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Abstract. Over the years, industrial asset management has significantly transformed from being 
an unavoidable resource consumer to a value creator involving multi-criteria decision-making and 
optimisation. This is particularly important in the scenario of Industry 4.0, which offers more 
opportunities for improved maintenance effectiveness. This review examines the literature 
covering the evolving area of data-driven Predictive Maintenance (PdM) within engineering asset 
management. The work explores current and emerging practices for managing asset degradation, 
with emphasis on the domain of Prognostics and Health Management (PHM). Next, it examines 
the opportunities for data-driven methods, associated techniques, and data sources to incorporate 
data-driven PdM into the maintenance decision-making portfolio. The text concludes by 
discussing the opportunities and constraints related to data-driven PdM for three identified asset 
data streams. The paper offers insights for researchers and practitioners interested in utilising 
data-driven approaches to improve asset reliability, improve maintenance strategies and manage 
asset complexities. 
Keywords: engineering asset management, maintenance strategy, condition-based maintenance, 
predictive maintenance, PHM, data-driven prognostics, RUL, maintenance advisory. 

1. Introduction 

Industrial asset management is an interdisciplinary field that balances safety, reliability, 
maintainability, organisational performance and cost-effectiveness. It aims to optimise the cost, 
risk and performance across the life cycle of the assets. Asset management provides a systematic 
approach to new, in-service, and ageing asset decision-making. Such decisions impact the diverse 
assets throughout their life cycle, including design, manufacture, commissioning, operation, 
maintenance, upgrades and disposal. The major technical areas identified within the discipline are 
maintenance strategy, performance measurement, optimization, replacement, outsourcing, risk-
based aspects, predictive maintenance, remaining asset life, planning, scheduling and information 
management [1]. The discipline has gained acceptance as a strategic tool for achieving business 
goals despite the breadth of subject matter resulting in differing interpretations to suit individual 
organisations [2]. In addition to physical entities, the scope of asset management encompasses 
intangible elements such as organisational practices, business objectives, stakeholder interactions, 
and enterprise management systems, thereby making it a complex socio-technical system of 
systems. The increasing complexity of systems results in a lack of understanding of asset 
properties, states, responses and internal interactions, making it more challenging for stakeholders 
to explain life-cycle decisions. In this context, the transformative technologies from the 
Industry 4.0 environment can be utilised to improve the understanding of the condition and 
management of complex assets. Data related to asset conditions, computational capabilities and 
connectivity facilitate the development of novel methods that learn and improve the knowledge 
of complex system characteristics over time. In addition to improving the sustenance practices 
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related to asset health, the newly discovered understanding generates valuable feedback for 
optimising the design of systems and components. Data-driven Predictive Maintenance (PdM) is 
a proactive strategy that utilises data streams from asset performance to gain insights and make 
decisions related to their condition, fault progression, risk assessment and maintenance practices. 
This review has effectively consolidated existing knowledge on data-driven PdM and lays the 
groundwork for creating practical workflows utilising the discussed approaches and algorithms. 

2. Asset management in the context of Industry 4.0 

The key technologies of Industry 4.0 are Cyber Physical Systems (CPS), Internet of Things 
(IoT), Industrial Internet of Things (IIoT), Internet of Services (IoS), context-aware smart 
factories, sensors, big data, connectivity and high-performance computing [3,4]. Implementing 
the elements of Industry 4.0 in manufacturing results in reduced development cycles, customized 
and flexible production, decentralized operations and improved resource efficiency [5]. These 
transformative opportunities are referred to as “disruptive” as they fundamentally alter how 
industrial systems are designed, maintained and operated, thereby introducing new 
decision-making practices in unprecedented ways. Connected assets, sensors and other devices in 
an IIoT environment improve the line of sight into operations, maintenance and optimized 
production processes. Analysis of big data from the assets can uncover hidden patterns, trends and 
insights, offering a novel alternative to traditional data analysis. An established method in Industry 
4.0 is the utilisation of the Digital Twin, which involves creating digital representations of physical 
processes to enhance the understanding of complex system behaviour and provide early warnings 
of asset degradation. Digital Twins (DT) are the digital representations of physical processes in 
the Industry 4.0 ecosystem. When calibrated, they can improve understanding complex system 
behaviour and provide early warnings of asset degradation. The Digital Twin is widely recognized 
for its ability to integrate vertically across multiple hierarchical levels of the asset system. In 
addition, it can also be aligned horizontally with various stakeholders within and outside an 
organization. [6]. Due to the advancement of Industry 4.0 such as DT, the traditional discrete 
offerings of products and services are shifting towards an integrated product-service-system 
offering, also known as servitization in the environment of Industry 4.0.  

