constraints for a processing pose, then the 
processing pose is deemed reachable; otherwise, it is deemed unreachable. Eq. (8) represents the 
constraints of joint velocities, accelerations, and jerks. Eq. (9) describes the limitations of the tool 
velocity, acceleration, and jerk. Eq. (10) signifies the constraint of processing time. 

3. Solution approach based on multi-objective metaheuristic algorithms 

3.1. Objective function deconstruction based on system energy consumption characteristics 

The calculation of Eq. (1) is highly time-consuming due to the requirement for intricate 6-axis 
robot dynamics calculations during the optimization process. Therefore, this paper deconstructs 
the energy consumption objective into multiple feature objectives, which are computationally 
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efficient, based on the characteristics and key influencing factors of energy consumption of robot 
laser welding systems. Then, the single-objective optimization of energy consumption is 
transformed into a multi-objective optimization of these feature objectives. Finally, we will only 
compute the energy consumption of the Pareto optimal solutions resulting from multi-objective 
optimization, to identify the solution with the lowest energy consumption. 

We conducted a detailed study on the energy consumption characteristics of a typical robot 
laser welding system, which forms the basis for the deconstruction of energy consumption 
objectives in this paper. The key analyses are presented as follows: 

1) During the idle sub-motion, because the total power of the laser and the chiller is still very 
large, the energy-optimal point of the energy characteristic curve for the whole system is still 
significantly shifted to the left compared to the robot, as depicted in Fig. 2. The results indicate 
that, for the idle sub-motion, the energy consumption of the whole system is positively correlated 
with execution time to a large extent. Therefore, the idle motion time is a very important feature 
objective.  

2) In addition, on the right side of the energy-optimal point, the smaller the time is, the smaller 
the rate of energy consumption reduction is. Therefore, it is always hoped that the speed of each 
idle sub-motion is as high as possible, while also being as close as possible, to save energy through 
fully utilizing the energy consumption optimization features of the system.  

3) Moreover, for a specified task, robotic energy consumption is not only related to execution 
time, but also strongly related to the angle of joint rotation. The total joint rotation angle directly 
reflects the energy consumption coefficients of the task. And the larger the energy consumption 
coefficients are, the higher the overall energy consumption of the robot is. Therefore, the total 
joint rotation angle of idle motion is also an important feature objective. Considering that the 
energy consumption of the unit angle of each joint is different, a weighted sum is generally used. 

Therefore, this paper replaces the energy consumption objective with the total time (𝑓୲) of idle 
sub-motions, the weighted sum (𝑓஘) of joint rotation angles in all idle sub-motions, and the 
maximum difference (𝑓୯ሶ ) among the speeds of idle sub-motions, as the criteria to determine the 
individual performance in the optimization process. The equivalent joint velocity (𝑞ሶത୧ୢ୪ୣ,௝,  𝑗 = 1,…, 𝑁୧ୢ୪ୣ), obtained by dividing the weighted sum of joint rotation angles by the motion time, 
is used for each idle sub-motion. Finally, only the energy consumption of individuals in the Pareto 
set, which are found through multi-objective optimization, is calculated, thus greatly reducing the 
calculation amount required for the energy consumption optimization process. The new objective 
function formulas are as follows: 

⎩⎪⎪
⎨⎪
⎪⎧𝑓୲ = ෍ 𝑇′୧ୢ୪ୣ,௝ே౟ౚౢ౛

௝ୀଵ ,
𝑓஘ = ෍𝜔௜𝜃௜଺

௜ୀଵ ,𝑓୯ሶ = max൫𝑞ሶത୧ୢ୪ୣ,ଵ,⋯ , 𝑞ሶത୧ୢ୪ୣ,ே౟ౚౢ౛൯ − min൫𝑞ሶത୧ୢ୪ୣ,ଵ,⋯ , 𝑞ሶത୧ୢ୪ୣ,ே౟ౚౢ౛൯,
 (11)

𝑞ሶത୧ୢ୪ୣ,௝ = ∑ 𝜔௜𝜃୧ୢ୪ୣ,௝,௜଺௜ୀଵ𝑇′୧ୢ୪ୣ,௝ ,    ∀𝑗 ∈ {1,2, … ,𝑁୧ୢ୪ୣ}, (12)

where 𝜃௜ is the rotation angle of joint 𝑖 in all idle sub-motions, 𝜔௜ is the corresponding weight 
value of joint 𝑖. The weight value of each joint is obtained by the Analytic Hierarchy Process 
method [25]. 
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3.2. NSGA-II algorithm for optimizing the energy consumption of robot laser welding 
systems 

The NSGA-II algorithm proposed by Deb et al. [26] has both good distribution and fast 
convergence rate, while it is widely used by scholars at home and abroad for multi-objective 
optimization problems. The NSGA-II algorithm with an elite strategy is very suitable for solving 
the problem in this paper. 

