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Abstract. Automatic transcription of sound signals can convert audio to musical notes, which has 
significant research value. This paper extracted dual-channel constant Q transform (CQT) spectra 
from piano audio as features. In the design of the automatic transcription model, a CNN was 
employed to extract local features and then combined with a Transformer model to obtain global 
features. A CNN-Transformer automatic transcription model was established using a two-layer 
CNN and three-layer Transformers. Experiments were conducted on the MAPS and MAESTRO 
datasets. The results showed that dual-channel CQT outperformed short-time Fourier transform 
(STFT) and mono CQT in auto-transcription. Dual-channel CQT achieved the best results on 
frame-level transcription for the MAPS dataset, with a P value of 0.9115, an R value of 0.8055, 
and an F1 value of 0.8551. A sliding window with seven frames yielded the best transcription 
results. Compared with the deep neural network and CNN models, the CNN-Transformer model 
demonstrated superior performance, achieving an F1 value of 0.8551 and 0.9042 at the frame level 
for MAPS and MAESTRO datasets, respectively. These findings confirm the designed model's 
reliability for automatic piano audio transcription and highlight its practical applicability. 
Keywords: piano audio, sound signal, constant Q transform, automatic transcription. 

1. Introduction 

The inheritance and development of music are very important [1]. With the application of 
digitalization, informatization, and other methods in the field of music, there has been increasing 
research on the recording and preservation of music. Automatic transcription of sound signals 
involves converting raw audio into music notation or musical instrument digital interface (MIDI) 
data, which plays an important role in various applications [2]. It supports music information 
retrieval (MIR) [3], enables error checking of audio via scores, and improves the efficiency of 
score annotation, reducing human resources and the cost of implementation. In music 
composition, real-time recording of music scores can be achieved through automatic transcription 
models, facilitating composers' modifications. Automatic sound signal transcription is based on 
the perspective of signal processing, and many relevant methods have been applied [4]. Simonetta 
et al. [5] proposed a hidden Markov model-based method for note-level pairing and verified its 
reliability through experiments on multiple datasets. Meng and Chen [6] employed the Mel-
frequency cepstral coefficient (MFCC) for timbre judgment and constant Q transform (CQT) for 
pitch judgment. They utilized a convolutional neural network (CNN) to achieve automatic 
transcription and obtained a recognition success rate of 95 %. Alfaro-Contreras et al. [7] studied 
the effect of combining different modalities (e.g., image, audio) in automatic transcription and 
found that two modalities could effectively improve the single-mode recognition framework. Lee 
[8] designed a method using Stein’s unbiased risk estimator and eigenvalue decomposition for 
automatic transcription and found a 2 %-3 % improvement in F1 value compared to traditional 
approaches. Marolt [9] proposed an automatic transcription method for polyphonic piano music 
based on an auditory model and adaptive oscillator network. They discovered that the oscillator 
network can improve the accuracy of neural network transcription. Ryynanen and Klapuri [10] 
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extracted three acoustic features through a multi-fundamental frequency estimator, implemented 
music transcription by searching multiple paths in the note model, and achieved 41 % precision 
and 39 % recall rate. Benetos and Dixon [11] simulated the temporal evolution of music tones and 
proposed a polyphonic music transcription method based on a hidden Markov model. The method 
achieved better results than the non-temporal-constrained model in multi-instrument recordings. 
Ju et al. [12] proposed a method for recognizing the duration of musical notes considering 
time-varying tempo. They conducted experiments on transcribing 16 monophonic children’s 
songs and achieved matching rates of 89.4 % and 84.8 % for note duration and pitch recognition, 
respectively. O'Hanlon et al. [13] presented a greedy sparse pursuit approach based on nearest 
subspace classification, applied it in automatic music transcription, and verified its effectiveness. 
Cazau et al. [14] developed a Markov model-based general transcription system that can host 
various prior knowledge parameters. They also created a sound corpus for experiments and 
performed comparative evaluations on the transcription results. Wang et al. [15] calculated the 
timbre vector based on the short-time Fourier transform and peak detection algorithm and 
classified timbres using a support vector machine to achieve automatic transcription. The method 
achieved a hit rate of 73 % on a small database containing two timbres. The piano is a keyboard 
instrument [16]. Given the wide range of registers and common usage in solo and accompaniment, 
the study of automatic transcription modeling for piano audio holds paramount importance. 
However, the performance of many transcription systems is still significantly lower than that of 
human experts [17], and some automatic transcription models for piano audio have poor 
transcription effects, which cannot yet meet the needs of practical applications. In order to obtain 
a more efficient automatic transcription mode, this paper processed piano audio using the CQT 
and extracted features. Subsequently, an automatic transcription model based on CNN and 
Transformer was designed. The effectiveness of the proposed approach was verified through 
experiments on a dataset. The approach offers a novel and reliable technique for practical piano 
audio processing and provides theoretical support for the further study of CNN and Transformer 
architectures in automatic sound signal transcription, which is beneficial to the further 
development of automatic transcription models. Moreover, this article also provides a theoretical 
reference for the transcription of other music, which is advantageous to the more profound 
development of the field of music information retrieval. 