Asset management systems of the future are expected to bring forth significant changes in 
business processes, methodologies and the breaking of boundaries across organizations. The 
“as-a-service” asset management model uses integration, communication and control of industrial 
assets to improve automated decision-making and reduce human involvement in routine tasks. 
These changes are facilitated by advancements in big data from assets, DT and engineering 
approaches such as Prognostics and Health Management (PHM) [7]. This environment is expected 
to introduce new business models where a consortium of owner-operators, service providers, and 
remote experts share the benefits and associated risks of the generated value. However, existing 
processes, technologies, and competencies need to be re-calibrated to ensure successful 
implementation of the new asset management vision. These gaps include integration and 
interoperability within the enterprise, effective processing of big data and the implementation of 
overarching models for service-oriented architecture like the Reference Architecture Model 
Industrie 4.0 (RAMI 4.0) [8]. Small and Medium Enterprises are found to trail behind bigger 
organizations in implementing Industry 4.0 practices due to outdated assets, semi-automated 
control systems, ageing information systems, and asset management practices that lack digital 
monitoring and reporting [9]. 

3. Prognostics and health management 

Assets are entities that function as integrated systems with different levels of uniqueness to 
fulfil a functional requirement. Their performance deteriorates over time and may malfunction 
without proper care. Functional degradation, an inevitable outcome of asset utilisation, can be 
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reduced by implementing restorative actions. The maintenance function has a strategic role in the 
profitability, competitiveness, and asset reliability in the short and medium term. It also offers 
substantial opportunities for creating value in sustainable manufacturing, environmental and social 
benefits, governance, and the implementation of new technology [10, 11]. Maintenance activities 
are broadly categorised as Preventive and Corrective. Preventive Maintenance (PM) deals with 
planned and scheduled tasks carried out to minimise degradation and lower the likelihood of 
failure. PM tasks encompass physical inspections and tasks based on time, condition, usage, 
troubleshooting, function tests and statutory inspections. Corrective Maintenance (CM) is 
performed after recognizing a fault and is intended to restore the asset to an acceptable condition, 
thereby reducing degradation and function failure. There are two categories within CM. Reactive 
Maintenance (RM) is the immediate response to a malfunction or breakdown, usually involving 
restoration or replacement of affected components with little planning process involved. It is 
associated with unpredictability in cost, downtime, resource utilisation and the subsequent life of 
the asset. Deferred maintenance is the second type, performed opportunistically at a convenient 
timeframe. The system-level objective driving a maintenance strategy is to perform just the 
necessary PM while minimising RM [12-14]. The downside of PM is the possibility of 
over-maintaining and related costs, while a strategy accommodating RM is not advisable for 
safety-critical systems. This section discusses the significance of Prognostics and Health 
Management (PHM) during the operating phase of the asset life cycle in general, an overview of 
existing practices and the innovative approaches being researched in managing asset health. 

Condition Based Maintenance (CBM) is a subset of PM that entails regular monitoring and 
analysis of parameters like machinery vibration, noise, motor current, thermography, lube oil 
condition, operational performance. It uses domain-specific diagnostic knowledge and rules to 
estimate the condition of the machinery [15]. Apart from being non-invasive, CBM can be used 
for fault diagnosis, optimised PM, potential reduction in CM, and provides a basis for predictive 
analysis. In addition, this approach allows for focused action without unnecessary maintenance 
[16]. CBM methods are effective only with asset categories that generate measurable parameters 
during operation. Despite investment in specialist technologies and trained manpower to interpret 
the output, traditional CBM faces challenges with accurate state estimation in real-time [3, 12]. 
The knowledge from CBM can be extended to an integrated, real-time health assessment 
framework under actual operating conditions and equipped with a layer of failure prediction and 
advisory in a framework named Prognostics and Health Management (PHM). PHM uses sensor 
data, failure physics, statistics and machine learning to perform real-time health assessments, 
predict future state and estimate the Remaining Useful Life (RUL) of an operating asset system 
[17]. Prominent approaches for RUL estimation and their respective benefits and limitations are 
summarised below.  

3.1. Physics-based approach 

The Physics-based approach utilises mathematical models to understand the degradation of a 
system, its components, and their interactions under different operating conditions. The guiding 
principle behind this approach is that failure occurs due to fundamental processes such as 
electrical, chemical, mechanical, thermal or radiation [18]. Applications of this approach include 
modelling of crack growth propagation, rotating machinery, turbine gas path and wear rate 
progression. These models require an in-depth understanding of Failure Modes Effect and 
Criticality Analysis (FMECA), system dynamics and an understanding of specific life-cycle-
related properties [19]. The major steps involved in the physics-based approach are determining 
environmental factors, identifying failure-contributing mechanisms, environmental, operational 
conditions and functional dependencies of stresses for the best-fit model under a set of specified 
conditions [20]. This method requires significant computational resources and incurs substantial 
developmental costs. The complex model developed is tailored to a particular use case. While 
resource-intensive, once modelled, these artefacts can accurately represent degradation behaviour. 
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In addition, they can be used to simulate synthetic data responses to normal and faulty situations, 
thereby supporting decision-making for PHM.  

3.2. Data-driven approach 

The data-driven approach uses historical and real-time data from sensors or simulations to 
build a model to predict degradation. This approach relies on the knowledge gained from the 
understanding of the non-linear relationships between inputs and outputs without understanding 
of the degradation mechanisms. It can be applied to the system, equipment, or component levels 
[21, 22]. This method is valuable for detecting patterns in data by using specific techniques when 
dealing with extensive data and failure mode information. Data-driven PHM draws on techniques 
from statistics, probability, reliability, failure modelling and Artificial Intelligence (AI). This 
method is considered a “black box” since it depends on patterns and relationships in the data 
without being able to provide explanations based on engineering loads and material properties. 
Data-driven models do not require an in-depth understanding of degradation mechanisms and have 
a faster development cycle than physics-based models. Additionally, the algorithms used in this 
approach are portable across multiple systems [23]. 

