
 

 JOURNAL OF MECHATRONICS AND ARTIFICIAL INTELLIGENCE IN ENGINEERING 1 

Critical buckling load analysis of Euler-Bernoulli beam 
on two-parameter foundations using Galerkin method 

Charles Chinwuba Ike 
Department of Civil Engineering, Enugu State University of Science and Technology,  
Agbani, 402004, Enugu State, Nigeria 
E-mail: charles.ike@esut.edu.ng 
Received 27 June 2024; accepted 3 September 2024; published online 15 October 2024 
DOI https://doi.org/10.21595/jmai.2024.24285 

Copyright © 2024 Charles Chinwuba Ike. This is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract. The critical buckling load determination of Euler-Bernoulli beams on two-parameter 
elastic foundations (EBBo2PFs) is important to avert buckling failures. The governing equation 
for buckling of thin beam on two-parameter elastic foundation is a homogeneous ordinary 
differential equation (HODE) of fourth order and constant parameters when the beam is prismatic 
and homogeneous. The HODE has been solved in this work by Galerkin method for simply 
supported, clamped and clamped-simply supported ends. One-parameter algebraic shape function 
formulation was used to reduce the problem to an algebraic eigenvalue problem, which is solved 
to find the critical buckling load for each studied case. The critical buckling load for EBBo2PF 
for simply supported boundary conditions was found to be closely identical to the exact solutions. 
The solutions for clamped-clamped edges and clamped-simple supports were found to be accurate. 
The merit of the Galerkin method is the simplicity and the accuracy even when one-parameter 
shape function has been used.  
Keywords: Galerkin variational method, Euler-Bernoulli beam, two-parameter elastic 
foundation, critical buckling load, shape function. 

Nomenclature 𝑥 Longitudinal coordinate axis 𝑙 Length of the beam 𝑤ሺ𝑥ሻ Deflection 𝑟ሺ𝑥ሻ Foundation reaction on the beam 𝑘 Winkler modulus 𝑘ଵ, 𝑘ଶ Two-parameters of a two-parameter elastic foundation 𝐸 Young’s modulus 𝐼 Moment of inertia 𝑃 Compressive load 𝑞ሺ𝑥ሻ Applied transverse load 𝜑௜ሺ𝑥ሻ Shape function 𝑐௜ Generalized parameter of displacement function 𝛽 Parameter defined in terms of 𝑃 and 𝐸𝐼 𝛼ଵ Parameter defined in terms of 𝑘ଵ and 𝐸𝐼 𝛼ଶ Parameter defined in terms of 𝑘ଶ and 𝐸𝐼 ሾ𝐾ሿ Stability matrix ሼ𝐶ሽ Matrix of generalized deflection parameters 𝑘௜௝ Element of the stiffness matrix 𝑎଴, 𝑎ଵ, 𝑎ଶ, 𝑎ଷ, 𝑎ସ Polynomial constants used to define the deflection function 𝐼ଵ Integral defined in terms of the integrand 𝜑ଵ௜௩𝜑ଵ 𝐼ଶ Integral defined in terms of the integrand 𝜑′′ଵ𝜑ଵ 𝐼ଶ Integral defined in terms of the integrand 𝜑ଵଶሺ𝑥ሻ 𝛾ଵ Vertical distribution parameter 
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EBBo2PF(s) Euler-Bernoulli beam on two-parameter foundation(s) 
HODE Homogeneous ordinary differential equation 
NODE Nonhomogeneous ordinary differential equation 
EBBT Euler-Bernoulli beam theory 
TBT Timoshenko beam theory 
DTM Differential transform method 
FEM Finite element method 
DEoB Differential equations of buckling 
RDM Recursive differentiation method 
EBBoEF(s) Euler-Bernoulli beam on elastic foundation(s) 
VIM Variational iteration method 
EBBoWF Euler-Bernoulli beam on Winkler foundation 
FSTM Finite sine transform method 
GITM Generalized integral transform method 
BVP Boundary value problem 
PCM Point collocation method 
SVIM Stodola-Vianello iteration method 
LSWRM Least square weighted residual method 
GVF Galerkin variational functional 
FSM Fourier series method 𝐹ଵ(𝛼ଵ𝑙ସ,𝛼ଶ𝑙ଶ) Critical buckling load parameter for simply supported Ebbo2pf 𝐹ଶ(𝛼ଵ𝑙ସ,𝛼ଶ𝑙ଶ) Critical buckling load parameter for clamped-clamped Ebbo2pf 𝐹ଷ(𝛼ଵ𝑙ସ,𝛼ଶ𝑙ଶ) Critical buckling load parameter for clamped-simply supported Ebbo2pf 

1. Introduction 

The differential equations of elastic stability of beams resting on elastic foundations have been 
derived by incorporating the reactive forces of the elastic foundation in the equation of beam 
stability. Beam models commonly used depend on the depth to thickness ratios. When the beam 
depth to thickness ratio is less than 0.05, the beam is called thin or slender beam. Euler-Bernoulli 
beam theory (EBBT) is used for thin beam because the Euler-Bernoulli-Navier orthogonality 
hypothesis used in the formulation disregards shear strain that play significant roles in the 
behaviour of moderately thick and thick beams. Timoshenko beam theory (TBT), shear 
deformable beam theories, and refined beam theories formulated by several researchers such as 
Dahake and Ghugal [1], Levinson [2], Sayyad and Ghugal [3], Ghugal and Shimpi [4], Yue [5], 
are used for moderately thick and thick beams where the depth to span ratios exceed 0.05. 