Different robot poses have different eight inverse kinematic solutions and the amount and 
sequence number of feasible inverse kinematic solutions are also different. Therefore, the solution 
of the entire problem is divided into two parts: the basic solution, composed of decision variables 
{𝑥୵, 𝑦୵, 𝑧୵, 𝜃୅, 𝜃୆, 𝜃େ, 𝐴௝,ୱ, 𝐵௝,ୱ, 𝐶௝,ୱ, 𝐴௝,ୣ, 𝐵௝,ୣ, 𝐶௝,ୣ, 𝑐𝑓௝,ୱ, 𝑐𝑓௝,ୣ|𝑗 =1,…, 𝑁୧ୢ୪ୣ} of the workpiece 
layout pose and laser tool posture, and the subordinate solution composed of decision variables  
{𝑐𝑓௝,ୱ, 𝑐𝑓௝,ୣ|𝑗 = 1,…, 𝑁୧ୢ୪ୣ} of eight inverse kinematic solutions at the starting and ending points 
of all idle sub-motions.  

The optimization of the basic solution is used as the main loop. Because the basic solution is 
only obtained under the basic workspace constraint (4) and the laser tool posture constraint (5), it 
cannot be guaranteed that all processing poses, which are determined by the workpiece layout 
pose satisfying constraints (4) and the laser tool posture satisfying constraints (5), are reachable. 
For each basic solution, the reachability of each processing pose should be firstly judged to 
determine whether it is feasible. The basic solution with unreachable processing poses is called an 
unreachable solution, while the set of unreachable solutions is directly used as the worst 
non-dominated level. 

For a basic solution which satisfies the accessibility constraint, it is necessary to determine the 
corresponding subordinate solution. The method is as follows: firstly, based on the three feature 
objectives in Eq. (11), the NSGA-II algorithm is used to obtain a set of Pareto-optimal solutions 
about the selection of eight inverse kinematic solutions at the starting and ending  points of each 
sub-motion; then, the Analytic Hierarchy Process method is used to select a satisfactory solution 
from the Pareto set obtained as the subordinate solution corresponding to the basic solution. This 
process is called configuration decision-making. In the configuration decision-making, the 
following method is used to dimensionless three objectives. Let 𝑈𝑛𝑖𝑡௜,௝ represent the 
dimensionless value of the objective 𝑗 (𝑗 can be taken as 𝑓୲, 𝑓஘, and 𝑓୯ሶ ) corresponding to the 
Pareto-optimal solution 𝑖, and then the following function is defined: 

𝑈𝑛𝑖𝑡௜,௝ = 𝑓௝୫ୟ୶ − 𝑓௜,௝𝑓௝୫ୟ୶ − 𝑓௝୫୧୬, (13)𝑓௝୫ୟ୶ = max൛𝑓ଵ,௝,⋯ , 𝑓௜,௝ ,⋯ , 𝑓ேౌ౗,௝ൟ,       𝑓௝୫୧୬ = min൛𝑓ଵ,௝,⋯ , 𝑓௜,௝ ,⋯ , 𝑓ேౌ౗,௝ൟ, (14)

where 𝑓௜,௝ is the function value of the objective 𝑗 of the Pareto-optimal solution 𝑖, 𝑁୔ୟ is the 
number of Pareto-optimal solutions. 