3.3. Experience-based approach 

Experience-based approaches like Expert Systems and Fuzzy Logic are considered when the 
development of physics-based models is restricted. A collaborative eXpertise-based PHM 
(X-PHM) approach from the domain of SMEs utilised knowledge from stakeholders integrated 
into the PHM process was found to improve understanding of the production process, provide 
explainability to decisions and support the digital transformation [24]. Expert Systems harness the 
knowledge and engineering experience of subject matter experts. This is codified as rules and if-
then statements to address a particular PHM problem, with options available to update the 
knowledge base. This strategy integrates the basis and the conditions to apply the rules. However, 
it may lead to subjectivity, noise and an excessive number of rules to handle. The rules are system-
specific, which limits their portability to another use case. Additionally, there is a significant 
dependence on the expert’s ability to formulate the rules [25]. Fuzzy Logic-based methods, on the 
other hand, accommodate partial understanding of system behaviour and are less affected by noise. 
The integration of neural network and fuzzy logic in Adaptive Neuro-Fuzzy Inference System 
(ANFIS) is a method that reduces the size of the rule base, handles partial knowledge and offers 
explainability. They can process vague, imprecise, noisy and missing inputs and performing 
extensive simulations, thereby offering a compromise solution between analytical models and 
qualitative estimates [26]. 

3.4. Hybrid approach 

The hybrid approach integrates physics-based, data-driven and experience-based approaches 
with the case-specific combinations across the three to enhance confidence in predictions. 
Data-driven approaches establish a baseline for safe operation based on the distribution of 
non-anomalous data, which can be verified and optimized by physics-based methods in a hybrid 
model [27]. Alternatively, a physics-based model with identified critical parameters can be 
validated for anomalies using field measurements from a data-driven model [28]. Hybrid 
approaches are beneficial when the failure modes are not amenable or too complex to be modelled 
with a physics-based approach. In the context of gears, rolling bearings, and hydrodynamic 
bearings, failure modes like misalignment, geometric errors and dirt were difficult to model using 
a physics-based approach [29]. Chao et al. [30] suggested a hybrid framework combining 
physics-based and Deep Learning (DL) methods to address the limitations of incomplete 
physics-based models and the limited representativeness of training sets in data-driven methods. 
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This framework is reported to improve prediction capabilities with lesser volumes of 
representative training data compared to purely data-driven models. 

4. Data-driven predictive maintenance 

PdM is a proactive strategy that utilises digital tools and an on-demand approach to reduce 
inefficiencies typically found in PM and CM. PdM can be considered an extension of CBM that 
leverages its monitoring capabilities, includes diagnostic and prognostic elements, and allows for 
proactive planning of maintenance tasks [31]. In addition to forecasting failures, PdM provides 
decision guidance on the most suitable time to execute the maintenance intervention, thereby 
balancing the task frequency and associated cost [32-34]. PdM augments the expertise of subject 
matter experts by identifying previously unnoticed anomalies and patterns [35]. Furthermore, the 
use of PdM techniques can decrease the environmental impact and support sustainable practices 
like zero-waste production [36, 37]. Unlike CBM wherein the trends of abnormal behaviour are 
monitored retrospectively, PdM tries to recognize non-typical system behaviour in their early 
stages of occurrence through data analysis, thereby allowing for quicker decision-making [8, 38]. 
Functioning with traditional PM, CBM, and CM, PdM makes predictions from repeated analysis 
of known characteristics from the data [39, 40]. PdM has been found to have use cases primarily 
in the domains of rotating machinery, aircraft systems, power systems, and Electronic 
Components [41]. However, it is important to note that apart from commercial implementations, 
many existing solutions do not fully integrate data collection, analysis, prediction and maintenance 
execution to provide comprehensive end-to-end decision-making support. Integrating PdM with 
the manufacturing process is a key requirement in developing PdM workflows [42]. Besides, other 
disruptive factors like the COVID-19 pandemic have also justified retrofitting traditional 
maintenance practices with collaborative human-machine-technology integration [43]. This 
section examines data-driven PdM that uses a single or a combination of data sources to generate 
actionable predictive workflows as part of an enhanced maintenance strategy. This data utilised 
for PdM can be different types of real data originating from the asset system or synthetic data 
generated from model simulations. 

Life cycle data from assets can be found in different information systems, some of which are 
proprietary. In addition, not all stakeholders have seamless access to the complete data. To address 
this, the Machinery Integration, Management and Open Systems Architecture (MIMOSA) has 
developed specifications, protocols and an open-source data model for a supplier-neutral digital 
ecosystem that allows interoperability across multiple proprietary CBM systems [44]. The Open 
System Architecture for Enterprise Application Integration (OSA-EAI) of MIMOSA integrates 
engineering, maintenance, operation and reliability data for the target audience. Specifications and 
models within MIMOSA are built on the definitions of ISO 13374 for condition monitoring, ISO 
17359 for diagnosis, and ISO 13381 for prognosis. The Open System Architecture for 
Condition-Based Maintenance (OSA-CBM) developed by MIMOSA consists of six functional 
block (Fig. 1). It enables the implementation of PHM strategies, integration of various data 
sources, and enhances interoperability among CBM systems [45]. By integrating sustainability 
principles, this flow chart can transform into a cyclical process that allows for the monitoring and 
tracing materials, ensures quality control, and facilitates inventory management [46].  