This work assumes a depth to span ratio of beams to be less than 0.05, and hence uses EBBT. 
Elastic foundation models have been derived based on discrete parameter and continuously 

distributed parameter assumptions. Discrete parameter models use discretization of the 
foundations at discrete points, and hence a limited number of parameters to describe the 
foundation. However, continuously distributed parameter models derive the foundation reactions 
using the mathematical theory of elasticity resulting in complex differential equations that are 
difficult to solve in analytical form. The inherent simplicity of the resulting mathematical 
representation of discrete parameter foundations make them more frequently used. Discrete 
parameter foundation models include (i) Winkler foundation model (ii) Pasternak, Vlasov, 
Hetenyi and Filonenko-Borodich foundations, and (iii) Kerr foundation. 

Winkler foundation model which is shown in Figure 1 is a one-parameter foundation model. 
The foundation is represented as a system of vertical, closely spaced, non-interacting linear elastic 
springs whose vertical stiffness is directly proportional to the vertical deflection of the point 
considered [6-8]. In the Winkler foundation, the foundation reaction 𝑟(𝑥) (at any point) is directly 
proportional to the beam deflection (𝑤(𝑥)) at the point and the constant of proportionality is the 
Winkler foundation constant, 𝑘, which is the one-parameter used to characterise the soil. 
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The equation for the foundation reaction (𝑟(𝑥)) for the Winkler model is given [6-8]: 𝑟(𝑥) ൌ 𝑘𝑤(𝑥). 
The main disadvantage of the Winkler foundation model is its failure to consider the shear 

interaction of the vertical springs and the resulting discontinuity of displacements caused. 

 
Fig. 1. Thin beam resting on a bed of vertical linear elastic springs 

Two-parameter discrete foundation models were derived by Pasternak, Vlasov, Hetenyi and 
Filonenko-Borodich in order to overcome the displacement discontinuity issues in the 
one-parameter Winkler foundation model. In the two-parameter discrete foundation models, the 
foundation is represented using a bed of vertical, closely spaced, interacting linear elastic springs. 
Shear interactions are introduced between the adjoining vertical springs by the use of shear layer 
and coupling. The foundation is thus modelled using two-parameters; the first parameter, denoted 
by 𝑘ଵ is the stiffness in the vertical direction, and is similar to the Winkler foundation parameter. 
The second parameter, 𝑘ଶ, is the shear interaction effect of the vertical springs [9-11]. An 
illustration of two-parameter discrete foundation models is shown in Fig. 2, which presents it as a 
bed of closely spaced, vertical, interacting springs with adjoining springs linked together using 
shear coupling. 

The foundation reaction 𝑟(𝑥) for two-parameter models is expressed by [9], [11]: 

𝑟(𝑥) ൌ 𝑘ଵ𝑤(𝑥) − 𝑘ଶ 𝑑ଶ𝑤(𝑥)𝑑𝑥ଶ . 
Kerr [12-14] presented a three-parameter discrete foundation model, which is rarely used. 
Vlasov and Leontiev [15] used an energy minimization technique to derive the two-parameter 

Vlasov-Leontiev simplified elastic continuum foundation model. The model introduced an 
arbitrary parameter 𝛾ଵ to define the vertical distribution of soil deformation. 

Jones and Xenophontoss [16] derived an expression for the vertical distribution parameter 𝛾ଵ 
in terms of the displacement characteristics, but failed to derive a method for finding 𝛾ଵ. In further 
studies, Vallabhan and Das [17, 18], found the 𝛾ଵ using an iterative procedure. 

 
Fig. 2. Beam supported on two-parameter discrete foundation graphically illustrated  

as a bed of vertical closely spaced, interacting linear elastic (Hookean) springs 

2. Literature review 

Theory of elasticity methods were used for beam on elastic foundation and analysis by 
Akhazhanov et al. [19-22], Huang et al. [23], Akhmedeev et al. [24], Zhang et al. [25], and 
Gbolami and Alizadeh [26]. 

Gulkan and Alemdar [27] and Teodoru and Muscat [28] used the finite element method (FEM) 
to study beams on two-parameter elastic foundations. FEMs were also used for EBBoEF by 
Alzubaidi et al. [29], Wieckowski and Swiatkiewiez [30], and Worku and Habte [31]. 
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Olotu et al. [32] used the differential transform method (DTM) to find numerical solutions for 
natural frequencies of non prismatic beams supported on variable one-parameter foundations. The 
DTM reduced the governing equation to an algebraic problem which was solved using computer 
algorithms for various boundary conditions. They however failed to solve buckling analysis of 
thin beams on elastic foundations using DTM. 

