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Abstract. Partial discharge (PD) surveillance constitutes a pivotal methodology for diagnosing 
insulation failures in electrical equipment. Enhancing comprehensively the precision of 
identifying PD anomalies in Gas Insulated Switchgear (GIS) is of paramount significance for 
ensuring the steady functioning of power grids. This study introduces a novel framework that 
integrates Phase-Resolved PD Graph Segmentation (PRPD-Grabcut) with a tailored MobileNets-
based Convolutional Neural Network (MCNN) to classify GIS-related PD issues. Leveraging 
image segmentation via PRPD-Grabcut, crucial features are extracted from PRPD diagrams, 
which then facilitate the construction of the MCNN model. This model employs depth-wise 
separable convolutions alongside inverted residual architectures to tackle the vanishing gradient 
dilemma inherent in Deep Convolutional Neural Networks (DCNNs) during GIS PD pattern 
discernment. Upon the model's subsequent training and validation, empirical evidence illustrates 
that the PRPD-Grabcut-MCNN hybrid significantly alleviates the computational load and storage 
requisites of the model, concurrently enhancing the recognition precision and expediting the 
training process of the neural network. Relative to diverse established lightweight neural network 
architectures, MCNN manifests superior performance in terms of recognition accuracy, reduced 
cross-entropy loss, and expedited training duration.  
Keywords: mage segmentation, deep learning, pattern recognition, partial discharge, PRPD. 

1. Introduction 

With the development of smart grids, the condition monitoring of electrical equipment has 
become increasingly important, especially in the field of high-voltage transmission, where partial 
discharge (PD) monitoring has become a key technology for diagnosing insulation faults in GIS 
(Gas Insulated Switchgear). Early identification of PD activities helps prevent potential equipment 
failures, thereby ensuring the stable operation of power systems. Characteristic GIS PD flaws 
encompass discharges from free metallic particles, suspended potential bodies, insulator surfaces, 
and metallic tips, among others [1]. Implementing PD diagnostics on GIS apparatus efficiently 
gauges equipment insulation health, enabling prompt hazard mitigation and averting catastrophic 
incidents. Presently, PD inspection methodologies encompass ultra-high frequency (UHF) 
techniques, ultrasonics, pulse current approaches, with the UHF method favored for its robust 
interference resistance and heightened sensitivity; moreover, pattern recognition emerges as the 
cornerstone for precise detection accuracy [2]. Both domestic and international academia have 
dedicated substantial efforts to PD pattern recognition studies, yielding notable advancements [3]. 

A Gas-Insulated Switchgear (GIS) partial discharge test platform was set up, as shown in the 
figure. The setup primarily consists of four components: a high-voltage source; a GIS simulation 
test chamber; a partial discharge detection apparatus; and typical defect models. 

As illustrated in Fig. 1, the experimental platform comprises a GIS chamber, an AC voltage 
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regulator, a digital partial discharge meter, an oscilloscope, and sensors. The GIS experimental 
vessel is filled with 0.5 MPa of SF6 gas. Four types of typical defect models were designed for 
the experiment: free metal particle discharge, suspended electrode discharge, surface discharge on 
insulators, and discharge from metallic tips. Each of these models was separately placed into the 
GIS chamber to conduct partial discharge tests, recording the discharge conditions. 

 
Fig. 1. PD detection platform of GIS 

PRPD (Phase Resolved Partial Discharge) mapping is a technique used to display the 
relationship between partial discharge (PD) signals and power supply phase. This type of mapping 
is particularly useful in Gas-Insulated Switchgear (GIS) because it helps identify different types 
of partial discharge patterns and can assist in determining whether there are defects within the GIS 
equipment. In a PRPD map, the horizontal axis typically represents the power supply phase, while 
the vertical axis indicates the amplitude of the partial discharge. Each point on the map represents 
a partial discharge detected at a specific power supply phase. Different types of defects lead to 
distinct PRPD patterns; for example, free metal particles, suspended electrodes, surface defects 
on insulators, or discharges from metallic tips each exhibit unique characteristics on a PRPD map. 