Acquiring and analyzing data from sensors or events during asset usage is crucial for 
effectively assessing the condition of an asset and detecting potential faults. However, this data 
can be complex and subject to noise and errors. To ensure the quality of the data used for fault 
detection, it is important to consider factors such as the selection, calibration and sampling rate of 
sensors, as well as pre-processing steps like cleaning and de-noising. FMECA, performed at this 
stage, prioritizes actions and documents the cause-effect relationships. The health assessment 
stage quantifies the degradation intensity, and the prognostic assessment stage predicts the 
estimated time or function failure, providing input for proactive decision-making. The final step 
is advisory generation, which includes recommendations for operational actions and design 
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improvements. Overall, the chosen workflow for PHM should be able to detect incipient faults, 
perform failure diagnostics and manage post-prognostic health [47]. A successful prognostic 
model requires both a mathematical understanding of the model and an appreciation of the 
business goals it aims to achieve. This can be achieved through an extended three-step process as 
proposed by Sikorska et al. [48], which considers existing and future failure modes, and 
post-prognostic actions. Atamuradov et al. [28] proposed a four-step process for implementing 
PHM in maintenance, which includes (1) critical component analysis, (2) selection of the right 
sensors for CBM, (3) prognostic feature evaluation, and (4) prognostics methodology and tool 
evaluation matrices. Critical component analysis involves identifying assets whose unavailability 
or failures would have significant consequences.  

 
Fig. 1. OSA-CBM functional blocks 

Although PHM applications that rely on a single data source can successfully address specific 
and well-correlated failure modes, their effectiveness is low in the case of concurrent failure 
modes. Moreover, they are susceptible to noise and environmental factors. Given this scenario, 
the integration of data from several sensors appears more attractive in offering a comprehensive 
view of asset condition. However, they require more advanced data fusion and analysis techniques 
and face challenges in implementation and interpretation due to the increased complexity of data. 
Lei et al. [49] summarises PHM use cases in both areas. PHM based on multiple data sources 
generally outperforms models based on single data sources. However, the choice between the 
approaches depends on the specific application, available resources and the complexity of the 
problem. An alternative strategy would be to apply single data-source-based PHM for less 
complex systems with known failure modes and multi-sensor-based PHM for more critical assets. 

5. Data sources for PdM 

Data-driven PdM workstreams employ techniques such as Statistics, Reliability Engineering, 
Signal Processing, Machine Learning and Deep Learning in workflows to improve the 
maintenance strategy and enhance decision-making [50]. The data used in PdM applications is 
obtained from multiple sources, asset levels, and sensors. The primary types of prognostic 
algorithms in PdM are regression models for tracing the trajectory of degradation, classification 
models for predicting failure within a time frame and survival models for estimating the risk of 
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failure over time [41]. 
This section examines three specific data streams that can benefit data-driven PdM 

applications. The first category consists of univariate data collected at high sampling rates, 
typically in vibration measurements obtained using an accelerometer. This information pertains 
to the health of a component, such as a bearing, located at the lowest level of the asset hierarchy. 
The second source comprises multi-variate data from the Supervisory Control and Data 
Acquisition (SCADA) system. This data consists of multiple performance variables that pertain 
to the overall condition of the system and is collected at longer intervals, usually a few times in 
an hour. The third source comprises unstructured, short technical text documented by 
stakeholders. These textual records can be associated with a point in time when an event occurred 
or the condition of an asset. On its own or in combination with other data streams, these sources 
have the potential for creating digital twin instances in the field of PdM. 

A crucial aspect of data analysis is the extraction of features to analyse asset conditions. This 
is followed by selecting the most representative among the extracted features. This selection 
process involves feature analysis and feature evaluation, which deal with understanding feature 
behaviours and determining their importance, respectively [51]. These tasks, grouped under 
feature engineering, reduce the dimensions of the feature space and improve the performance of 
the predictive model. Data from multiple sensors can be processed concurrently to form multi-
fusion methods at the data level, feature level and decision level to improve the efficiency of the 
prediction process [52]. 

A sizeable number of use cases with data-driven PdM tasks involving vibrations are applied 
in the detection, diagnostics and prognostics of faults with rotating machinery [53]. Among these 
cases, the critical components in rotating machinery where vibration measurements have been 
employed are bearings, gears and shafts. In addition, Lee et al. [54] have summarized the common 
failure causes, characteristics, CBM parameters, features and algorithms used for critical 
components of rotating machinery like bearings, gear, shaft, pump and alternator. On the other 
hand, Hegedüs et al., [55] have grouped 34 algorithms and modelling techniques associated with 
Root Cause Analysis (RCA), RUL Estimation and Alerts & Fault Prediction. A framework for 
monitoring bearing vibrations using data-driven techniques proposed dimensionality reduction 
techniques such as Principal Component Analysis (PCA), Independent Component Analysis 
(ICA), Analysis of Variance (ANOVA), Distance Evaluation Technique (DET), and Two Stage 
Feature Selection and Weighting Technique (TFSWT) for feature extraction [56].  