2. Piano audio and constant-Q transform 

The piano produces sound by striking the keys and driving the strings to vibrate. Its sound 
signal is a superposition of a series of sinusoidal signals. The core sounding part can be called the 
fundamental, which determines the pitch. The corresponding frequency is the fundamental 
frequency. By identifying the fundamental frequency of piano audio, it is possible to identify the 
pitch. Scientific pitch notation is generally used in music based on the letters C, D, E, F, G, A, and 
B. In the digital domain, MIDI [18] is used to indicate. The relationship between the MIDI and 
fundamental frequency 𝑓 is written as Eq. (1): 

𝑝 = 69 + 12 ∗ logଶ ൬ 𝑓440൰. (1)

In 88-key pianos, the pitch range is A0-C8, and the MIDI numbering range is 21-108, 
corresponding to a fundamental frequency range of 27.5-4186 Hz. 

Before transcription, extracting features from the original piano audio data is necessary to 
achieve the signal transformation from the time domain to the frequency domain and provide 
reliable feature input for the automatic transcription model. The short-time Fourier transform 
(STFT) has an extensive range of applications in sound signal processing [19] and has good 
performance in various speech recognition tasks [20]. The computational formula can be written 
as Eq. (2): 
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𝑥ሾ𝑘ሿ = ෍𝑤ሾ𝑛ሿ𝑥ሾ𝑛ሿ𝑒ି௝ଶగ௞௡/ேேିଵ
௡ୀ଴ , (2)

where 𝑤ሾ𝑛ሿ is the window function, 𝑥ሾ𝑛ሿ is the original sound signal, and 𝑁 is the window length, 
which directly affects the time and frequency resolution of the spectrogram. The main drawback 
of STFT is that it obtains the same frequency resolution at high and low frequencies, which is not 
conducive to recognizing piano tones. Therefore, this paper chooses another frequency domain 
feature, CQT [21], as the piano audio feature. 

CQT is characterized by its window length changing with frequency, thus ensuring high 
resolution at low frequencies. In CQT, there exists a quality factor 𝑄, as shown in Eq. (3): 

𝑄 = 𝑓௞𝛿௙ೖ , (3)

where 𝛿௙ೖ is the bandwidth of the 𝑘-th filter. Combined with 𝑄, the window length is written as 𝑁 = 𝑁ሾ𝑘ሿ = 𝑄 ∙ ሺ𝑓௦/𝑓௞ሻ, where 𝑓௦ is the sampling frequency. The final CQT formula can be 
written as Eq. (4): 

𝑥ሾ𝑘ሿ = 1𝑁ሾ𝑘ሿ ෍ 𝑤ሾ𝑘,𝑛ሿ𝑥ሾ𝑛ሿ𝑒ି௝ଶగொ௡/ேሾ௞ሿேሾ௞ሿିଵ
௡ୀ଴ . (4)

In automatic transcription, mono sampling data are mainly used for analysis. To obtain 
comprehensive characteristics, this paper uses a dual-channel approach to read the data and obtains 
a dual-channel CQT spectrogram as input to the transcription model. 

3. Automatic transcription model for sound signals 

3.1. Convolutional neural network 

CNN is a deep learning model [22], which performs well in processing high-dimensional data. 
In addition to a low network complexity, CNNs possess excellent extraction capabilities for deep 
features. The composition of a CNN mainly includes convolutional layers and pooling layers. 
Firstly, the convolutional layer is employed to extract the implicit features of the data. The output 
is expressed as Eq. (5): 