 
Fig. 2. PD spectrum of tip discharge defects 

Fig. 2 is a typical PRPD (Phase Resolved Partial Discharge) spectrum indicative of tip 
discharge characteristics. It displays the variation of partial discharge with respect to the power 
supply phase. In the figure, the horizontal axis represents the power supply phase (in degrees), 
and the vertical axis indicates the amplitude of the partial discharge (in microvolts per meter). 
Each point on the map represents the partial discharge intensity at a specific power supply phase. 
Extensive research has been devoted to PD pattern recognition methodologies, wherein reference 
[4] introduces feature extraction techniques grounded in PRPD mapping, tailored specifically for 



MULTI-SOURCE PARTIAL DISCHARGE PATTERN RECOGNITION IN GIS BASED ON GRABCUT-MCNN.  
ZHEN WANG, HUI FU, CHENGBO HU, ZIQUAN LIU, YUJIE LI, WEIHAO SUN 

 JOURNAL OF MEASUREMENTS IN ENGINEERING 3 

transformer PD pattern discernment. The methodology for extracting features from two-
dimensional and three-dimensional partial discharge (PD) patterns hinges upon the tenets of fuzzy 
entropy expounded in reference [4]. Harnessing the Potential Resolution Phase Display (PRPD), 
a twelve-dimensional feature realm is established utilizing Linear Predictive Cepstral Coefficients 
(LPCCs) to meticulously characterize PD signal patterns. Subsequently, to refine this feature 
terrain, Principal Component Analysis (PCA) is deployed, thereby mapping it onto a 
two-dimensional space for more streamlined analysis, facilitating the clustering of varied PD 
categories [5]. Within the realm of PD pattern recognition, efficacious feature extraction stands as 
a pivotal prerequisite. 

Due to the stochastic nature of partial discharges, several machine learning methods for pattern 
detection and classification have emerged, such as: Support Vector Machines (SVM): Used for 
classifying GIS partial discharge patterns by determining the optimal hyperplane that maximizes 
the margin between different discharge types. Decision Trees (DT): Construct hierarchical 
structures for decision-making, aiding in the identification of conditions leading to specific partial 
discharge patterns. Random Forests: Combine multiple decision trees to enhance accuracy and 
robustness, particularly when dealing with noisy datasets. Neural Networks: Utilize deep 
structures to identify complex PRPD spectrum patterns, improving the accuracy of partial 
discharge pattern recognition. Genetic Algorithms: Optimize model parameters, such as weights 
in neural networks, to find the best configuration, thereby enhancing model performance [6-8]. 
Furthermore, a combination of Recurrent Neural Networks (RNN) and Modified Particle Swarm 
Optimization (mPSO) is utilized for detecting damage in glass fiber reinforced polymer (GFRP) 
composite cantilever beams [9-12]. These methodologies are inherently feature-dependent, 
rendering the caliber of extracted features pivotal to their efficacy in PD identification. Prevailing 
strategies for feature construction primarily consist of Fourier Transform, Wavelet Transform, 
Experiential Mode Disassembly, S-Parameter Conversion, and Polar Coordinate Translation 
[13-16]. Furthermore, to efficaciously distill key PD feature parameters and curtail feature 
dimensions, Principal Component Analysis (PCA) alongside Autoencoders have been 
incorporated for GIS-based PD recognition and classification endeavors [17-18]. 

Still, characteristics display uniqueness; a customized feature ensemble is pertinent 
exclusively to an individual categorization framework. To overcome this constraint, profound 
learning techniques have been integrated into GIS pattern discernment and flaw prediction, 
epitomized by models such as LeNet5, AlexNet, one-dimensional Convolutional Neural Networks 
(1D-CNN), and LSTM-driven deep recursive neural networks. These methodologies have proven 
highly applicable [19]-[20]. The LeNet5 model excels in PRPD recognition accuracy. The 
AlexNet model achieved remarkable outcomes via fusion decision-making, albeit encountering 
vanishing gradients during training and expanding the model’s storage and computational 
demands. While 1D-CNN enhances recognition accuracy over 2D convolution, it incurs time 
increments due to intricate signal handling and fading gradients. LSTM-based deep recurrent 
networks excel in PRPD pattern analysis but can be influenced by sampling frequencies and 
feature, potentially leaning excessively on expert intuition. Consequently, novel deep learning 
frameworks are necessitated to augment recognition precision and real-time fault responsiveness 
in GIS PD pattern recognition. 

Acknowledging the inadequacies in prevailing PD recognition methodologies, this paper 
introduces a GIS PD pattern recognition strategy that merges Phase-Resolved PD Graph 
Segmentation (PRPD-Grabcut) with a novel MobileNets Convolutional Neural Network (MCNN) 
model.  

Unlike traditional methods that rely on manually designed features, this paper adopts 
PRPD-Grabcut technology, using an adaptive threshold image segmentation method to 
automatically extract key features from PRPD spectra. This approach reduces the dependency on 
external feature engineering, enhancing the consistency and accuracy of feature extraction. 

To address the gradient vanishing problem commonly encountered during the training of 
traditional deep convolutional neural networks (DCNNs), the MCNN model developed in this 
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paper introduces depthwise separable convolutions and inverted residual structures. These designs 
not only enhance the model's capability to handle complex tasks but also reduce the number of 
model parameters and computational complexity, thereby improving training efficiency and 
recognition accuracy. 