Commonly used analysis methods and feature extractions on vibration data are in the time, 
frequency and time-frequency domains [54]. Metrics calculated from the signal, like the mean, 
Root Mean Square (RMS), standard deviation, peak value, peak-to-peak value, skewness, and 
kurtosis indexed to the time of occurrence are used to generate features in the time domain. 
Although they relate to a signal’s physical behaviour and are easily interpretable, time-domain 
features are inadequate in capturing the non-linear and unsteady operation of machines. They fall 
short in detecting the underlying frequency components associated with specific faults. In contrast, 
frequency-domain features employ methods like the Fourier Transform and its variations, 
Residual Signal (RS), Difference Signal (DS), Special Kurtosis (SK) and Envelope Analysis (EA) 
to detect the prominent frequencies present in the signal. Nevertheless, this approach cannot 
ascertain the exact time of occurrence of those frequencies, limiting its effectiveness in analysing 
non-stationary and low-energy vibrations like those from wind turbines. On the other hand, 
time-frequency analysis methods like Short Time Fourier Transform (STFT), Wigner-Vile 
Distribution (WVD), Wavelet Transform (WT), Hilbert-Huang Transform (HHT), Empirical 
Mode Decomposition (EMD) that capture both time and frequency-related information 
concurrently are found to be suitable for non-stationary vibrations and detecting incipient faults 
[57, 58]. STFT provides both temporal and spectral information is more suitable for analysing 
non-stationary signals. Wavelet Transforms represent time signals as fast decaying finite length 
oscillating waveforms, scaled to match the input signal and reported to have better scalable 
resolution than time-frequency analysis. Hilbert-Huang Transform is an adaptive and 



ASSET MANAGEMENT DECISION-MAKING THROUGH DATA-DRIVEN PREDICTIVE MAINTENANCE – AN OVERVIEW, TECHNIQUES, BENEFITS AND 
CHALLENGES. MADHU KRISHNA MENON, RABIN TULADHAR 

 MAINTENANCE, RELIABILITY AND CONDITION MONITORING. DECEMBER 2024, VOLUME 4, ISSUE 2 51 

unsupervised technique where a non-stationary and non-linear signal is decomposed into a finite 
number of Intrinsic Mode Functions (IMF) [59, 60]. Furthermore, change point detection, 
independent component analysis and energy concentration distribution are some of the techniques 
considered in the processing of vibration signals [61].  

Fig. 2 illustrates a classification model for evaluating asset condition before and after a 
maintenance activity based on vibration signal features. This model was developed using the top 
four signal features (Fig. 3) ranked based on monotonicity [51], a metric used to characterize the 
trend of features as the system degrades while in operation. The robust performance of the model 
in terms of classification and test accuracy can be ascribed to the selection of highly representative 
features. 

 
Fig. 2. Asset condition pre and post maintenance 

 
Fig. 3. Signal feature ranking based on monotonicity 

Although the primary objective of SCADA is to control an industrial process, in the context 
of data-driven PdM, this repository becomes a valuable source of condition information. SCADA 
offers a multi-variate stream of data, consisting of operating parameters and environmental 
conditions, is captured typically at intervals of 10 minutes in the case of assets like Wind Turbines 
(WT). Being a pre-existing data source, PdM workflows based on SCADA data do not incur new 
capital investment on sensors or data acquisition systems [62]. In addition to component-level 
prognostics like bearing failure, the predictive models based on SCADA data can be customized 
for the system level as well [63, 64]. A semi-supervised anomaly detection approach known as 
“normal behaviour” models is trained on healthy data as a baseline to detect change points from a 
predominant group of PdM models with SCADA data [65, 66]. Comprehensive degradation 
modelling using SCADA needs to take care of the complex relationships across the operational 
parameters of the system and those of the ambient conditions, together with the age of the 
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asset [67].  
An example of how dimensionality reduction and feature selection using Principal Component 

Analysis (PCA) can be applied to SCADA data streams is depicted in Fig 4. Seven sensor 
measurements related to the operation of a Centrifugal Chiller in HVAC system were reduced to 
three Principal Components which collectively accounted for approximately 94 % of the variance. 

 
Fig. 4. SCADA features-principal components 

Aside from sensor data, asset management repositories contain various sources of concise text, 
often unstructured, and contain valuable information regarding the condition of assets. These 
records need to be transformed into numerical representations, in contrast to sensor data originally 
logged in numerical format for PdM. Although Natural Language Processing (NLP) techniques 
exist and these repositories have comparable data volumes, such techniques rely on large volumes 
of structured text for training and hence have limited ability to generalise in the technical context, 
resulting in shallow actionable outcomes. Technical Language Processing (TLP) is envisaged as 
NLP customised for engineering data to decipher maintenance knowledge from short text, 
supported by iterative human action from an SME. TLP incorporates a human-in-the-loop and 
semi-automated process incorporating tagging of text entities and context-specific dictionary 
learning from SMEs. Introducing domain knowledge and supervision at key steps in the process 
involving unstructured text using TLP improves the explainability of the resulting computational 
data representations [68, 69]. Tagging or annotations on text corpus with TLP embeds 
domain-specific knowledge on fault characteristics, and their frequency of occurrence indicates 
the severity of faults.  