Aslami and Akinov [33] presented closed form solutions of EBBo2PFs by reducing the 
governing equations to a system of first order differential equations, which were subsequently 
solved using Jordan method. 

Hetenyi [34], Timoshenko and Gere [35], Wang et al. [36] have derived differential equations 
of buckling (DEoB) of Euler-Bernoulli beams on elastic foundations (EBBoEFs). They also 
derived analytical solutions to the DEoB for various boundary conditions. 

Taha and Hadima [37] and Taha [38] used Recursive differentiation method (RDM) on the 
DEoB to obtain analytical solutions for the critical buckling loads of non uniform EBBoEFs. 
Soltani [39] presented a finite element method to solve the DEoB for EBBoEF. Aristizabal-Ochoa 
[40] and Hassan [41] have derived solutions for EBBoEFs under various boundary conditions. 
Anghel and Mares [42] used the method of collocation to solve the stability problems of EBBoEFs. 
Atay and Coskun [43] applied the Variational iteration method (VIM) to the analysis of the 
stability of EBBoEF for prismatic and non-prismatic cross-sectional beam geometries; and for 
variety of boundary conditions. Akgoz et al. [44] investigated the bending analysis of beams on 
elastic foundations but failed to study buckling analysis. 

Ike [6] used the finite sine transform method (FSTM) to simplify the governing equation of 
free vibration of simply supported EBBoWF to an integral equation, and ultimately to an algebraic 
problem. The method was found suited for EBBoWF with Dirichlet boundary conditions because 
the sinusoidal function which is the integral kernel of the FSTM satisfies the geometric and force 
boundary conditions. The FSTM gave exact eigenvalues, but the work was not extended to 
buckling analysis. 

Ike [7] utilized a point collocation method (PCM) to obtain approximate solution to the 
differential equation of flexure (DEoF) of Euler-Bernoulli beam resting on Winkler foundation 
(EBBoWF). In the PCM, the solutions were obtained in an approximate way only at the 
collocation points. Acceptable bending solutions that were comparable to previous solutions found 
in literature sources were obtained. However, the study failed to consider buckling analysis. 

Ike [8] used the generalized integral transform method (GITM) to solve the free vibration 
problems of EBBoWF under various boundary conditions. In the GITM, the eigenfrequencies of 
free vibrations of thin beams with equivalent boundary conditions were used as kernel functions 
to formulate the boundary value problem (BVP) as an integral equation. The kernel functions used 
were exact shape functions, and the resulting eigenvalues were exact. However, the work did not 
consider bucking analysis. 

Ike [9] used SVIM and sinusoidal shape functions to derive exact buckling loads of EBBo2PFs. 
Ike et al. [10] and Ike [11] utilized SVIM for buckling solutions of EBBo2PFs using polynomial 
shape function for beams with both ends clamped and beams with simply supported ends, 
respectively. 

Ike et al. [45] used Picard’s successive iteration method to solve Euler buckling problem with 
pinned ends. Ofondu et al. [46] applied Stodola-Vianello iteration method (SVIM) to find 
solutions to Euler column buckling problems with one end clamped and the other on pin support. 
Ikwueze et al. [47] utilized Least squares weighted residual method (LSWRM) for the critical 
buckling load analysis of Euler columns with one end fixed and the other end pinned. Mama et al. 
[48] used fifth degree polynomials as shape functions in a FEM to obtain accurate critical buckling 
load solutions of EBBoWF. 

Ike et al. [49] used the SVIM and polynomial functions that satisfy the boundary conditions of 
EBBoWF with both ends clamped to find satisfactory solutions for critical buckling loads. In 
another study, Ike [50] used the SVIM and polynomial functions that satisfy the simply supported 
boundary conditions to find approximate critical buckling load solutions for simply supported 
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EBBoWF. 
Ike [51] used SVIM and exact sinusoidal shape functions to obtain exact buckling solutions to 

simply supported EBBoWF.  
Ike [52] used Fourier series method (FSM) to derive analytical solutions to simply supported 

EBBo2PF. The FSM has the advantage that the sine functions used in the series are orthogonal 
functions that are readily differentiated. The problem simplified by orthogonalization of the series 
to an algebraic eigenvalue problem which was solved to obtain exact eigenvalues. 

Ike [53] used Ritz variational method to derive accurate buckling load solutions of EBBo2PFs 
for both ends simply supported, and both ends clamped and for one end simply supported and the 
other end clamped. The work developed suitable polynomial shape functions that satisfied the 
boundary conditions considered and used them as shape functions in deriving the Ritz variational 
functions for minimization with respect to the undetermined parameters. Naidu and Rao [54] 
presented buckling solutions for uniform beams resting on two-parameter elastic foundations. Rao 
and Raju [55] developed analytical solutions for the vibration and buckling analysis of thin beams 
resting on Pasternak foundations for clamped boundary conditions. 

