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Abstract. Heavy and incessant rainfall in Nepal, particularly during the monsoon season, leads to 
water-induced risks like landslides, necessitating the use of Landslide Susceptibility Mapping 
(LSM) for the prediction of landslide risks. We aim to determine the degrees of connection and 
connective factors among landslide incidents to generate an updated landslide susceptibility map 
of the Phewa watershed in Kaski District, Nepal. The most dependable and popular statistical 
approach for determining LSMs is the frequency ratio model, which was created in ArcGIS 10.7.1 
by identifying 46 landslides in the area and analyzing eight causal factors. The LSM categorized 
the area into five classes, with the low class representing a large percentage (43.27 %) and the 
high class a small percentage (0.63 %). In FR techniques, slope, proximity to a stream or road, 
land use/cover, and precipitation were assigned greater weight than aspect, profile curvature, and 
plan curvature. Using the area under the curve approach, the applied model’s accuracy revealed a 
good performance value of 0.717. Taken together, the mapping information provides a crucial 
understanding of risks posed by landslides, ultimately reducing the impacts in the protected 
watershed of the Phewa Lake area. 
Keywords: class, conditioning factors, FR, risk. 

Nomenclature 

LSM Landslide susceptibility mapping 
FR Frequency ratio 
AUC Area under the curve 
ROC Receiver operating characteristics 
GIS Geographic information system 
WoE Weights-of-evidence 
WF Weighting factor 
DEM Digital elevation model 
PR Prediction rate 

1. Introduction 

Landslides are natural phenomena that result in the falling and lateral dislocation of slope 
materials made of natural rock layers, soil, synthetic materials fill, or mixes of these elements, due 
to gravity and water [1, 2]. They are triggered by a couple of factors, namely dynamic triggering 
mechanisms (excessive rainfall and local soil moisture levels) and persisting geological features 
(steep slopes, weak rock layers, and tectonic activity) [3]. These factors increase the likelihood of 
landslides occurring in certain areas. Additionally, anthropogenic activities, such as deforestation, 
mining, and construction can also contribute to the occurrence of landslides by altering the natural 
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landscape and destabilizing the soil. Overall, landslides are the result of a combination of natural 
and human-induced factors that can lead to the sudden and rapid movement of rock, soil, and 
debris down the slope. After accounting for landslides brought on by seismic events, 4,862 
different landslide incidents were reported globally between 2004 and 2016, which resulted in 
55,997 fatalities and economic losses estimated to be in the range of USD 20 billion annually, and 
the costs of damage may exceed all other costs associated with multi-hazard disasters [4]. Highly 
developed nations account for 5 % of all deaths caused by natural disasters globally. The 
remaining 95 % of overall deaths occur in middle and developing countries [5]. Infrastructure is 
severely damaged by landslides, and during the period from 1950 to 2009, China experienced the 
highest rate of deadly landslides, followed by Indonesia, India, the Philippines, Japan, Pakistan, 
and Nepal [6].  

Nepal is prone to landslides due to its steep terrain, and unstable geological structure, in 
addition to high-intensity rainfall during the rainy season, forest destruction, vegetation service 
charge loads, and frequent earthquakes [7]. Geologically, Nepal being part of the Himalayan 
regions, comprises soft, fragile rocks, and unstable geological landscapes resulted due to the 
collision of the Indian and Eurasian plates. These areas are also among those with a high risk of 
earthquakes because they are tectonically active. As a developing country, Nepal undergoes a 
variety of construction and development operations. However, due to unplanned and unscientific 
development, landslides and other natural disasters have occurred. In Nepal Landslides are among 
the most common catastrophic events, claiming almost 200 lives each year and causing significant 
damage to infrastructure. Landslides killed 5,813 people in Nepal between 1971 and 2023, 941 
people went missing, 2,708 people were injured, 22,319 dwellings were damaged or destroyed, 
586,673 families were affected, and 5,654 events occurred [8]. The Table 1 provides additional 
comparison data, showing that landslides are among Nepal’s severe natural disasters. Landslides 
in the Kaski district, which includes the Phewa watershed, killed 234 people and left 35 persons 
missing between 1974 and 2013. Moreover, 152 dwellings were damaged, 5,791 families were 
affected, and 80 people were injured [9]. 