Compared to other lightweight neural network models, MCNN demonstrates significant 
advantages in terms of recognition accuracy, cross-entropy loss, and training time. Particularly in 
scenarios with limited computational resources, MCNN significantly reduces computational 
burden and storage space requirements by minimizing model complexity, providing greater 
flexibility and practicality for real-world applications. 

This study proposes a new, efficient, and accurate scheme for GIS partial discharge (PD) 
pattern recognition, demonstrating superior performance in identifying multiple types of 
discharges in complex environments. Compared to traditional lightweight networks, the MCNN 
model shows clear advantages in accuracy, loss reduction, and training speed, filling a 
technological gap.  

Future work will focus on enhancing the model's generalizability and adaptability by 
expanding the training dataset to recognize a wider variety of PD patterns, thus increasing its 
applicability in different scenarios; developing a real-time monitoring system version for 
immediate on-site data processing and fault warnings; optimizing the algorithm for resource-
constrained edge devices to support instant data analysis in the field; and exploring the fusion of 
UHF signals with data from other sensing technologies to obtain more comprehensive fault 
diagnostic information. 

2. Model of this article 

2.1. PRPD-Grabcut model 

The innovative PRPD-Grabcut technique presented herein is an adaptive threshold-driven 
image segmentation approach, comprising three successive phases. 

Step one: Preprocessing of the Visual Data. Initially, the raw PRPD signals from Ultra-High 
Frequency (UHF), optical, and ultrasonic domains undergo normalization, ensuring disparate 
amplitude profiles yield uniform shapes post-normalization. Following normalization, these 
signals transition into grayscale imagery. Lastly, the normalized grayscale representations 
undergo division into distinct segments. 

Step Two: Integral Image Calculation for Partitioning Purposes. This stage involves the 
reduction of PRPD representations into binary areas of focus, a common practice in image 
segmentation methodologies [21]. A square window of dimensions 𝑠×𝑠 envelops each central 
pixel, within which the mean pixel value is computed per the methodology detailed in scholarly 
work [22]. The integral image at each window's location embodies the pixel summation above and 
to the left of said window. The crux of PRPD-Grabcut lies in utilizing the mean pixel intensity 
within the neighborhood block centered at each sliding window's core as the segmentation 
criterion. Subsequently, a sensitivity threshold (𝑡), guided by the noise prevalence in PD 
monitoring, is established. Spanning the interval [0, 1], this sensitivity parameter gauges the 
likelihood of pixels being classified as 'object' during segmentation. For windows harboring the 
target, the instantaneous pixel intensity must fall below t percent of the regional mean. 

Step Three: Formation of Diversely Sensitive Segmented Sample Groups and Conversion of 
PRPD-Grabcut Outputs to Binary Form. Binarization here entails assigning each pixel an RGB 
value, thereby enriching the description of the image's silhouette and outline. 

Step Four: Extraction of Inverted Residual Block (IRB) Characteristics from the segmented 
spectra of UHF, optical, and ultrasonic partial discharges. The process initiates with Pointwise 
Convolution expanding the channel breadth, followed by Depthwise Convolution conducting 
feature extraction through high-dimensional convolution. Lastly, Pointwise Convolution 
reintroduces dimensionality reduction and channel concatenation, preparing the binary samples 
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for introduction to the recognition model. 

2.2. MCNN model 

In recent times, Convolutional Neural Networks (CNNs), a paradigmatic deep learning 
technique, have witnessed rapid advancements and evolved into a potent tool for pattern 
recognition [23-25]. The feature extraction stratum leverages convolution computations, 
characterized by sparse interactions, shared parameters, and isomorphism in representation [26]. 
Sparse interactions permit convolution kernels significantly smaller than the input dimensions, 
whereas parameter sharing economizes on storage by necessitating only a single set of parameters, 
thereby imbuing the model with translational equivariance. Moreover, pooling mechanisms 
maintain a consistent representation despite minor translational shifts in the input. Embracing 
Deep Convolutional Neural Networks (DCNNs) as classifiers for pattern recognition alleviates 
the intricacies of manual feature crafting, resolves the underutilization of features, and markedly 
bolsters diagnostic accuracy and generalizability. Each feature extraction tier initially undergoes 
a series of convolution operations with diverse kernels. This iterative process within each feature 
abstraction layer can be encapsulated by Eq. (1): 

𝑥 = 𝑓 ቌ 𝑥ିଵ ∗ 𝑘 + 𝑏∈ெೕ ቍ.  (1)