In addition to tagging, the noise in unstructured text can be reduced by employing 
pre-processing techniques that extract text features and transform the text dataset into a more 
compatible format for Machine Learning and Deep Learning workflows [70]. Key pre-processing 
steps include spell-checking, stop-word removal, lemmatizing, tokenization, Bag of Words (BoW) 
and n-gram models. These steps assist in detecting the frequently co-occurring named entities, 
discovering latent topics from the text corpus, training models for text classification and analysing 
relationships using network representations. The inherent uncertainty associated with language-
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based labels presents an opportunity to explore the development of weakly supervised learning 
methods. The integration of TLP-enabled computational linguistic approaches to PdM workflows 
has the potential to significantly reduce the effort required in manual annotation by a subject 
matter expert. Semi-automated workflows utilise clustering methods and association-rule mining 
from co-occurring terms to infer the underlying cause of failures. Furthermore, they contribute to 
the establishment of the hierarchy of events, failure ontology of affected entities and facilitate 
quantitative Failure Mode Mechanism and Event Analysis (FMMEA) [71, 72]. Technical 
Language Supervision (TLS), an extension of TLP, integrates recent advancements such as word 
embedding algorithms coupled with manual tagging on industry-specific short text [73]. The 
tagging exercise on short text related to Corrective Maintenance Work Orders for a Cooling Tower 
System yielded a notable decrease in vocabulary. It facilitated the categorization of tasks against 
the appropriate asset hierarchy, as shown in Fig. 5. In addition, the co-occurrence graph 
representations (Fig. 6) at the level of one of the Cooling Towers identified the interconnected 
entities associated with Corrective Maintenance work without manual review and annotation. 

 
Fig. 5. Tagging-hierarchy and vocabulary reduction 

 

 
Fig. 6. Co-occurring entities-corrective 

maintenance 

An asset’s performance at any stage in its lifecycle is influenced by several failure modes that 
contribute to degradation in varying degrees. Furthermore, an available data stream might contain 
measurement noise, complicating the differentiation between normal and defective states. On the 
other hand, a best-fit degradation model might not remain the single source of truth across the 
complete life cycle. Changes in system configuration, affected assets, components or operating 
states call for redesign and retraining of AI-based models. Uncertainties about managing such 
modifications to the PHM deliverable can lead to questions on its robustness against model errors 
and unknown failure phenomena, especially for safety-critical applications. Present-day 
knowledge on managing and deploying robust AI-based PHM is still early. Consistency assurance, 
risk quantification, model updating and integrating with FMECA [74] are necessary to address 
time-dependent errors in the prediction solution caused by state changes. 

6. Data processing techniques for PdM 

This section summarises the prominent groups of techniques applied to data streams to create 
PdM workflows, specifically for fault detection, diagnostics, prognostics and RUL estimation. 
They are grouped under the categories of traditional Machine Learning and Deep Learning as 
shown in Table 1. 

The application of Deep Learning (DL) algorithms in PdM is a relatively new and promising 
approach to solve problems in PHM covering vibration, images, time series and structured data 
due to their representing power, automated feature learning capability and performance 
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capabilities. This is driven by factors such as the availability of large amounts of data, the ability 
of DL to extract features automatically, and recent advances in theoretical research on algorithms 
and computing capabilities. Additionally, DL can learn relationships between and within different 
streams of CBM data and can transfer knowledge across different operating conditions and assets 
[88]. Wang et al. [89] suggest that in the field of applying DL in machinery, CBM, CNNs and AE 
are more popular methods, followed by RNN-LSTMs.  

Table 1. Techniques – data driven PdM 
No. Technique Description Category 

1 Support Vector 
Machines (SVM) 

Supervised technique for anomaly detection, classification 
and regression 
Applied for RUL estimates in Lithium-ion batteries [75] and 
bearings [76] 

ML 

2 Decision Tree (DT) 

Flow-chart like structures, consisting of root, multiple 
branches & nodes, used for fault detection, RUL [77] 
High explainability, relatively low accuracy and tendency to 
overfit [78] 

ML 

3 Random Forest (RF) 
Ensemble of multiple, randomized Decision Trees 
Effective for predictive models with wind turbine 
performance [79] 

ML 

4 K-Nearest Neighbour 
(KNN) 

Used for classification and regression. 
RUL estimates for bearings [80] and solar photovoltaic 
systems [81] 

ML 

5 Artificial Neural 
Network (ANN) 

Considered as shallow neural networks, have limited number 
of inputs, hidden layers and outputs. Rely on hand-crafted 
features and are prone to over fitting [82] 

ML 

6 AutoEncoder (AE) 

Unsupervised / semi-supervised feed forward neural 
networks consisting of two smaller networks named Encoder 
and Decoder. Used for Anomaly Detection as AE or as 
Variational AutoEncoder (VAE) 
During training, the Encoder learns features from input data 
while the Decoder tries to reconstruct the data from the 
features. Testing with anomalous data results in larger 
reconstruction errors 
Fault detection from accelerometer signals of hydro-
generators [83] 