Table 1. Disaster scenario in Nepal from 1971 to 2023 
Event Total death Missing people Injured Affected families 

Landslide 5813 941 2708 568673 
Fire 2140 0 3954 280483 

Flood 4136 1220 706 3735567 
Earthquake 9849 195 29164 4730 
Thunderbolt 2123 1 4884 9452 

Epidemic 16619 0 45766 514723 
Storm 115 9 329 2439 

Heavy rainfall 212 5 372 66832 
High Altitude 89 0 30 110 

Cold wave 559 0 83 2441 
Avalanche 268 64 144 1050 
Forest Fire 68 7 44 16347 

Mapping the current landslides is crucial for understanding the connections between the spread 
of landslides and their causal factors. The probability that landslides will occur in a specific 
locality is referred to as landslide susceptibility [10]. It is also an effective instrument that assists 
land planners in developing regions near areas prone to slope instability [11]. The distribution of 
potentially unstable slopes based on a specific set of Geo-environmental variables is shown on a 
map of the susceptibility to landslides [12], which divides the land surface into zones according 
to susceptibility levels [13]. In the form of landslide susceptibility mapping, a significant amount 
of effort has been made globally to evaluate the landslide-sensitive zones. Among these, Van 
Westen [14] has thoroughly documented the use of GIS for the zonation of landslide hazards. 
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Geographical Information Systems (GIS) is a tool for data storage, analysis, modeling, and 
mapping [15], is valuable for analyzing landslide risk, and can play a crucial role in managing and 
mitigating the impact of landslides on infrastructure and communities. To determine the 
possibility of a future landslide occurring under specific conditions, landslide susceptibility 
mapping often evaluates the previous landslide occurrence with numerous triggering elements, 
including geological, land use/ cover, topographical, and hydrological [16]. 

In the early 1990s, the manual mapping of landslide risk in Nepal involved field surveys and 
the collection of data on slope stability, geological conditions, land use, and other relevant factors. 
This information was then input into a computer system to create maps that identified areas at high 
risk of landslides. This manual mapping process was time-consuming. Such a mapping of 
landslide susceptibility started along road corridors and gradually expanded to watersheds and 
specific areas. Wagner, et. al. [17] designed the computer program named SHIVA to map the soil 
and rock hazards in Nepal [18]. However, with advancements in technology, such as remote 
sensing and geographic information systems (GIS), the process of mapping landslide risk has 
become more efficient and accurate. Today, Nepal continues to use a combination of manual field 
surveys and computer-based mapping techniques to assess and manage landslide risk.  

Different approaches such as heuristic (traditional approach and based on expert knowledge), 
deterministic (based on data from laboratory tests and field surveys), statistical (based on the 
mathematical analysis of the field data and subject-matter knowledge), machine learning (based 
on the correlation between the training datasets previous landslides and the triggering parameters 
that forecast the high potential area to landslide), are used for LSM. In recent years, several 
geoscientists and geotechnical professionals have developed and are implementing hybrids of 
semi-quantitative/semi-qualitative decision-making, statistical/geostatistical approaches, 
inventory-based probabilistic methods, and so on [19-23]. Several statistical methods have been 
used widely, including the weights of evidence [24], frequency ratio (FR) [25], and evidential 
belief function [26]. Due to its reliable calculation and precise results, the statistical approach is 
becoming more and more popular. An evaluation of several statistical approaches revealed that 
the FR model outperformed the others [27]. Bourename, et. al. [28] also contrasted five statistical 
techniques, namely WoE, AHP, Weighting Factor (WF), Logistic Regression (LR), and FR, and 
concluded that FR had a greater prediction rate of 86.59 percent. For instance, Regmi, et. al. [29] 
evaluated different statistical techniques, such as the statistical index (SI) and weights of evidence 
(WoE) approaches and discovered that the frequency ratio (FR) fared better.  