In this context, ∗ symbolizes the convolution operation; the input 𝑥ିଵ, signifying the layer’s 
constituent elements, 𝑥 is transformed into the output through this process; the bias term is 
represented by 𝑏; the feature map selection is denoted by 𝑀; the weights are captured by 𝑘 ; and 
the kernel function is embodied in 𝑓. During the convolution process, once the input feature map 
undergoes convolution computation, it is subsequently channeled through an activation function 
before being yielded as output. This transformative sequence can be mathematically encapsulated 
by Eq. (2): 𝑀 = 𝜎൫𝑀ିଵ ∗ 𝑊ିଵ + 𝑏ିଵ൯. (2)

Included herein, 𝜎 signifies the activation function responsible for introducing nonlinearities; ∗ denotes the convolution operation, fundamental to feature extraction; 𝑀ିଵ and 𝑀 denote the 
input and output vectors, respectively, for the layer in question; 𝑊ିଵ embodies the coefficient 
matrix tied to the convolution filter of the matching stratum; 𝑏ିଵ and stands for the offset or bias 
vector. Progressing to the pooling layer, the underlying computational procedure is succinctly 
encapsulated by Eq. (3), underscoring a dimensionality reduction step that retains essential 
information while mitigating computational overhead: 𝑀 = 𝑝𝑜𝑜𝑙𝑖𝑛𝑔൫𝑀ିଵ൯. (3)

Within the fully connected layer, a strategy of weighted summation is employed to analyze the 
feature maps emanating from the preceding layer. By subjecting these processed features to an 
activation function, the resultant output feature map is derived, a transformation succinctly 
encapsulated by Eq. (4). This step essentially fosters direct inter-neuron connectivity, enabling 
comprehensive integration of learned features for the ultimate classification or regression task: 𝑍 = 𝜎൫𝑍ିଵ ⋅ 𝑊ିଵ + 𝑏ିଵ൯. (4)

In this context, the symbol ⋅⋅ denotes the operation of matrix multiplication; the activation 
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function is denoted by 𝜎; 𝑍ିଵ and 𝑍 represent the initial input and output, respectively; 𝑊ିଵ is 
the weight matrix of the convolution core of the 𝑗th layer; 𝑏ିଵ is the bias vector of the 𝑗th layer. 

The educational objective of a Convolutional Neural Network (CNN) revolves around 
minimizing the loss function. Should the CNN tackle classification tasks, the loss function 
employs cross-entropy as its metric, as illustrated in Eq. (5). Conversely, when faced with 
regression tasks, the mean squared error function assumes the role of the loss function, as 
exemplified in Eq. (6). This dual approach ensures the network’s versatility across diverse 
problem domains: 

𝐽ሺ𝜃ሻ = ∑ ((𝑦 − 𝑦ො)ଶୀଵ 𝑚 , (5)𝐽(𝜃) = ∑ ((𝑦 − 𝑦ො)ଶୀଵ 𝑚 , (6)

where, 𝑦 is the true value of the 𝑖-th input; 𝑦ො is the predicted value of the 𝑖-th input; 𝑚 represents 
the number of samples in the training set; and 𝜃 denotes the model’s parameters, which are the 
weight vectors. 

The MCNN framework constitutes a streamlined deep neural network archetype introduced 
by Google [27], presenting two iterations: MobileNet-V1 and its successor, MobileNetV2. 
MobileNet-V1 integrates a depth-wise separable convolution methodology, drastically curtailing 
the surplus inherent in conventional 3D convolutions. This enhancement not only optimizes 
latency and shrinks the model footprint but also bolsters the model’s discriminative capability 
[28]. Building upon the architectural blueprint of MobileNet-V1, MobileNet-V2 integrates a duo 
of supplementary architectural tenets: the bottleneck and inverted residual structures. These 
enhancements expedite convergence and stave off degradation phenomena. Given 
MobileNet-V1’s potential vulnerability to gradient vanishing, this study adopts MobileNet-V2 for 
the detection and categorization of GIS partial discharge patterns. Fig. 3 illustrates the 
comprehensive workflow diagram for model training. The process first involves normalizing and 
converting the original PRPD spectra from UHF, optical, and ultrasonic partial discharge into 
grayscale, and then segmenting them into smaller samples. Next, integral images of the PRPD 
samples are calculated, and image segmentation is performed using a sliding window method, 
where the mean pixel value within the window serves as the segmentation threshold, adjusted by 
a sensitivity threshold based on the noise level to fine-tune the segmentation sensitivity. Following 
this, the samples are binarized at different sensitivities to better delineate the shapes and contours 
in the images. Finally, the segmented spectra undergo feature extraction through an IRB module, 
utilizing Pointwise and Depthwise convolutions for feature extraction and dimensionality 
reduction, preparing them for input into the recognition model. 