In this work, polynomial basis functions are used in the Galerkin method to obtain approximate 
critical buckling load solutions of EBBo2PFs with: 

(i) simply supported ends, 
(ii) clamped ends, and, 
(iii) one end clamped and one end simply supported. 

3. Governing equation 

In general, the differential equation for the buckling of Euler-Bernoulli beam resting on two-
parameter foundation (EBBo2PF) is the fourth order nonhomogeneous ordinary differential 
equation (NODE) [50, 52, 53]: 𝑑ଶ𝑑𝑥ଶ ቆ𝐸𝐼 𝑑ଶ𝑤𝑑𝑥ଶቇ + 𝑃 𝑑ଶ𝑤𝑑𝑥ଶ + 𝑘ଵ𝑤 − 𝑘ଶ 𝑑ଶ𝑤𝑑𝑥ଶ = 𝑞(𝑥),     0 < 𝑥 ≤ 𝑙, (1)

where 𝑥 is the longitudinal axis of the beam, 𝐸 is the Young’s modulus, 𝐼 is the moment of inertia, 𝑃 is the axial force, 𝑞(𝑥) is the applied transverse load intensity, 𝑘ଵ is the first modulus/parameter 
of the foundation, 𝑘ଶ is the second modulus/parameter of the foundation. 

When there is no applied transverse load on the EBBo2PF, 𝑞(𝑥) = 0, and Eq. (1) simplifies 
for homogeneous beams with prismatic cross-sections to the homogeneous ordinary differential 
equation (HODE) with constant coefficients given by Eq. (2) [50, 52, 53]: 

𝐸𝐼 𝑑ସ𝑤𝑑𝑥ସ + 𝑃 𝑑ଶ𝑤𝑑𝑥ଶ + 𝑘ଵ𝑤 − 𝑘ଶ 𝑑ଶ𝑤𝑑𝑥ଶ = 0. (2)

Dividing Eq. (2) by 𝐸𝐼 gives Eq. (3): 𝑑ସ𝑤𝑑𝑥ସ + 𝑃𝐸𝐼 𝑑ଶ𝑤𝑑𝑥ଶ + 𝑘ଵ𝐸𝐼 𝑤 − 𝑘ଶ𝐸𝐼 𝑑ଶ𝑤𝑑𝑥ଶ = 0. (3)

Alternatively, Eq. (3) can be expressed as Eq. (4): 𝑑ସ𝑤𝑑𝑥ସ + (𝛽 − 𝛼ଶ)𝑑ଶ𝑤𝑑𝑥ଶ + 𝛼ଵ𝑤 = 0, (4)

where: 
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𝛽 = 𝑃𝐸𝐼 ,     𝛼ଵ = 𝑘ଵ𝐸𝐼 ,     𝛼ଶ = 𝑘ଶ𝐸𝐼. (5)

4. Methodology 

4.1. Galerkin variational functional (GVF) 

The deflection function 𝑤(𝑥) is expressed in terms of a finite number of linear combinations 
of shape functions 𝜑௜(𝑥) that satisfy the boundary conditions of the beam as: 

𝑤(𝑥) = ෍𝑐௜𝜑௜(𝑥)௡
௜ୀଵ , (6)

where 𝑐௜ are the generalized parameters of the deflection function 𝑤(𝑥). 
The Galerkin formulation of the governing equation then becomes expressed as Eq. (7): 

෍ 𝑐௜ න ൫𝜑௜௜௩(𝑥) + (𝛽 − 𝛼ଶ)𝜑′′௜(𝑥) + 𝛼ଵ𝜑௜(𝑥)൯௟
଴

௡ூୀଵ  𝜑௝(𝑥) 𝑑𝑥 = 0. (7)

Expanding Eq. (7) gives: [𝐾]{𝐶} = 0, (8)

where [𝐾] is the stability matrix, {𝐶} is the matrix of generalized parameters. 
The 𝑖𝑗 element of [𝐾] is denoted as 𝑘௜௝ and found as: 

𝑘௜௝ = න൫𝜑௜௜௩(𝑥) + (𝛽 − 𝛼ଶ)𝜑′′௜(𝑥) + 𝛼ଵ𝜑௜(𝑥)൯𝜑௝(𝑥) 𝑑𝑥௟
଴ . (9)

4.2. Shape functions for various boundary conditions 

4.2.1. Case 1: simply supported EBBo2PF 

For simple supports at 𝑥 = 0 and 𝑥 = 𝑙 as shown in Fig. 3, the boundary conditions are: 𝑤(0) = 𝑤′′(0) = 0, 𝑤(𝑙) = 𝑤′′(𝑙) = 0. (10)

Let: 𝑤(𝑥) = 𝑎଴ + 𝑎ଵ𝑥 + 𝑎ଶ𝑥ଶ + 𝑎ଷ𝑥ଷ + 𝑎ସ𝑥ସ, (11)

where 𝑎଴, 𝑎ଵ, 𝑎ଶ, 𝑎ଷ and 𝑎ସ are the polynomial constants. 