Fig. 3 shows the integrated optimization process based on the NSGA-II algorithm. 𝐺𝑒𝑛 is the 
current number of iterations. 𝑁୧୲ୣ is the maximum number of iterations. 𝐏଴ and 𝐐଴ are the initial 
parent and offspring population of the basic solution, respectively. 𝐏୲ and 𝐐୲ are the contemporary 
parent and offspring population of the basic solution, respectively. 𝐑୲ is the combined population 
of 𝐏୲ and 𝐐୲. 𝐏୲ାଵ and 𝐐୲ାଵ are the new parent and offspring population of the basic solution, 
respectively. 𝓕୩ is the non-dominated level obtained by the 𝑘-th fast non-dominated sorting. The 
dominant relationship adopted is that if individual U and individual V meet any of the following 
conditions, then individual U dominates individual V: 

1) Individual U satisfies all constraints while individual V does not. 
2) Both individual U and individual V meet the accessibility constraint, but each objective 

function value of individual U is not bigger than the corresponding value of individual V and at 
least one objective function value is less than the corresponding value of individual V. 
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3) Individual U satisfies the accessibility constraint, while individual V does not satisfy the 
accessibility constraint. 

4) Both individual U and individual V do not satisfy the accessibility constraint, but the 
unreachable points of individual U are less than those of individual V. 

 
Fig. 3. The integrated optimization process based on the NSGA-II algorithm 

4. Case study 

In the section, a case study is conducted in detail to evaluate the energy-saving potential of 
robot laser welding systems and verify the effectiveness of the proposed methods. 

4.1. Case introduction 

The workpiece is a bicycle frame. The processing platform is the robot laser welding system 
used in [20], and the welding process parameters is: laser power of 2.75 kW, welding speed of 
3 m/min (50 mm/s), and defocusing distance of 0 mm. Fig. 4 shows the three-dimensional model 
of the bicycle frame and the sub-motions corresponding to a welding process selected. The 
welding process selected has 12 idle sub-motions and 11 welding sub-motions. The idle 
sub-motions and welding sub-motions are alternating and the sequence is shown in Fig. 4. The 
path lengths of welding sub-motion □1 to □11 are 19.70 mm, 58.74 mm, 22.20 mm, 62.02 mm, 
52.98 mm, 61.11 mm, 33.60 mm, 31.98 mm, 23.69 mm, 37.60 mm, and 34.80 mm, respectively. 
The idle sub-motions, which are represented by the number with a circle, adopt the point-to-point 
motion. 

By analyzing the characteristics of the selected welding process, the following knowledges 
can be easily obtained. Considering the fixed configuration of robots at the Home position, only 
the laser tool orientation and inverse kinematic solution at the end-point need to be taken into 
account for the initial idle sub-motion, while only the laser tool orientation and inverse kinematic 
solution at the start-point need to be taken into account for the final idle sub-motion. The laser 
tool orientation and the selection of eight inverse kinematic solutions at the start-point of the 
subsequent sub-motion are consistent with those at the end-point of the preceding sub-motion. It 
is necessary for all target points in continuous path motion to select the inverse kinematic solution 
with the same index, to ensure continuous motion along the specified path. Consequently, only 
one variable, which indicates the selection of inverse kinematic solutions at the start-point is 
required for continuous path motion. The orientation of the laser tool axis keeps the value 
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predetermined along the whole trace of the tool centre point for a welding sub-motion, and 
therefore the attitude angle 𝐵 and 𝐶 of the laser tool in {CS୛} are constant. 

Therefore, the basic solution is {𝑥୵, 𝑦୵, 𝑧୵, 𝜃୅, 𝜃୆, 𝜃େ, 𝐴ଵ,ୣ, 𝐴ଶ,ୱ, 𝐴ଶ,ୣ, 𝐴ଷ,ୱ, 𝐴ଷ,ୣ, 𝐴ସ,ୱ, 𝐴ସ,ୣ, 𝐴ହ,ୱ, 𝐴ହ,ୣ, 𝐴଺,ୱ, 𝐴଺,ୣ, 𝐴଻,ୱ, 𝐴଻,ୣ, 𝐴଼,ୱ, 𝐴଼,ୣ, 𝐴ଽ,ୱ, 𝐴ଽ,ୣ, 𝐴ଵ଴,ୱ, 𝐴ଵ଴,ୣ, 𝐴ଵଵ,ୱ, 𝐴ଵଵ,ୣ, 𝐴ଵଶ,ୱ} and the 
subordinate solution is {𝑐𝑓ଵ,ୣ, 𝑐𝑓ଶ,ୣ, 𝑐𝑓ଷ,ୣ, 𝑐𝑓ସ,ୣ, 𝑐𝑓ହ,ୣ, 𝑐𝑓଺,ୣ, 𝑐𝑓଻,ୣ, 𝑐𝑓 ,ୣ, 𝑐𝑓ଽ,ୣ, 𝑐𝑓ଵ଴,ୣ, 𝑐𝑓ଵଵ,ୣ} for 
the problem corresponding to the welding process selected of the bicycle frame. The values of 
attitude angles 𝐵 and 𝐶 are determined by the value of the attitude angle 𝐴 and the orientation of 
the laser tool axis planned. The value range of each decision variable in the basic solution is shown 
in Table 1. 