DL 

7 Convolutional Neural 
Network (CNN) 

Effective with timeseries, signal processing and image data 
streams [84]  
Fault classification from accelerometer signals using 1D-
CNN [85] 

DL 

8 Recurrent Neural 
Network (RNN) 

Uses past information in the form of sequential data to 
generate outputs. 
Well-suited for Natural Language Processing (NLP), signal 
and video analysis.  
Limited capabilities when it comes to training long term 
dependencies, which can result in very small or very large 
network weights, thereby making them ineffective. 
RUL based on non-stationary vibration signal, capturing 
spatial information in the time-frequency domain using Deep 
RNN [86] 

DL 

9 
Long Short-Term 
Memory Network 

(LSTM) 

Overcome the limitation with RNN using additional forget 
gates to control the flow of information through hidden cells 
and output, more effective in learning long-term 
dependencies.  
Experimental verification of LSTM performance on CNC 
milling machine vibration [87] 

DL 
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7. Ontology management for predictive maintenance 

Despite the potential benefits of data-driven predictive methods in improving the quality of a 
maintenance program, organizations are yet to see significant improvements in their asset 
performance. There is a gap in integrating and embedding PHM work processes into maintenance 
work management systems. Internalising and reuse of frameworks, models and deliverables from 
data-driven PdM through processes that support interoperability and operational excellence is 
important for an organization undergoing digital transformation with asset management. This is 
achieved by developing context-specific ontologies with a common vocabulary for information 
sharing and machine-interpretable definitions related to entities and their relations. The 
transactional nature of maintenance work management and the involvement of multiple 
stakeholders makes this approach more relevant. Moreover, ontologies share a common 
understanding of information structure among systems, stakeholders and software. They facilitate 
the analysis and re-use of newly developed knowledge of the domain and its operation with 
explicit considerations and standardized approaches, thereby avoiding the need to reinvent the 
wheel [90]. Some advantages of ontology management are reduced workload in formalizing new 
concepts, lower development overhead and enhanced production sustainability.  

ISO 14224 [91] recommends a standardized format for the collection of Reliability and 
Maintenance data for processing equipment, facilitating data exchange across multiple stakeholder 
organizations. The categories of data collected are: (1) equipment details with taxonomy and 
attributes, (2) failure causes and consequences, (3) maintenance actions, resources, consequences 
and downtime. ISO 15926 [92] is an interoperability standard for industrial data that facilitates the 
integration and exchange of plant data, along with archiving capabilities, throughout the life cycle. 
It has a shared generic data model with layered classes of objects and maps data at the source into 
a standardised format with quality assurance before data storage. The Cross Industry Standard 
Process for Data Mining (CRISP-DM) is one of the early models proposed in data-driven 
approaches in industry. An extended version of CRISP-DM aligning business understanding and 
technical aspects, developed as Data Mining Methodology for Engineering Applications (DMME) 
supports data-driven workflows in the engineering domain [93, 94]. A human-in-the-loop process 
of DMME that brings together relevant stakeholders, engineers with domain experience and data 
analysts is represented in Fig. 7.  

 
Fig. 7. DMME with extended steps in green for technical workflow management [94] 

Nuñez et al. [95] developed a formal ontology application for PHM of machinery, employing 
the Design Science Research (DSR) methodology. This application featured a five-level 
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architecture, utilised Ontology Web Language (OWL2) for data modelling and was specifically 
designed to perform failure analysis on mechanical components. Furthermore, an application 
named OntoProg, which integrates condition monitoring data, measurement techniques, asset 
hierarchy, and failure mode information, was demonstrated using a centrifugal pump as a case 
study [96]. In addition to this, the Reference Ontology for MAINtenance Domain (ROMAIN) 
offers an open-access framework that is compliant with the Basic Formal Ontology (BFO). 
Moreover, it aligns with the top-level ontology, re-uses classes from middle levels and empowers 
researchers to add on new modules [97]. Meanwhile, Jiménez et al. [98] proposed a 
domain-neutral Ontology Model for Maintenance Strategy Selection and Assessment (OMMSA) 
serving as a formal terminology framework in maintenance strategies to develop smart 
computational agents for decision-making. Finally, Polenghi et al. [99], developed the Asset 
Management Ontology Development methOdology (AMODO) and demonstrated its effectiveness 
on a laboratory-scale use case involving flexible assembly line manufacturing. 