 
Fig. 3. Simply supported EBBo2PF 

By differentiation: 𝑤ᇱ(𝑥) = 𝑎ଵ + 2𝑎ଶ𝑥 + 3𝑎ଷ𝑥ଶ + 4𝑎ସ𝑥ଷ, (12a)
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𝑤ᇱᇱ(𝑥) = 2𝑎ଶ + 6𝑎ଷ𝑥 + 12𝑎ସ𝑥ଶ. (12b)

Applying the boundary conditions: 𝑤(0) = 𝑎଴ = 0, (12c)𝑤′′(0) = 2𝑎ଶ = 0, (12d)𝑤(𝑙) = 𝑎ଵ𝑙 + 𝑎ଷ𝑙ଷ + 𝑎ସ𝑙ସ = 0, (12e)𝑤′′(𝑙) = 6𝑎ଷ𝑙 + 12𝑎ସ𝑙ଶ = 0. (12f)

From Eq. (12f): 𝑎ଷ = −2𝑎ସ𝑙. (13)

Then: 𝑎ଵ𝑙 = −𝑎ସ𝑙ସ − 𝑎ଷ𝑙ଷ = −𝑎ସ𝑙ସ + 2𝑎ସ𝑙ସ = 𝑎ସ𝑙ସ, 𝑎ଵ = 𝑎ସ𝑙ଷ. (14)

Hence: 𝑤(𝑥) = 𝑎ସ(𝑙ଷ𝑥 − 2𝑙𝑥ଷ + 𝑥ସ). (15)

Hence a one-parameter shape function for this case of simple supports at the ends is given by 
Eq. (16): 𝜑ଵ(𝑥) = 𝑥ସ − 2𝑙𝑥ଷ + 𝑙ଷ𝑥. (16)

4.2.2. Case 2: clamped-clamped EBBo2PF 

EBBo2PF clamped at 𝑥 = 0, and 𝑥 = 𝑙, as shown in Fig. 4 is considered. 

 
Fig. 4. EBBo2PF with clamped edges 

The boundary conditions are: 𝑤(0) = 𝑤′(0) = 0, 𝑤(𝑙) = 𝑤′(𝑙) = 0. (17)

Using the fourth degree polynomial in Eq. (11), the application of boundary conditions yield: 𝑤(0) = 𝑎଴ = 0, 𝑤′(0) = 𝑎ଵ = 0, 𝑤(𝑙) = 𝑎ଶ𝑙ଶ + 𝑎ଷ𝑙ଷ + 𝑎ସ𝑙ସ = 0, 𝑤′(𝑙) = 2𝑎ଶ𝑙 + 3𝑎ଷ𝑙ଶ + 4𝑎ସ𝑙ଷ = 0. 
Solving simultaneously: 𝑎ଷ = −2𝑎ସ𝑙, 𝑎ଶ = 𝑎ସ𝑙ଶ. 
Assuming a quartic polynomial, a one-parameter deflection function can be derived using 
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Eq. (17) as: 𝑤(𝑥) = 𝑎ସ(𝑥ସ − 2𝑙𝑥ଷ + 𝑙ଶ𝑥ଶ). (18)

Then for this case: 𝜑ଵ(𝑥) = 𝑥ସ − 2𝑙𝑥ଷ + 𝑙ଶ𝑥ଶ. (19)

4.2.3. Case 3: clamped – simply supported EBBo2PF 

EBBo2PF clamped at 𝑥 = 0, and simply supported at 𝑥 = 𝑙 as shown in Fig. 5 is considered. 

 
Fig. 5. EBBo2PF clamped at 𝑥 = 0 and simply supported at 𝑥 = 𝑙 

The boundary conditions are: 𝑤(0) = 𝑤′(0) = 0, 𝑤(𝑙) = 𝑤′′(𝑙) = 0. (20)

Using the fourth degree polynomial in Eq. (11), the boundary conditions yield: 𝑤(0) = 𝑎଴ = 0, 𝑤′(0) = 𝑎ଵ = 0, 𝑤(𝑙) = 𝑎ଶ𝑙ଶ + 𝑎ଷ𝑙ଷ + 𝑎ସ𝑙ସ = 0, 𝑤′′(𝑙) = 2𝑎ଶ + 6𝑎ଷ𝑙 + 12𝑎ସ𝑙ଶ = 0. 
Solving: 𝑎ଶ = 1.5𝑎ସ𝑙ଶ, 𝑎ଷ = −2.5𝑎ସ𝑙. 
Using the boundary conditions, a one-parameter deflection function can be derived using 

Eq. (20) as: 𝑤(𝑥) = 𝑎ସ(𝑥ସ − 2.5𝑙𝑥ଷ + 1.5𝑙ଶ𝑥ଶ). (21)

Hence: 𝜑ଵ(𝑥) = 𝑥ସ − 2.5𝑙𝑥ଷ + 1.5𝑙ଶ𝑥ଶ. (22)

4.3. One-Parameter GVF 

Here: 𝑤(𝑥) = 𝑐ଵ𝜑ଵ(𝑥). (23)