 
Fig. 4. The bicycle frame model and welding paths 

Table 1. The value ranges of decision variables 
Decision 
variables 

Value  
ranges 

Decision 
variables 

Value 
ranges 

Decision 
variables 

Value 
ranges 

Decision 
variables 

Value  
ranges 𝑥୵ (mm) [970, 1940] 𝐴ଶ,ୱ (°) [–100, 100] 𝐴ହ,ୣ (°) [–100, 100] 𝐴ଽ,ୱ (°) [–100, 100] 𝑦୵ (mm) [–1300, 1300] 𝐴ଶ,ୣ (°) [–100, 100] 𝐴଺,ୱ (°) [–100, 100] 𝐴ଽ,ୣ (°) [–100, 100] 𝑧୵ (mm) [0, 2300] 𝐴ଷ,ୱ (°) [–100, 100] 𝐴଺,ୣ (°) [–100, 100] 𝐴ଵ଴,ୱ (°) [–100, 100] 𝜃୅ (°) [–150, 150] 𝐴ଷ,ୣ (°) [–100, 100] 𝐴଻,ୱ (°) [–100, 100] 𝐴ଵ଴,ୣ (°) [–100, 100] 𝜃୆ (°) [–100, 100] 𝐴ସ,ୱ (°) [–100, 100] 𝐴଻,ୣ (°) [–100, 100] 𝐴ଵଵ,ୱ (°) [–100, 100] 𝜃େ (°) [–100, 100] 𝐴ସ,ୣ (°) [–100, 100] 𝐴଼,ୱ (°) [–100, 100] 𝐴ଵଵ,ୣ (°) [–100, 100] 𝐴ଵ,ୣ (°) [–100, 100] 𝐴ହ,ୱ (°) [–100, 100] 𝐴଼,ୣ (°) [–100, 100] 𝐴ଵଶ,ୱ (°) [–100, 100] 

Table 2. The original scheme 𝑥୵ (mm) 𝑦୵ (mm) 𝑧୵ (mm) 𝜃୅ (°) 𝜃୆ (°) 𝜃େ (°) 𝐴ଵ,ୣ (°) 𝐴ଶ,ୱ (°) 𝐴ଶ,ୣ (°) 𝐴ଷ,ୱ (°) 
1420 0 800 10 0 0 0 0 0 0 𝐴ଷ,ୣ (°) 𝐴ସ,ୱ (°) 𝐴ସ,ୣ (°) 𝐴ହ,ୱ (°) 𝐴ହ,ୣ (°) 𝐴଺,ୱ (°) 𝐴଺,ୣ (°) 𝐴଻,ୱ (°) 𝐴଻,ୣ (°) 𝐴଼,ୱ (°) 

0 0 0 0 0 0 0 0 0 0 𝐴଼,ୣ (°) 𝐴ଽ,ୱ (°) 𝐴ଽ,ୣ (°) 𝐴ଵ଴,ୱ (°) 𝐴ଵ଴,ୣ (°) 𝐴ଵଵ,ୱ (°) 𝐴ଵଵ,ୣ (°) 𝐴ଵଶ,ୱ (°) 𝑐𝑓ଵ,ୣ 𝑐𝑓ଶ,ୣ 
0 0 0 0 0 0 0 0 #7 #7 𝑐𝑓ଷ,ୣ 𝑐𝑓ସ,ୣ 𝑐𝑓ହ,ୣ 𝑐𝑓଺,ୣ 𝑐𝑓଻,ୣ 𝑐𝑓 ,ୣ 𝑐𝑓ଽ,ୣ 𝑐𝑓ଵ଴,ୣ 𝑐𝑓ଵଵ,ୣ – 