8. Conclusions 

Conventional asset management strategies have excessive reliance on PM, fail to cater to the 
specific needs of assets at different stages in their life cycle and are limited in incorporating the 
maintenance requirements after an upgrade. They have limitations in addressing the increasing 
complexity of assets, resulting in an inaccurate assessment of their condition, associated hazards 
and risks. This necessitates the adoption of a more proactive strategy towards holistic asset 
management. This provides an opportunity to improve the effectiveness of maintenance and 
optimise the costs incurred by the maintenance function. Advances in big data, IoT, machine 
learning, wireless connectivity, sensor technologies, computing power, ontologies, and associated 
architecture are driving the transformation of the future of maintenance. Data-driven PdM is 
expected to bring significant changes to the way maintenance is handled in asset management. 
The goal is to move from ad-hoc problem analysis to customized, economically viable practices 
based on continuous performance tracking and effective controls. Real-time use of sensor data, 
machine learning algorithms and PdM workflows generate opportunities for creating self-aware, 
self-adapting and self-healing systems. Internalising the new deliverables with formal ontologies 
improves knowledge retention and reuse. Such an environment can facilitate a step change from 
uncertainties in return on investment of PdM projects to improved confidence in performance-
based contracts, where operators and service providers work together to meet key performance 
indicators. While there are success stories of integrating data from single assets and fleet-wide 
data for decision-making in critical systems, such as those of NASA and some Original Equipment 
Manufacturers (OEMs), there is limited evidence of sustained fleet-level PdM solutions in 
conventional industries. In addition to the use of known failure modes and measurable degradation 
parameters in state estimation and prognostics, the data-enabled practices need to focus on 
emerging and undetected failure modes as well. 

There are substantial technical challenges while using data streams for data-driven models. 
Asset performance can be non-ergodic, where the statistical properties of the data streams cannot 
be averaged over long durations of time. Ageing, wear, environmental factors, quality of 
maintenance, usage patterns, influence of other assets, human factors including errors and 
incorrect operation as well as cyber-attacks are some factors contributing to non-ergodicity. While 
data-driven approaches can be fast and computationally efficient, the main concern is the lack of 
historical healthy and faulty data. Also, the degradation characteristics of similar assets may not 
converge to an expected value over time. This takes the scenario of degradation mapping outside 
the boundaries of a controlled experiment. Using larger datasets is one of the ways to mitigate 
such limitations affecting generalisation. Including too many input variables from data streams, 
each representing one dimension into an ML model, results in overfitting and loss of sense of 
relative distances and neighborhoods among data points, also known as the curse of 
dimensionality. This can be alleviated through the choice of relevant features by applying Feature 
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Selection Ranking (FSR) techniques. Developing data-driven techniques without considering 
domain knowledge poses multiple risks, such as inferior performance and inaccurate predictions 
due to a lack of understanding of underlying physical processes, sensor data, failure modes, 
operating conditions, interpretability, validation and safety, which can lead to unplanned 
downtime and increased costs. Therefore, it's important to include domain knowledge when 
developing data-driven solutions to ensure models are accurate, robust, reliable, safe and 
cost-effective. The imbalance caused by limited samples with abnormal asset behaviour and the 
absence of Run-to-Fail data can also offer challenges in training. Insufficient and excessive 
sources of training data from different assets belonging to a category lead to concerns with 
heterogeneity. To mitigate these issues, data fusion algorithms have been proposed to integrate 
dynamic operational data from assets.  

Unlike traditional reliability prediction methods, predictive does not assume a constant failure 
rate. Additionally, many faults cannot be replicated during verification, which creates uncertainty 
about the state and risk exposure of the system. Most of the data-driven predictive work is found 
to be performed on smaller-scale experimental data instead of real-world applications. Hence, it 
has limitations in generalizing the outcomes. Models using data instances in the past miss out on 
time-varying characteristics of non-stationary data streams, which limits the life cycle of the 
trained model. Customised and economically viable practices based on continuous performance 
tracking and effective controls instead of ad-hoc problem analyses are required to demonstrate 
confidence in this area. To be effective, the design, structure, and outcomes of the model must be 
understandable to maintenance practitioners, making explainable prognostic recommendations 
essential. With lean organizational structures, specialized skills in asset management are crucial 
for managing risks associated with critical assets. In the future, maintenance practitioners will 
need not only subject matter expertise but also new skills to effectively manage these risks. This 
review summarises the limitations of conventional maintenance practices and provides an 
overview of current trends in maintenance decision-making. Considering an Industry 4.0 
environment, it examines the practices associated with data-driven techniques with PdM. Potential 
areas of application for data-driven workflows are identified in the study. The review concludes 
by identifying the benefits, challenges and limitations of data-driven PdM. The integration of big 
data, IoT, machine learning, and sensor technologies in industrial asset management can transform 
maintenance practices from ad-hoc problem analysis to customized, economically viable, 
performance-based approaches. Data-driven PdM is a promising approach to navigating the 
uncertainties of industrial asset management by leveraging substantial amounts of multi-
dimensional data generated by assets. However, the implementation of these advanced 
technologies in the maintenance environment requires addressing challenges such as data quality, 
scalability, and limited sample sizes. Data fusion algorithms are expected to mitigate these issues. 
The integration of these technologies also opens the potential for an integrated e-maintenance 
environment with predictive services outsourced to specialized service providers.  

This review offers a synthesis on the developing field of data-driven PdM as a decision-making 
tool, positioning it in the context of engineering asset management in an Industry 4.0 setting. It 
establishes a basis for understanding the potential of integrating data-driven PdM with the ideas 
of digital twin, complexity and an as-a-service model of asset management. The distinctive 
contribution of this review is the examination of three separate data streams, viz. univariate 
vibration data, multivariate operational data and unstructured short text and the opportunities in 
developing data-driven PdM workflows utilizing these sources. 
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