𝑋௝ = 𝑓 ቌ෍𝑊௜௝ ∗ 𝑥௝ + 𝑏௝௝ ቍ, (5)

where 𝑓ሺ∙ሻ is the activation function, 𝑊௜௝ is the convolution kernel parameter, 𝑏௝ is the bias, and ∗ denotes the convolution operation. 
The pooling layer is used for feature downsampling to reduce the amount of computation, and 

there are two common pooling operations: 
1) Maximum pooling: 𝑀𝑃௖ሺ𝑥ሻ = 𝑚𝑎𝑥௫೔∈஼𝑥௜, 𝑥௜ ∈ 𝐶. 
2) Mean pooling: 𝐴𝑃௖ሺ𝑥ሻ = ∑ 𝑥௜/𝑁ே௜ୀଵ , 𝑥௜ ∈ 𝐶. 
In the above equations, 𝑥 is the input tensor, 𝐶 is the pooling region, and 𝑁 is the quantity of 

elements in 𝐶. 
The sound signal is convolved and pooled to get the features, which are then transformed into 

one-dimensional vectors by a fully connected (FC) layer. After the FC layer, the probability of 
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each classification is calculated using a softmax layer. The output of the 𝑘-th neuron can be written 
as Eq. (6). 𝑐௜ is the input signal, and 𝑛 is the number of neurons: 

𝑃௞ = expሺ𝑐௞ሻ∑ expሺ𝑐௜ሻ௡௜ୀଵ . (6)

3.2. CNN-Transformer transcription model 

One of the main advantages of a CNN is its ability to capture local features in a sequence. 
However, it has limitations when it comes to processing long sequences. To address this issue, 
CNN is often integrated with a recurrent neural network (RNN) to handle time series features. 
However, this combined architecture tends to have low training speeds. The Transformer model, 
which utilizes an encoder-decoder structure, offers high training speeds and has shown excellent 
performance in various tasks such as machine translation and speech recognition [23]. The present 
study proposes combining the Transformer model with a CNN to construct an automatic 
transcription model. 

The Transformer model relies on a multi-head self-attention mechanism [24] to effectively 
capture sequence information. Firstly, a linear transformation is performed on input sequence 𝑥 
to get three sequences, 𝑄 (Query), 𝐾 (Key), and 𝑉 (Value), and then the attention is obtained, as 
shown in Eq. (7): 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛ሺ𝑄,𝐾,𝑉ሻ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ቆ𝑄𝐾்ඥ𝑑௞ቇ𝑉, (7)

where 𝑄, 𝐾, and 𝑉 are the Query, key, and Value indicators, 𝑑௞ refers to the dimension of Key. 
The multi-head attention splices the output of each attention and passes it into the linear layer for 
linear transformation. The formula of the multi-head attention is shown in Eq. (8): 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = 𝑐𝑜𝑛𝑐𝑎𝑡ሺℎ𝑒𝑎𝑑ଵ,ℎ𝑒𝑎𝑑ଶ,⋯ ,ℎ𝑒𝑎𝑑௛ሻ𝑊ை, (8)ℎ𝑒𝑎𝑑௜ = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛൫𝑄𝑊௜ொ,𝐾𝑊௜௄ ,𝑉𝑊௜௏൯, (9)

where 𝑊 is the weight matrix and ℎ is the number of heads in the attention. 
A residual and normalization layer follows the multi-head self-attention layer to avoid network 

degradation. Then, a two-layer FC layer is employed to obtain the new representation vector, as 
shown in Eq. (10): 𝐹𝐶𝑁ሺ𝑥ሻ = 𝑚𝑎𝑥ሺ0, 𝑥𝑊ଵ + 𝑏ଵሻ𝑊ଶ + 𝑏ଶ, (10)

where 𝑥 is the input vector, 𝑊 and 𝑏 are the weight and bias of every layer. 
In the Transformer model, residual connections are used between the input and output of each 

layer to alleviate the problem of gradient vanishing. Layer normalization is then applied after the 
residual connection to accelerate training and improve robustness, making the model more stable. 

The CNN can effectively capture local features in a sequence, and the Transformer model can 
effectively treat the logical dependency relationship. Therefore, combining a CNN with a 
Transformer can better capture both local and global information in sound signals, thereby 
improving the effectiveness of automatic transcription for piano audio. The structure of the 
designed CNN-Transformer transcription model is illustrated in Fig. 1. 

The transcription model comprises two CNN layers and three Transformer layers. The 
dual-channel CQT spectrogram extracted in the last section is used as the model input. There are 
two CNN layers on the left. Each CNN layer has a 3×3 convolutional layer followed by a 2×2 
maximum pooling layer. The input size of the first CNN is 128×2, the size of the convolution 
kernel is 3×3, and the size of the output channel is 32. The input size of the pooling layer is 128×2, 
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the size of the pooling kernel is 2×2, the step size is 2, and the output size is 64×1. The input size 
of the second CNN is 64×32, the size of the convolution kernel is 3×3, and the number of output 
channels is 64. The input size of the second pooling layer is 64×32, the size of the pooling size is 
2×2, the step size is 2, and the output size is 32×1. After the processing by the two CNN layers, 
the feature vector obtained is 32×64. The resulting feature vectors are fed into the Transformer 
layer on the right for further processing. Each Transformer layer comprises four multi-head 
attention layers and two FC layers. After feature extraction by three layers of Transformer, the 
outputs are concatenated in the FC layers. Finally, the features are input into the softmax layer to 
recognize the piano audio. 