#7 #7 #7 #7 #7 #7 #7 #7 #7 – 

In general, the workers mainly focus on the accessibility of the processing posture, the 
singularity of robotic configurations, the continuity of continuous path motion, and collision 
avoidance. The relevant decision variables of the original scheme are determined according to the 
general principle. Usually, the workpiece is installed in the middle of the robot workspace to 
achieve maximum processing flexibility. According to the principle of no bias, the attitude angles 
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of the laser tool at the starting and ending points of each sub-motion are all taken as zero based on 
the corresponding value ranges in Table 1. Under the layout pose of the bicycle frame and laser 
tool postures aforementioned, except for the start-point of the first idle sub-motion and the 
end-point of the final idle sub-motion, the #7 inverse kinematic solution is selected at other starting 
and ending points of sub-motions, to achieve the minimum change in joint position relative to 
Home position. Table 2 shows the decision variable values corresponding to the original scheme. 

4.2. Results and analysis 

The independent optimization and integrated optimization of three factors: the workpiece 
layout pose, the laser tool posture, and the inverse kinematics solution are performed. In all 
optimizations, the population size is 𝑁୔ = 100, the crossover probability is 0.7, the mutation 
probability is 0.2. All optimization calculations are performed in the MATLAB software on a 
computer with an Intel i3-8100 CPU 3.60 GHz and 8-GB DDR2. In the following text, to simplify 
the expression, 𝑃𝑜𝑠𝑒୛ is used to represent the workpiece layout pose, 𝑃𝑜𝑠𝑡𝑢𝑟𝑒୲୭୭୪ is used to 
represent the laser tool posture, and 𝐼𝐾𝑆 is used to represent the inverse kinematics solution. 

4.2.1. Independent optimization of 𝑃𝑜𝑠𝑒୛, 𝑃𝑜𝑠𝑡𝑢𝑟𝑒୲୭୭୪, and 𝐼𝐾𝑆 

To demonstrate the impact of three factors: 𝑃𝑜𝑠𝑒୛, 𝑃𝑜𝑠𝑡𝑢𝑟𝑒୲୭୭୪, and 𝐼𝐾𝑆 on the energy 
consumption and excution time of idle sub-motions, the independent optimization of each factor 
is carried out with the optimization order of 𝑃𝑜𝑠𝑒୛→𝑃𝑜𝑠𝑡𝑢𝑟𝑒୲୭୭୪→𝐼𝐾𝑆. The maximum iteration 
number is 200 for the optimization of each factor. Two types of optimization situations are 
considered, as shown in Table 3. 

Table 3. Two optimization situations 
Optimization 

order 
Optimization situation I Optimization situation II 𝑃𝑜𝑠𝑒୛ 𝑃𝑜𝑠𝑡𝑢𝑟𝑒୲୭୭୪ 𝐼𝐾𝑆 𝑃𝑜𝑠𝑒୛ 𝑃𝑜𝑠𝑡𝑢𝑟𝑒୲୭୭୪ 𝐼𝐾𝑆 

First Optimizing Original 
scheme 

Original 
scheme Optimizing Original 

scheme 
Original 
scheme 

Second Original 
scheme Optimizing Original 

scheme 
Optimized 

scheme Optimizing Original 
scheme 

Third Original 
scheme 

Original 
scheme Optimizing Optimized 

scheme 
Optimized 

scheme Optimizing 

Furthermore, we conducted a single-objective optimization with using energy consumption as 
the cost function under identical conditions. During this procedure, we adopted a genetic algorithm 
which incorporates an elitism preservation strategy. Table 4 provides a comparative analysis of 
the results and computational efficiency between the energy consumption-based single-objective 
optimization and the multi-objective optimization proposed. 𝐸୫୧୬∗  is the energy consumption of 
the best individual obtained by the optimization, and 𝑇∗ is the execution time corresponding to 𝐸୫୧୬∗ . 

According to the data presented in Table 4, compared to the single-objective optimization 
focused on energy consumption, the multi-objective optimization method proposed achieves a 
significant reduction in optimization computation time, exceeding 95 %. Furthermore, it yields 
remarkably similar optimization results, exhibiting deviations of less than 1.5 %. Additionally, it 
is essential to exhibit the correlation characteristics between the three feature targets and energy 
consumption. When each of the three feature objectives 𝑓୲, 𝑓஘, and 𝑓୯ሶ  and the energy consumption 
objective is minimum or maximum, the results of the corresponding Pareto-optimal solution, 
which is obtained by the optimization of 𝑃𝑜𝑠𝑒୛, are shown in Table 5. 