Then the GVF is: 
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න൫𝑐ଵ𝜑ଵ௜௩(𝑥) + (𝛽 − 𝛼ଶ)𝑐ଵ𝜑′′ଵ(𝑥) + 𝑐ଵ𝛼′′ଵ𝜑ଵ(𝑥)൯௟
଴ 𝜑ଵ(𝑥) 𝑑𝑥 = 0. (24)

Eq. (24) is simplified by factoring out 𝑐ଵ to give: 

𝑐ଵ ቐන൫𝜑ଵ௜௩(𝑥)𝜑ଵ(𝑥) + (𝛽 − 𝛼ଶ)𝜑′′ଵ(𝑥)𝜑ଵ(𝑥) + 𝛼ଵ𝜑ଵଶ(𝑥)൯𝑑𝑥௟
଴ ቑ = 0. (24a)

For non-trivial solution, 𝑐ଵ ≠ 0. 
Hence, the buckling equation is: 

න൫𝜑ଵ௜௩(𝑥)𝜑ଵ(𝑥) + (𝛽 − 𝛼ଶ)𝜑′′ଵ(𝑥)𝜑ଵ(𝑥) + 𝛼ଵ𝜑ଵଶ(𝑥)൯𝑑𝑥௟
଴ = 0. (24b)

Simplifying: 𝐼ଵ + (𝛽 − 𝛼ଶ)𝐼ଶ + 𝛼ଵ𝐼ଷ = 0, (24c)

where: 

𝐼ଵ = න𝜑ଵ௜௩(𝑥)𝜑ଵ(𝑥)௟
଴ 𝑑𝑥,     𝐼ଶ = න𝜑′′ଵ(𝑥)𝜑ଵ(𝑥)௟

଴ 𝑑𝑥,     𝐼ଷ = න𝜑ଵଶ(𝑥)௟
଴ 𝑑𝑥. (24d)

Solving the algebraic equation: 𝛽 = 𝑃𝐸𝐼 = 𝛼ଶ − ൬𝐼ଵ + 𝛼ଵ𝐼ଷ𝐼ଶ ൰. (24e)

Hence: 

𝑃 = 𝐸𝐼𝑙ଶ ቆ𝛼ଶ − ൬𝐼ଵ + 𝛼ଵ𝐼ଷ𝐼ଶ ൰ቇ 𝑙ଶ. (24f)

5. Results 

5.1. EBBo2PF with simply supported edges 

In this case: 

𝐼ଵ = 4.8𝑙ହ,     𝐼ଶ = −204𝑙଻420 ,      𝐼ଷ = −31𝑙ଽ630 . (25)

Then: 

𝑃 = 𝐸𝐼𝑙ଶ ቆ𝛼ଶ𝑙ଶ + ቆ4.8𝑙଻ + 31𝛼ଵ𝑙ଵଵ630 ቇ 420204𝑙଻ቇ. (26)

Simplifying: 
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𝑃 = 𝐸𝐼𝑙ଶ (𝛼ଶ𝑙ଶ + 9.882352941 + 0.101307189𝛼ଵ𝑙ସ). (27)

Eq. (27) can be expressed in the form: 𝑃 = 𝐸𝐼𝑙ଶ 𝐹ଵ(𝛼ଵ𝑙ସ,𝛼ଶ𝑙ଶ). (28)𝐹ଵ(𝛼ଵ𝑙ସ,𝛼ଶ𝑙ଶ) is the buckling parameter. Approximately, 𝐹ଵ can be expressed as: 𝐹ଵ(𝛼ଵ𝑙ସ,𝛼ଶ𝑙ଶ) = 𝛼ଶ𝑙ଶ + 9.88235 + 0.1013072𝛼ଵ𝑙ସ. (29)𝐹ଵ(𝛼ଵ𝑙ସ,𝛼ଶ𝑙ଶ) is calculated and presented in Table 1 for 𝛼ଵ𝑙ସ = 0, 1, 100, 1900, 10000 and 𝛼ଶ𝑙ଶ = 0, 0.5𝜋ଶ, 𝜋ଶ, 2.5𝜋ଶ. Table 1 also presents previous values of 𝐹ଵ calculated using FEM by 
Naidu and Rao [54] and Ike [52, 53] using Stodola-Vianello iteration method. 

5.2. EBBo2PF with clamped edges 

Here: 

𝐼ଵ = 0.8𝑙ହ,     𝐼ଶ = − 2𝑙଻105,     𝐼ଷ = 𝑙ଽ630. (30)

Then: 

𝑃 = 𝐸𝐼𝑙ଶ ቆ𝛼ଶ𝑙ଶ + 1052𝑙଻ ቆ0.8𝑙ହ + 𝛼ଵ𝑙ଽ630ቇ 𝑙ଶቇ. (31)

Simplifying: 

𝑃 = 𝐸𝐼𝑙ଶ ቆ𝛼ଶ𝑙ଶ + 42 + 𝛼ଵ𝑙ସ12 ቇ. (32)

Eq. (32) can be expressed as: 𝑃 = 𝐸𝐼𝑙ଶ 𝐹ଶ(𝛼ଵ𝑙ସ,𝛼ଶ𝑙ଶ), (33)

where: 