 
Fig. 1. The CNN-Transformer transcription model 

4. Results and analysis 

4.1. Experimental setup 

The experiments were performed on a computer with a Windows 10 system, an Intel(R) 
Core(TM)i7-10750H central processing unit (CPU), and 16 GB memory. The software 
development environment was PyTorch and Python 3.8. The CNN-Transformer model was 
trained using the Adam algorithm. The initial learning rate was 0.005. Through continuous 
optimization, the learning rate was determined to be 0.0001. The maximum number of iterations 
was 1500, and the batch size was 64. To extract the dual-channel CQT spectrum, the Python 
library Librosa [25] was utilized. Librosa is dedicated to audio and music signal analysis, 
providing functions such as audio feature extraction and visualization. It has a wide range of 
applications in music information retrieval. Each channel’s CQT spectrum had 356 dimensions, 
and a sliding window with a length of 7 was applied to capture spectrogram snapshots. 
Consequently, the final input feature was a 356×9×2 matrix, while the output was an 
88-dimensional note. 

4.2. Experimental data were obtained from two databases: 

MAPS dataset [26]: it includes nine directories, seven of which are synthesized piano music, 
and two directories (cl and am) are actual piano recordings. The first seven directories were used 
as the training set, and cl and am were used as the test set. 

MAESTRO dataset [27]: it includes piano performance data from the International Piano-e-
Competition, with a size of about 90 GB, from which 283 tracks from 2017 were taken for 
experiments. Among them, 226 tracks were taken for training, and 57 tracks were used for testing. 

The transcription effect was evaluated using the mir_eval library [28], and the generalized 
indicators included: precision: 𝑃 = 𝑇𝑃/ሺ𝑇𝑃 + 𝐹𝑃ሻ, recall rate: 𝑅 = 𝑇𝑃/ሺ𝑇𝑃 + 𝐹𝑁ሻ, F1 
value: 𝐹1 = ሺ2 × 𝑃 × 𝑅ሻ/ሺ𝑃 + 𝑅ሻ, where 𝑇𝑃 is the quantity of positive samples with correct 
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predictions, 𝑇𝑃 is the quantity of positive samples with wrong predictions, and 𝐹𝑁 is the quantity 
of negative samples with wrong predictions. 

5. Analysis of results 

Using the MAPS dataset, the transcription effects of STFT, mono CQT, and dual-channel CQT 
were compared, and the outcomes are presented in Table 1. 

Table 1. Transcription results for different feature inputs 
 STFT Mono CQT Dual-channel CQT 

Frame level 
P 0.8312 0.8864 0.9112 
R 0.7521 0.7895 0.8055 
F1 0.7897 0.8351 0.8551 

Note (no cutoff) 
P 0.8254 0.8741 0.9055 
R 0.7358 0.7719 0.8046 
F1 0.7780 0.8198 0.8521 

Complete note 
P 0.5694 0.6225 0.6552 
R 0.5127 0.5576 0.5867 
F1 0.5396 0.5883 0.6191 

It was seen that the transcription result using STFT was poor, with an F1 value of 0.7894 at 
the frame level, an F1 value of 0.7780 at the note level (no cutoff), and an F1 value of 0.5396 at 
the complete note level. These results indicated that STFT failed to effectively differentiate piano 
notes when used as an input to the transcription model. In contrast, the comparison between mono 
CQT and dual-channel CQT revealed that the dual-channel CQT achieved better results. At the 
frame level, the dual-channel CQT achieved an F1 value of 0.8551, showing a 0.02 improvement 
compared to mono. At the note level (no cutoff), the F1 value was 0.8521, showing a 0.0323 
improvement compared to mono. Additionally, the F1 value was 0.6191 at the complete note level, 
demonstrating a 0.0308 improvement compared to mono. These findings concluded that 
employing the dual-channel CQT technique led to better outcomes in the automatic transcription 
of piano audio. In comparing frame level, note (no cutoff), and complete note transcription, it can 
be seen that the difficulty of transcribing complete notes was the highest, resulting in the worst 
transcription results. However, the dual-channel CQT used in this article still demonstrated the 
best performance, with an F1 value of 0.6191, further proving the advantage of using dual-channel 
CQT as a feature. 

Considering the sensitivity of the model to the input window length, various input window 
lengths were chosen to analyze the impact of the sliding window on transcription results. The 
frame-level recognition results are presented in Fig. 2. 