According to the data in Table 5, we observe that the minima of any one of three feature 
objectives do not align with the minimum energy consumption scenario. This suggests a coupled 
relationship among these feature objectives and energy consumption. Specifically, the fluctuation 
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in energy consumption is not solely determined by the variation in a single feature objective; it is 
also impacted by the degree of change in the other two feature objectives. In summary, among the 
three feature objectives examined, 𝑓୲ exhibits the most substantial impact on energy consumption, 
followed by 𝑓஘, while 𝑓୯ሶ  has a comparably smaller influence. The results suggest that the selection 
of these three feature objectives is appropriate, and they can collectively function as cost functions 
for assessing energy consumption. The solving approach proposed is reliable for the energy 
consumption optimization problem. 

Table 4. A comparison of results and computational efficiency between  
the single-objective optimization and the multi-objective optimization proposed 

 Optimization situation I Optimization situation II 
 𝑃𝑜𝑠𝑒୛ 𝑃𝑜𝑠𝑡𝑢𝑟𝑒୲୭୭୪ 𝐼𝐾𝑆 𝑃𝑜𝑠𝑒୛ 𝑃𝑜𝑠𝑡𝑢𝑟𝑒୲୭୭୪ 𝐼𝐾𝑆 

Single-objective 
optimization 

Computation 
time (min) 635.57 717.38 951.20 635.57 779.16 844.62 𝐸୫୧୬∗  (J) 29075.84 29445.11 37948.05 29075.84 27630.73 26497.63 𝑇∗ (s) 4.31 4.38 5.46 4.31 4.16 4.03 

Multi-objective 
optimization 

proposed 

Computation 
time (min) 26.85 22.14 7.94 26.85 22.75 3.89 𝐸୫୧୬∗  (J) 29239.43 29753.34 38497.56 29239.43 27486.89 26601.83 𝑇∗ (s) 4.33 4.43 5.54 4.33 4.13 4.05 

Deviation in computational time –95.78 % –96.91 % –99.16 % –95.78 % –97.08 % –99.54 % 
Deviation in energy consumption 0.56 % 1.04 % 1.45 % 0.56 % –0.52 % 0.39 % 

Note: The deviation = (Multi-objective optimization value - Single-objective optimization value)/Single-
objective optimization value *100 % 

Table 5. Corresponding results for minimum and maximum of each objective, respectively 
Category 𝑓୲ (s) 𝑓஘ (°) 𝑓୯ሶ  (°/s) Energy consumption (J) 

Minimum 𝑓୲ 4.12 159.30 53.08 32728.18 
Maximum 𝑓୲ 5.36 141.80 27.27 35436.97 
Minimum 𝑓஘ 4.62 119.71 39.30 30110.89 
Maximum 𝑓஘ 4.12 159.53 52.57 32707.60 
Minimum 𝑓୯ሶ  5.36 141.80 27.27 35436.97 
Maximum 𝑓୯ሶ  4.12 158.91 53.21 32662.03 

Minimum energy consumption 4.33 127.58 41.30 29239.43 
Maximum energy consumption 5.36 141.80 27.27 35436.97 

Original scheme 6.00 188.38 41.82 41242.79 

To illustrate the influence of three factors on energy consumption, Figs. 5-6 show the 
Pareto-optimal solutions obtained by the optimization of three factors and the corresponding 
energy consumption simulation values for the optimization situation I and II, respectively. 𝑁୔ୟ୰ୣ୲୭ 
is the number of Pareto-optimal solutions. 𝐸୧ୢ୪ୣ represents the total energy consumption of idle 
sub-motions. 