𝐹ଶ(𝛼ଵ𝑙ସ,𝛼ଶ𝑙ଶ) = 𝛼ଶ𝑙ଶ + 42 + 𝛼ଵ𝑙ସ12 . (34)𝐹ଶ(𝛼ଵ𝑙ସ,𝛼ଶ𝑙ଶ) is calculated for 𝛼ଵ𝑙ସ = 0, 1, 100 and 𝛼ଶ𝑙ଶ = 0, 0.5𝜋ଶ, 𝜋ଶ, 2.5𝜋ଶ using 
Eq. (34) and presented in Table 2 together with previous results by Naidu and Rao [54] and Rao 
and Raju [55]. 

5.3. Clamped-Pinned EBBo2PF 

Here: 

𝐼ଵ = 1.8𝑙ହ,     𝐼ଶ = −3𝑙଻35 ,      𝐼ଷ = 19𝑙ଽ2520, (35)
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𝑃 = 𝐸𝐼𝑙ଶ ቆ𝛼ଶ𝑙ଶ + 353𝑙଻ ቆ1.8𝑙ହ + 19𝛼ଵ𝑙ଽ2520 ቇ 𝑙ଶቇ. (36)

Simplifying: 𝑃 = 𝐸𝐼𝑙ଶ (𝛼ଶ𝑙ଶ + 21 + 0.087962962𝛼ଵ𝑙ସ). (37)

Eq. (37) can be expressed as: 𝑃 = 𝐸𝐼𝑙ଶ 𝐹ଷ(𝛼ଵ𝑙ସ,𝛼ଶ𝑙ଶ). (38)

Approximating: 𝐹ଷ(𝛼ଵ𝑙ସ,𝛼ଶ𝑙ଶ) = 𝛼ଶ𝑙ଶ + 21 + 0.087963𝛼ଵ𝑙ସ. (39)𝐹ଷ(𝛼ଵ𝑙ସ,𝛼ଶ𝑙ଶ) is calculated for 𝛼ଵ𝑙ସ = 0, 50, 100, 𝛼ଶ𝑙ଶ = 0, 0.5𝜋ଶ, 𝜋ଶ, 2.5𝜋ଶ and presented 
in Table 3. Table 3 also presents previous results for EBBoWF (for 𝛼ଶ𝑙ଶ = 0) using variational 
iteration method (VIM) by Atay and Coskun [43] and exact solution by Wang et al. [36]. 

Table 1. Critical buckling load parameters of a simply supported Euler-Bernoulli beam  
on a two-parameter elastic foundation 

𝛼ଵ𝑙ସ 

𝛼ଶ𝑙ଶ 
0 0 0 0.5𝜋ଶ 0.5𝜋ଶ 0.5𝜋ଶ 𝜋ଶ 𝜋ଶ 𝜋ଶ 2.5𝜋ଶ 2.5𝜋ଶ 2.5𝜋ଶ 

Present 
method 

[9, 11] 
[52] 
[53] 

Naidu 
& Rao 
(FEM) 

[54] 

Present 
method 

[9, 11] 
[52] 
[53] 

Naidu 
& Rao 
(FEM) 

[54] 

Present 
method 

[9, 11] 
[52] 
[53] 

Naidu 
& Rao 
(FEM) 

[54] 

Present 
method 

[9, 11] 
52 
53 

Naidu 
& Rao 
(FEM) 

[54] 
0 9.8824 9.8696 9.8696 14.8172 14.804 14.804 19.752 19.739 19.739 34.5564 35.544 35.544 
1 9.9837 9.9709 9.9709 14.9185 14.907 14.907 19.8533 19.841 19.841 34.677 35.645 35.645 

100 20.0131 20.002 20.002 24.9479 24.937 24.937 29.8827 29.871 29.871 44.6871 44.676 44.676 
1900 202.3657 201.41 201.41 207.3 206.35 206.35 212.235 211.28 211.28 227.04 226.0 226.0 

10,000 1022.954 1023.1 – 1027.889 1028 – 1032.8230 1032.9 – 1047.628 1047.7 – 

Table 2. Critical buckling load parameters of EBBo2PF clamped on both ends 

𝛼ଵ𝑙ସ 

𝛼ଶ𝑙ଶ 
0 0 0 0.5𝜋ଶ 0.5𝜋ଶ 0.5𝜋ଶ 𝜋ଶ 𝜋ଶ 𝜋ଶ 2.5𝜋ଶ 2.5𝜋ଶ 2.5𝜋ଶ 

Present 
study 

Rao & 
Raju 
[52] 

FEM 
[51] 

Present 
Study 

Rao & 
Raju 
[55] 

FEM 
[54] 

Present 
study 

Rao & 
Raju 
[55] 

FEM 
[54] 

Present 
study 

Rao & 
Raju 
[55] 

FEM 
[54] 