This decomposition can capture features more effectively and improve the parameter 
utilization and computational efficiency of the model. Depthwise separable convolution first 
performs depth convolution in the convolution operation, and then performs point-by-point 
convolution, which can reduce the amount of calculation and model complexity while maintaining 
the ability to express features. 

As shown in Fig. 4, depthwise convolution constitutes a technique that sifts through input 
channels without inflating their quantity. Suppose an input feature map spans dimensions A×B×C, 
and the convolution kernel measures 𝑃×𝑃. When applying convolution to individual feature 
subsets, the kernel maintains a single channel width. Assuming a kernel ensemble of 𝑁, each 
feature subset encounters a solitary P×P kernel [29]. Hence, the arithmetic burden of 
depth-separable convolution sums up to ABCP², equating to 1/𝑀 of Standard convolution’s 
workload, with 𝑀 equating to 𝐾ଶ𝑁. By bypassing channel-wise convolution computations, a 
substantial diminution in training duration for Multi-Channel Convolutional Neural Networks 
(MCNN) is attained. This stems from depthwise convolution's approximation to independently 
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harvesting spatial attributes per channel, thereby accelerating the learning trajectory. Such an 
approach fosters computational efficacy, proving especially advantageous in scenarios entailing 
voluminous datasets. 

 
Fig. 3. Grabcut MCNN training overall flowchart 

 
Fig. 4. Deep convolutional neural network model 
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As shown in Fig. 5, pointwise convolution denotes a specialized form of convolution where 
the kernel size is confined to 1×1. Concretely, given an input feature map of dimensions A×B×C, 
this operation manifests through executing 𝑀 iterations of 1×1×𝑁 conventional convolutions, 
with A×B delineating the map's spatial expanse. Here, 𝑁 signifies the channel count for both the 
the input characteristic map along with the filtering kernel, while 𝑀 denotes the total convolution 
kernel quantity. Primarily, pointwise convolution facilitates regulate the output feature map’s 
channel depth [30]. Computationally, it bears a lighter load, confines to elemental multiplications 
and accumulations, streamlining calculations. Its prevalence in deep learning circles stems from 
its versatility in dimensionality modulation, channel expansion, and parameter reduction, thereby 
augmenting the network’s proficiency in feature extraction.  

 
Fig. 5. Point by point convolution operation model 

The inverse residual configuration represents a variation on the classic residual architecture. 
Conventionally, within a standard residual block, we often diminish the feature map's channel 
count through a bottleneck layer. Conversely, in the inverse residual setup, given that the shortcut 
linkage attaches to the feature map, necessitating a decrease in channel numbers, this design earns 
its 'inverse' denomination. In this paper, we propose a new inverse residual model that adopts a 
different structural design to extract features. First, the number of feature channels is increased 
through Bottleneck, then a deep convolution layer is used to transform the features, and finally the 
number of feature channels is reduced through Bottleneck. Different from traditional residual 
blocks, in the reverse residual operation, we only use deep convolutional layers for nonlinear 
feature transformation and introduce residual connections between two bottlenecks. This residual 
connection acts like a traditional residual block, improving convergence and offsetting 
performance degradation during training. Through the design of this structure, our model has 
better training effects and performance. 

The dimension of the input sample is 𝑋, and all feature information is included. The 
characteristics of the sample will be changed into h·x dimensions by the reverse residual structure; 
ReLU is used to retain the key parts of the special feature and the activation function is discarded 
in order to prevent the loss of key parts. Finally, bottleneck is used to reduce feature redundancy. 

The complete framework of the MobileNet Version 2 design is illustrated within Table 1. 
Each horizontal row signifies a singular or plural sequence of operations within an identical 

network infrastructure. Post y rounds of iterations, every layer partaking in the identical sequence 
concludes with an equal count of output channels, designated as c. The premier layer sequence 
initiates with a stride magnitude of q, whereas successive layers adopt a stride length of unity. 
Spatial convolution kernels uniformly maintain a dimensions of 3×3, while an amplification ratio 
h is imposed on the incoming features, thoroughly elucidated in Table 1. MobilNet-V2 
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encompasses an intact convolutional tier equipped with 32 convolutional filters, succeeded by 17 
inversed residual bottleneck components. Within this architectural schema, Dropout methodology 
and Batch Normalization tactics are integrated in the training regimen, alongside the deployment 
of ReLU6 functioning as the non-linear activation function, which proves more conducive to 
computations under low-precision constraints. Via these refinements, superfluous elements are 
efficaciously minimized, thereby curtailing model intricacy without compromising on 
performance efficacy. 