 
Fig. 2. The sensitivity analysis results of the input window length 

It was found that the optimal transcription results (a P value of 0.9112, a R value of 0.8055, an 
F1 value of 0.8551) were achieved with an input window length of seven frames. When the 
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number of frames was small, the spectrum contained less information, resulting in poor 
recognition of piano notes. As the number of frames increased, the amount of information 
provided in the spectrum gradually increased, leading to a gradual improvement in the model’s P 
value, R value, and F1 value. However, when the growth reached nine frames, the results were 
inferior to those obtained with seven frames. For example, the F1 value decreased to 0.8524, which 
was 0.0017 smaller than that when it was seven frames. It is because the large sliding window 
caused the merging of similar notes, which negatively impacted the recognition results. Therefore, 
when this model is used for transcription, better results can be obtained when the input window 
length is 7. 

A sensitivity analysis was performed on the CNN layer number in the model. The transcription 
results of the frame level under different convolutional layers are presented in Table 2. 

Table 2. The sensitivity analysis results of the CNN layer number 
 1 2 3 

P 0.8554 0.9112 0.8745 
R 0.7492 0.8055 0.7545 
F1 0.7988  0.8551  0.8101  

It can be seen that when only one CNN layer was used, the CNN-Transformer model obtained 
a P value of 0.8554, a R value of 0.7492, and an F1 value of 0.7988 for the MAPS dataset. When 
two CNN layers were used, this model exhibited the best transcription performance, with an F1 
value of 0.8551. When the number of layers continued to increase, the transcription effect 
declined. These results demonstrated the correctness of using two CNN layers. 

Next, the CNN-Transformer model was compared to the deep neural network (DNN) [29] and 
CNN models, and the frame-level results for MAPS and MAESTRO datasets are presented in 
Table 3. 

Table 3. Frame level results for different transcription models 
 DNN CNN CNN-Transformer 

MAPS 
P 0.6534 0.8721 0.9112 
R 0.7469 0.7653 0.8055 
F1 0.6970  0.8152  0.8551  

MAESTRO 
P 0.6874 0.8456 0.8886 
R 0.7112 0.8895 0.9204 
F1 0.6991  0.8670  0.9042  

It was found that the DNN model yielded inferior transcription results for both the MAPS and 
MAESTRO datasets, with an F1 value of only 0.6970 for MAPS and 0.6991 for MAESTRO. The 
CNN model showed relatively better results. It obtained an F1 value of 0.8152 for the MAPS 
dataset and an F1 value of 0.8670 for the MAESTRO dataset, which was increased by 0.1182 and 
0.1679 respectively compared to the DNN model. These results demonstrated its more robust 
feature extraction capability for piano audio processing. Furthermore, the CNN-Transformer 
model achieved an F1 value of 0.8551 for MAPS, showing a significant improvement of 0.0399 
compared to the CNN model. Similarly, for the MAESTRO dataset, the CNN-Transformer model 
achieved an F1 value of 0.9042, demonstrating an improvement of 0.0372 compared to the CNN 
model. These results validated the advantage of combining the Transformer with the CNN 
architecture for piano audio transcription. 

6. Conclusions 

This paper designed a CNN-Transformer automatic transcription model for recognizing piano 
notes by processing piano audio and extracting the dual-channel CQT spectrum. Experiments 
conducted on the MAPS and MAESTRO datasets obtained the following results. 
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1) The STFT and mono-channel CQT performed poorly; the dual-channel CQT obtained the 
optimal results in the transcription of frame levels, notes (no cutoff), and complete notes, with F1 
values of 0.8551, 0.8521, and 0.6191, respectively. 

2) The input window length could affect transcription results. When the input window length 
was 7, the transcription result was the best: the P, R, and F1 values for the frame-level transcription 
were 0.9112, 0.8055, and 0.8551, respectively. 

3) The CNN layer number in the CNN-Transformer model could affect transcription results. 
When there were two CNN layers, the transcription performance was the best. 

4) The CNN-Transformer model performed superior results in frame-level transcription 
compared to the CNN and CNN models. 

The results demonstrated the advantages of the CNN-Transformer model, which was designed 
using the dual-channel CQT, in transcribing piano audio and its application usability in practical 
transcription. However, this study also has some limitations. For example, there is a lack of a more 
comprehensive piano audio database, and only one type of feature with superior performance was 
selected for feature selection without considering the comparison of more features. In future work, 
further exploration will be conducted on feature selection in piano audio transcription, collecting 
actual piano audio data will be considered to establish a database, and the CNN-Transformer 
model will be further optimized to achieve better transcription performance. 
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