0 42 
(6.39 %) 39.478 39.479 46.9348 

(5.68 %) 44.413 44.414 51.8696 
(5.11 %) 49.348 49.349 66.674 

(3.93 %) 64.152 64.153 

1 42.0833 
(6.39 %) 39.554 39.555 47.0181 

(5.68 %) 44.489 44.490 51.9529 
(5.12 %) 49.424 49.425 66.7573 

(3.93 %) 64.228 64.229 

100 50.3333 
(6.92 %) 47.077 47.077 55.2681 

(6.26 %) 52.012 51.542 60.2029 
(5.72 %) 56.9471 56.877 75.0073 

(4.54 %) 71.751 71.681 

The values in parenthesis in the present study results are percentage differences between 
present results and previous results by Rao and Raju [55]. 
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Table 3. Buckling load parameters of EBBo2PF with one end clamped and the other end simply supported 

𝛼ଵ𝑙ସ 

𝛼ଶ𝑙ଶ 
0 0 0 0.5𝜋ଶ 𝜋ଶ 2.5𝜋ଶ 

Present 
method 

Exact 
[36] 

Atay and Coskun 
[43] 

Present 
method 

Present 
method 

Present 
method 

0 21 (4 %) 20.1907 20.1908 25.9348 30.8696 45.674 

50 25.39815 
(4.58 %) 24.2852 24.2855 30.3330 35.2678 50.0722 

100 29.7963 
(5.26 %) 28.3066 28.3080 34.7311 39.6659 54.4703 

The figures in parenthesis under the present method results are percentage differences between 
present results and the exact results by Wang et al. [36]. 

6. Discussion 

In this work, Galerkin variational method has been used for the critical buckling load 
determination of EBBo2PF. The governing equation is a homogeneous ordinary differential 
equation in terms of the buckled deflection 𝑤(𝑥). The paper presented the GVF in general form 
in terms of 𝑛 parameter shape functions which satisfy the boundary conditions. 

The Galerkin method was illustrated using one-parameter shape function formulation for three 
cases of boundary conditions, namely: 

– Both ends are simply supported, 
– Both ends are clamped ends and one-end is clamped and the other end is simply supported. 
In each case, the GVF reduced to an algebraic equation which is solved to find the critical 

buckling load in standard form in terms of buckling load parameters 𝐹ଵ(𝛼ଵ𝑙ସ,𝛼ଶ𝑙ଶ), 𝐹ଶ(𝛼ଵ𝑙ସ,𝛼ଶ𝑙ଶ) and 𝐹ଷ(𝛼ଵ𝑙ସ,𝛼ଷ𝑙ଶ). 
The buckling load parameters for simply supported EBBo2PF presented in Table 1 shows that 

the present results are almost identical to the exact results previously obtained by Ike [9, 11] and 
Naidu and Rao [54]. Table 2 presents critical buckling load parameters for EBBo2PF with both 
ends clamped, and shows that the present results differ from the results by Rao and Raju [55] by 
3.93 % for 𝛼ଶ𝑙ଶ = 2.5𝜋ଶ, 𝛼ଵ𝑙ସ = 0 to 4.54 % for 𝛼ଶ𝑙ଶ = 2.5𝜋ଶ, 𝛼ଵ𝑙ସ = 100. Comparable 
differences exist for other values of 𝛼ଵ𝑙ସ and 𝛼ଶ𝑙ଶ presented. 

Table 3 compares the present results for 𝛼ଶ𝑙ଶ = 0, 𝛼ଵ𝑙ସ = 0, 50, 100 with the exact results. 
Table 3 shows that the present results differ from the exact results by 4 % for 𝛼ଵ𝑙ସ = 0, 𝛼ଶ𝑙ଶ = 0, 
and 5.26 % for 𝛼ଵ𝑙ସ = 100, 𝛼ଶ𝑙ଶ = 0. The accuracy of the one-parameter Galerkin method is thus 
illustrated in the paper. 

7. Conclusions 

This paper has presented Galerkin method for solving critical buckling problems of EBBo2PF 
for the three cases of simply supported (SS) edges, clamped clamped (CC) edges and clamped-
simply supported (CS) edges. 

In conclusion: 
1) The GVF simplified the problem to an algebraic eigenvalue problem. 
2) One-parameter shape function formulation of the Galerkin solution for simply supported 

EBBo2PFs gave critical buckling load solutions that are almost identical to exact solutions. 
3) One-parameter Galerkin solutions for clamped clamped EBBo2PF gave critical buckling 

loads that differ from the previous results by 3.93 % for 𝛼ଶ𝑙ଶ = 2.5𝜋ଶ, 𝛼ଵ𝑙ସ = 0 to 6.92 % for 𝛼ଶ𝑙ଶ = 0, 𝛼ଵ𝑙ସ = 100. 
4) The present one-parameter Galerkin solution for EBBo2PF with CS supports gave 

differences varying from 4 % for 𝛼ଵ𝑙ସ = 0, 𝛼ଶ𝑙ଶ = 0 to 5.26 % for 𝛼ଵ𝑙ସ = 100, 𝛼ଶ𝑙ଶ = 0. 
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