Table 1. MobileNet-V2 model architecture 
Enter size Neural networks ℎ 𝑥 𝑦 𝑞 

160×160×3 2D convolution – 28 1 2 
80×80×28 Bottleneck 1 14 1 1 
80×80×14 Bottleneck 4 18 2 2 
40×40×18 Bottleneck 4 28 3 2 
20×20×28 Bottleneck 4 56 4 2 
10×10×56 Bottleneck 4 72 3 1 
10×10×72 Bottleneck 4 180 3 2 
5×5×180 Bottleneck 4 360 1 1 
5×5×360 1x1 2D convolution – 1440 1 1 
5×5×1440 5x5 average pooling – – 1 – 
1×1×1440 1x1 2D convolution – 1000 – – 

In MobileNet-V2, we introduced two hyperparameters, the width factor α and the resolution 
factor 𝛽 to further compress the model. Unlike the width factor value used in MobileNet-V1, 
which is less than or equal to 1, the width factor value of MobileNet-V2 ranges from 0.31 to 1.35. 
Such a design enables the width factor to be applied to all layers except the last convolutional 
layer, which greatly improves the performance of small models. By adjusting the width factor, we 
can flexibly control the width of the model to balance performance and computational resource 
consumption. At the same time, introducing a resolution factor can also compress the model to a 
certain extent, thereby further reducing computational costs. Through these methods, 
MobileNet-V2 effectively improves the compression ratio of the model while maintaining 
performance [31-34]. 

This work harnesses MobileNet-V2 for the purpose of identifying and categorizing patterns 
characteristic of GIS partial discharges. Initial steps entail the binarization of PRPD-Grabcut 
samples, a measure aimed at curtailing the model's parameter count. Model training capitalizes on 
the backpropagation algorithm in conjunction with stochastic gradient descent, fortified by 
Dropout and Batch Normalization methodologies to bolster training efficacy and expedite the 
training schedule. At the terminal layer of the model, Softmax serves as the classifier, while 
one-hot encoding is employed to distinguish among four classes of PD's foundational images. 
Throughout the model, all activation functions assume the form of ReLU6 functions, enhancing 
computational efficiency and promoting non-linearity. 

3. Experimental analysis 

3.1. Analysis of influencing factors of PRPD-Grabcut pattern recognition results 

To scrutinize the variables impacting PRPD-Grabcut’s accuracy in pattern discrimination, a 
dataset comprising 1,250 instances of partial discharge patterns from gas-insulated switchgear was 
selected. These encompassed scenarios involving free metallic particle discharge, suspended 
electrode discharge, surface discharge on insulators, and discharges from metallic tips. 

PRPD-Grabcut embodies an adaptive threshold-driven image partitioning strategy. As 
depicted in Figure 6, the relationship between sensitivity settings (0.1, 0.2, 0.3, 0.4, 0.5) and both 
recognition accuracy and loss metrics is portrayed. Herein, the solid black line traces the trajectory 
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of recognition accuracy, while the intermittent blue line symbolizes the model's cross-entropy loss 
profile, illustrating how varying sensitivity levels modulate these critical performance indicators. 

Illustrated in Fig. 6, the responsiveness parameter significantly influences the outcomes of 
pattern discernment tasks. Upon configuring the responsiveness at levels of 0.1, 0.2, 0.3, 0.4, and 
0.5, the attained recognition precision rates were observed to be 81.27 %, 92.48 %, 97.86 %, 
98.28 %, and 97.32 %, respectively, accompanied by cross-entropy loss metrics of 0.71, 0.30, 
0.12, 0.02, and 0.08, correspondingly. Notably, when the responsiveness setting reached 0.4, the 
dataset utilized herein achieved its apex recognition accuracy and concurrently, the most 
minimized loss magnitude. At this sensitivity setting, the model can more accurately distinguish 
between target regions and background areas during image segmentation. A higher sensitivity 
means that more pixels are classified as part of the target, and excessively high sensitivity may 
introduce too much noise, leading to an increase in false positives, which affects accuracy. 
Conversely, too low a sensitivity may result in parts of the true target being incorrectly classified 
as background, thereby reducing accuracy. At a sensitivity of 0.4, the model finds an appropriate 
balance point, effectively excluding noise interference while maximizing the retention of target 
information, which helps to improve the model's recognition accuracy. Additionally, the 
minimization of cross-entropy loss indicates that the model's predicted output is closer to the 
actual labels, further demonstrating the model's excellent performance at this sensitivity level. 