According to the results in Figs. 5-6, each of the three factors 𝑃𝑜𝑠𝑒୛, 𝑃𝑜𝑠𝑡𝑢𝑟𝑒୲୭୭୪, and 𝐼𝐾𝑆 
has a significant impact on the energy consumption and execution time of idle sub-motions. The 
effect of optimizing multiple factors is better than that of optimizing a single factor. Compared to 
only optimizing one of 𝑃𝑜𝑠𝑒୛, 𝑃𝑜𝑠𝑡𝑢𝑟𝑒୲୭୭୪, and 𝐼𝐾𝑆, the optimizition of all three factors leads 
to reductions in energy consumption by 9.02 %, 10.59 %, and 30.90 %, respectively. Notably, the 
optimization effects of 𝑃𝑜𝑠𝑡𝑢𝑟𝑒୲୭୭୪ and 𝐼𝐾𝑆 considerably differ for different 𝑃𝑜𝑠𝑒୛ or 𝑃𝑜𝑠𝑡𝑢𝑟𝑒୲୭୭୪. The significant variance suggests that 𝑃𝑜𝑠𝑒୛, 𝑃𝑜𝑠𝑡𝑢𝑟𝑒୲୭୭୪, and 𝐼𝐾𝑆 are 
interconnected and mutually dependent. Therefore, it is imperative to consider the combined 
influence of 𝑃𝑜𝑠𝑒୛, 𝑃𝑜𝑠𝑡𝑢𝑟𝑒୲୭୭୪, and 𝐼𝐾𝑆. 
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a) The optimization  

of workpiece layout poses 

 
b) The optimization  
of laser tool postures 

 
c) The optimization of inverse 

kinematics solutions 
Fig. 5. The Pareto-optimal solutions obtained and the corresponding  

energy consumption simulation values for the optimization situation I 

 
a) The optimization  

of workpiece layout poses 

 
b) The optimization  
of laser tool postures 

 
c) The optimization of inverse 

kinematics solutions 
Fig. 6. The Pareto-optimal solutions obtained and the corresponding  

energy consumption simulation values for the optimization situation II 

4.2.2. Integrated optimization of 𝑃𝑜𝑠𝑒୛, 𝑃𝑜𝑠𝑡𝑢𝑟e୲୭୭୪, and 𝐼𝐾𝑆 

For the independent optimization of three factors, the coupling impact of three factors on the 
optimization results is not considered. Therefore, we also do the integrated optimization of 𝑃𝑜𝑠𝑒୛, 𝑃𝑜𝑠𝑡𝑢𝑟𝑒୲୭୭୪, and 𝐼𝐾𝑆 from a random initial population. In order to ensure that the 
iteration number of the basic solutions for two ways are basically the same, the maximum iteration 
number for the integrated optimization is 400. Fig. 7 shows the Pareto-optimal solutions obtained 
after 10, 200, and 400 iterations and the corresponding energy consumption simulation values.  

 
Fig. 7. The Pareto-optimal solutions obtained by the integrated optimization  

and the corresponding energy consumption simulation values 

According to the results in Fig. 7, with the search proceeding, the individuals in the population 
move towards the Pareto-optimal region in total, the minimum energy consumption gradually 
decreases, and the non-dominated points corresponding to the Pareto-optimal solutions found are 
well distributed in the objective vector space. The difference between two minimum energy 
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consumption values found through 200 and 400 iterations is small (about 66.93 J), and the two 
minimum energy consumption values are smaller than the minimum energy consumption obtained 
by the independent optimization of three factors for the optimization situation II (reduced by 
435.62 J and 502.55 J, respectively). It indicates that the proposed integrated optimization process 
based on the NSGA-II algorithm is applicable, and the energy-saving effect of integrated 
optimization, which considers the coupling among 𝑃𝑜𝑠𝑒୛, 𝑃𝑜𝑠𝑡𝑢𝑟𝑒୲୭୭୪, and 𝐼𝐾𝑆, is better than 
that of the independent optimization. 

Table 6. The best Pareto scheme searched 𝑥୵ (mm) 𝑦୵ (mm) 𝑧୵ (mm) 𝜃୅ (°) 𝜃୆ (°) 𝜃େ (°) 𝐴ଵ,ୣ (°) 𝐴ଶ,ୱ (°) 𝐴ଶ,ୣ (°) 𝐴ଷ,ୱ (°) 
1136.28 112.68 1062.33 32.02 45.62 33.775 17.22 18 14 32 𝐴ଷ,ୣ (°) 𝐴ସ,ୱ (°) 𝐴ସ,ୣ (°) 𝐴ହ,ୱ (°) 𝐴ହ,ୣ (°) 𝐴଺,ୱ (°) 𝐴଺,ୣ (°) 𝐴଻,ୱ (°) 𝐴଻,ୣ (°) 𝐴଼,ୱ (°) 