Furthermore, the form and scale of PRPD constitute pivotal elements impacting Grabcut’s 
efficacy. With the aim of contrasting the repercussions of PRPD visuals exhibiting varied 
dimensions and resolutions on the exactness of pattern identification, the resolutions used are 
10×10, 30×30, 50×50, 70×70, 100×100, 100×150, 100×300, 200 The PRPD images of ×200 and 
300×300 are used as input samples of MCNN, and are represented by A1-A9 respectively. The 
recognition accuracy and cross-entropy values of samples with different resolutions are shown in 
Fig. 7, in which the black line is the recognition accuracy curve and the blue dotted line is the 
model cross-entropy loss value. 

 
Fig. 6. PD recognition accuracy  

under different sensitivities 

 
Fig. 7. PD recognition accuracy  

at different resolutions 

Observations from Fig. 7 reveal that recognition accuracies for resolutions 10×10 and 30×30 
remain suboptimal, standing at 43.24 % and 87.96 % correspondingly. However, upon tweaking 
the sample resolutions to 50×50 and 70×70, a notable upsurge in accuracy is observed, reaching 
94.86 % and 95.69 % respectively. Further escalations are marked with resolutions of 100×100, 
100×150, 100×300, 200×200, and 300×300, yielding recognition accuracies of 98.24 %, 99.88 %, 
99.22 %, 99.67 %, and 99.72 % in that order. Notably, samples rendered at 100×100 resolution 
outshine others with the pinnacle recognition accuracy coupled with the least loss magnitude. 

A lower resolution (such as 10×10 and 30×30) may lead to the loss of important features, thus 
affecting the model's recognition capability. As the resolution increases (such as to 50×50 and 
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70×70), more details are retained, allowing the model to better capture these features, hence 
improving the recognition accuracy. However, an excessively high resolution (such as 300×300) 
provides more detail but also increases computational complexity and may introduce the risk of 
overfitting, where the model learns the details of the training data too well and does not generalize 
well to new data. A resolution of 100×100 retains sufficient detail while avoiding the negative 
impacts of higher resolutions, thus finding the optimal balance between accuracy and model 
performance. 

3.2. MCNN performance analysis 

To ascertain the efficacy of MCNN, the suggested approach is pitted against conventional 
methodologies (comprising CNN, AlexNet, GoogLeNet, and ResNet) alongside prevalent 
compact networks (such as SqueezeNet, ShuffleNet, MobileNet, and Xception), as illustrated in 
Table 2. Regarding the precision of various models, divergent cross-entropy loss scores for these 
models are depicted in Table 3. 

Table 2. Different model recognition accuracy 
Model Number of iterations Accuracy / % 
CNN 120 62.36 

GoogLeNet 120 73.80 
Xception 120 62.12 
AlexNet 120 71.39 
ResNet 120 80.12 

SqueezeNet 120 75.41 
SuffleNet 120 76.98 
MobileNet 120 69.84 

MCNN 120 91.46 

Table 2 illustrates that MCNN surpasses alternative neural networks in terms of recognition 
precision. By the 120th cycle, the educational preciseness for CNN stood at 62.36 %, for 
GoogLeNet it reached 73.80 %, whereas MCNN achieved an educational preciseness of 91.46 %. 

This result indicates that MCNN possesses stronger learning capabilities and higher 
recognition accuracy. The primary reasons for this phenomenon are the more effective feature 
extraction methods and optimization strategies adopted by MCNN, such as depthwise separable 
convolutions and inverted residual structures. These techniques not only reduce the complexity 
and computational burden of the model but also enhance the training efficiency and recognition 
accuracy. Depthwise separable convolutions decrease the computational load by performing 
depthwise convolution followed by pointwise convolution, maintaining the expressive power of 
features. Inverted residual structures help alleviate the vanishing gradient problem, improving the 
stability of model training. These mechanisms work together, enabling MCNN to converge faster 
during the training process and achieve better performance within the same number of training 
cycles. 

Table 3. Cross-entropy loss of different models 
Model Initial cross entropy loss value Terminal cross entropy loss value 
CNN 2.8674 0.9468 

GoogLeNet 2.3247 0.7245 
Xception 2.4587 0.5621 
AlexNet 1.8756 0.7213 
ResNet 1.5879 0.6541 

SqueezeNet 1.3684 0.5679 
SuffleNet 1.5214 0.5395 
MobileNet 1.6847 0.6595 

MCNN 1.142 0.1725 
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According to Table 3, MCNN demonstrates a notably diminished loss magnitude in contrast 
with other network architectures. Commencing with the highest initial loss figure of 2.9042, CNN 
contrasts with MCNN, which initiates at the lowest loss level of 1.142. Upon reaching 120 iterative 
cycles, CNN's concluding loss magnitude peaks at 0.9468, whereas MCNN maintains the least 
loss value at 0.1725. This evidences that MCNN excels in both precision for PD recognition and 
the velocity of convergence, outperforming both conventional neural frameworks and currently 
established compact network models. 

The primary reasons for this result are due to the depthwise separable convolutions and the 
inverted residual structures. Depthwise separable convolutions break down the convolution 
operation into two separate steps – depthwise convolution and pointwise convolution – effectively 
reducing the demand for computational resources while maintaining the ability to extract features. 
Inverted residual structures help address the issue of vanishing gradients, ensuring stability during 
the training process, which in turn accelerates the convergence speed of the model. These 
technologies work together to allow MCNN to achieve a lower loss value from the early stages of 
training and to maintain a low loss as training progresses, thereby achieving efficient and accurate 
PD recognition. 

3.3. PRPD-Grabcut-MCNN performance analysis 

In order to verify the performance of PRPD-Grabcut-MCNN, the accuracy and model training 
time of each network model were compared, as shown in Figs. 8-9. 

 
Fig. 8. PD recognition accuracy  
under different network models 

 
Fig. 9. Model training time under  

different network models 

In Figs. 8 and 9, B1 to B9 represent CNN, GoogLeNet, Xception, AlexNet, ResNet, 
SqueezeNet, ShuffleNet, MobileNet, and the model proposed in this paper, respectively. Fig. 7 
shows the recognition accuracy of each model when the inputs are multi-source original PRPD 
patterns, multi-source PRPD patterns processed by PRPD-Grabcut, single-source original PRPD 
patterns, and single-source PRPD patterns processed by PRPD-Grabcut. Fig. 8 illustrates the loss 
function of each model corresponding to the same sets of inputs. As Figs. 7-8 illustrate, the 
identification precision of samples processed via PRPD-Grabcut is notably superior to that of 
unmodified PRPD samples. With respect to training duration, the PRPD-Grabcut methodology 
curtails the time required for network model training in comparison to its unprocessed PRPD 
image counterparts. Moreover, irrespective of whether a solitary input comprises the pristine 
PRPD image or an image subjected to the Grabcut-PRPD process, the resultant training efficiency 
pales in contrast to scenarios incorporating multi-modal inputs, highlighting the inferiority of 
single-input methodologies in this context. 

Regarding PRPD-Grabcut samples, the recognition accuracies of CNN, GoogLeNet, AlexNet, 
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and ResNet stand at 91.18 %, 94.46 %, 96.35 %, and 96.58 % respectively. Remarkably, MCNN 
achieves a 99.91 % recognition accuracy, surpassing CNN by 8.73 %. Relative to unprocessed 
PRPD samples, the employment of PRPD-Grabcut samples elevates MobileNet’s recognition 
accuracy by 1.05 % and ResNet’s by 3.33 %. 

Lightweight neural networks notably trim down training durations compared to their 
conventional counterparts. The MCNN put forth in this study successfully realizes model 
lightweighting. When applied to PRPD-Grabcut samples, training durations for CNN, 
GoogLeNet, AlexNet, and ResNet amount to 48,523, 45,342, 23,024, and 8,325 seconds, 
respectively. Conversely, Xception, SqueezeNet, ShuffleNet, and MobileNet clock in at 7,464, 
5,128, 4,435, and 4,115 seconds. MCNN, with a training time of 2,543 seconds, demands 16,24 
seconds less than MobileNet alone. Consequently, the MCNN framework, grounded in 
PRPD-Grabcut, dramatically curtails the model’s computational load, concurrently boosting PD 
recognition accuracy and abbreviating network training periods. In juxtaposition with an array of 
established lightweight neural networks, MCNN distinguishes itself through superior recognition 
accuracy and abbreviated training intervals. 

4. Conclusions 

This paper adopts PRPD-Grabcut technology, using an adaptive threshold image segmentation 
method to automatically extract key features from PRPD spectra. This approach reduces the 
dependency on external feature engineering, enhancing the consistency and accuracy of feature 
extraction. To address the gradient vanishing problem commonly encountered during the training 
of traditional deep convolutional neural networks (DCNNs), the MCNN model developed in this 
paper introduces depthwise separable convolutions and inverted residual structures. These designs 
not only enhance the model's capability to handle complex tasks but also reduce the number of 
model parameters and computational complexity, thereby improving training efficiency and 
recognition accuracy. Compared to other lightweight neural network models, MCNN 
demonstrates significant advantages in terms of recognition accuracy, cross-entropy loss, and 
training time. Particularly in scenarios with limited computational resources, MCNN significantly 
reduces computational burden and storage space requirements by minimizing model complexity, 
providing greater flexibility and practicality for real-world applications. 
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