36 –72.44 4 28 10 18 32 4 8 14 𝐴଼,ୣ (°) 𝐴ଽ,ୱ (°) 𝐴ଽ,ୣ (°) 𝐴ଵ଴,ୱ (°) 𝐴ଵ଴,ୣ (°) 𝐴ଵଵ,ୱ (°) 𝐴ଵଵ,ୣ (°) 𝐴ଵଶ,ୱ (°) 𝑐𝑓ଵ,ୣ 𝑐𝑓ଶ,ୣ 
8 20 14 32 32 16 22 –16 #3 #3 𝑐𝑓ଷ,ୣ 𝑐𝑓ସ,ୣ 𝑐𝑓ହ,ୣ 𝑐𝑓଺,ୣ 𝑐𝑓଻,ୣ 𝑐𝑓 ,ୣ 𝑐𝑓ଽ,ୣ 𝑐𝑓ଵ଴,ୣ 𝑐𝑓ଵଵ,ୣ – 

#3 #3 #3 #3 #3 #3 #3 #3 #3 – 

Table 6 shows the decision variable values corresponding to the best solution scheme found. 
The KUKA KR60-3 robot is used to carry out the motion experiments of the original scheme and 
the best solution scheme, and the execution time and robotic energy consumption data were 
measured. The energy consumption of the laser and the chiller is calculated based on the execution 
time measured. The statistical average of multiple measurement results is used for relevant 
calculations, to reduce the impact of measurement errors on the final results. The comparisons of 
processing energy consumption and execution time between the two schemes are illustrated in 
Fig. 8. The rectangular bar represents the sample mean of each parameter, and the red line 
represents the confidence interval of each parameter calculated at a 95 % confidence level. 

 
a) Comparison of energy consumption 

 
b) Comparison of execution time 

Fig. 8. Processing energy consumption and execution time of two schemes 

According to the results in Table 2, Table 6, and Fig. 8, there is a significant difference in 𝑃𝑜𝑠𝑒୛ and 𝑃𝑜𝑠𝑡𝑢𝑟𝑒୲୭୭୪ between two schemes. Compared with the original scheme, the best 
solution scheme reduces the energy consumption and execution time of idle sub-motions by 
34.91 % and 32.49 %, respectively, while the total energy consumption and execution time of the 
whole motion are reduced by 7.29 % and 13.07 %, respectively. The results show that the robot 
laser welding of complex components has great potential in energy conservation. In addition, due 
to the complexity of robot kinematics characteristics and energy consumption characteristics, 
there is a large optimization space in energy efficiency and efficiency for the processing scheme 
which is planned by operators based on the general cognition. Therefore, the optimization 
operation is necessary. 
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5. Conclusions 

This study concentrates on the energy-saving optimization methods of robotic laser welding 
of complex components, to address the challenges of high energy consumption and low energy 
efficiency. By analyzing the kinematic characteristics of 6-axis robots and the energy consumption 
characteristics of robot laser welding systems, it is evident that three factors: the layout pose of 
workpieces, the posture of laser tools, and the inverse kinematics solution substantially impact the 
optimal energy consumption and the corresponding execution time for robot laser welding systems 
performing a task. Therefore, it is crucial to optimize these factors, to enhance processing 
efficiency and energy utilization. 

The findings from the case study demonstrate the feasibility and efficacy of the proposed 
energy-saving method and problem-solving approach. Robot laser welding of complex 
components exhibits considerable potential for energy conservation in appropriate scenarios. 
Optimizing the layout pose of workpieces, the posture of laser tools, and the inverse kinematics 
solutions is an effective strategy for reducing energy consumption in the processing of complex 
components. In the case study, compared to the original scheme, the best solution scheme achieves 
a reduction of 34.91 % in energy consumption and a 32.49 % reduction in execution time for idle 
sub-motions, while decreasing total energy consumption by 7.29 % and overall execution time by 
13.07 %. 

The proposed method can be extended to optimize energy consumption in other robotic 
processing systems. Furthermore, applying the proposed method to optimize the multi-robot 
collaborative processing holds significant practical value in relevant scenarios. Furthermore, the 
development of efficient solution methods for minimizing energy consumption remains a highly 
significant research area. 
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