Mapping landslide susceptibility typically involves utilizing statistical hazard, landslide 
distribution, landslide frequency, qualitative hazard, deterministic hazard, and other approaches 
as standard features [30]. The frequency model is often considered more effective than other 
approaches for landslide susceptibility mapping due to its ability to directly quantify the frequency 
of landslides in a given area. This model provides a clear and straightforward assessment of the 
likelihood of landslides occurring in specific locations, which can be valuable for risk assessment 
and mitigation efforts. Additionally, the frequency model is often more easily interpretable and 
can provide a more tangible understanding of landslide susceptibility compared to other 
approaches. The frequency ratio (FR) model from the statistical method for landslide susceptibility 
mapping was selected for this study due to its distinct advantages over various other models. To 
generate Landslide Susceptibility Mapping in the study region and calculate the spatial 
relationship between two variables i.e., landslide events and causative factors, the Frequency Ratio 
model is an effective advanced method [31]. The FR model is regarded as a reliable and 
experimental approach that may be utilized to determine the relationship between landslide events 
and causal elements and to provide useful Landslide Susceptibility Mapping for the research area 
[32]. The FR model has a significant advantage in that it can determine the rank of the causative 
factors concerning a landslide occurrence as well as whether or not a specific range of causative 
factor values will be dangerous in the event of landslides [33]. 

Numerous studies have been conducted at international, national, and local levels, yet none 
have focused on landslide susceptibility modeling to mitigate landslides in the Phewa watershed, 
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despite existing threats from landslides. The primary goal of our research is to assess the 
relationship between landslide events (dependent variable) and causative factors (independent 
variables) to create an accurate, updated landslide susceptibility mapping of the study area using 
the FR model. The study aims to highlight the different zones of landslides in the Phewa 
Watershed of Nepal. 

2. Materials and methods 

2.1. Study area 

The Phewa watershed extends from 83°48'1.93" east to 83°58'13.18" east, as well as from 
28°11'37.83" north to 28°17'27.30" north, with an elevation ranging from 793 meters 
2508.81 meters (Fig. 1). In Nepal's mid-hill zone, the watershed is found. Following a Cabinet 
meeting, the Gandaki province government declared in 2022 that the 123 square kilometers of the 
Pokhara Lake cluster listed on the Ramsar site will become the Phewa Lake protected watershed 
area. The watershed area is made up of major parts of Pokhara Metropolitan City and some parts 
of Annapurna Rural Municipality. The watershed region is comprised of 44.95 percent forest, 
38.52 percent agricultural land, 10.76 percent built-up area, 4.29 percent water bodies and barren 
land, and 1.48 percent flooded area or barren land. 

 
Fig. 1. Map of the study area, Phewa Watershed 

2.2. Data sources 

This study used both primary and secondary sources. Primary data were gathered directly from 
the field, while secondary data were gathered from published and unpublished records from both 
private and public organizations. The mapping of the landslide inventory was achieved by 
analyzing Google Earth images, historical landslide data, and fieldwork. The Phewa watershed’s 
landslide susceptibility map was created utilizing a variety of maps, including those for land 
cover/use, DEM, slope, aspect, plan curvature, road distance, stream proximity, profile curvature, 
and precipitation. The Department of Survey, Government of Nepal, generated topographic maps 
that were then used to digitize contour layers to construct the DEM. From the DEM, slope maps 
and aspect maps were generated. The drainage map was used to determine river distances, which 
were then buffered based on the rivers’ chronological sequence. The topographic map was used 
to compute the length of the roads. The Department of Hydrology and Meteorology, Government 
of Nepal, served as the source of rainfall data for the risk assessment (Table 2). 
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Table 2. Types and sources of data that used for mapping 
Topographical variable Value Resolution Source 

DEM 729-2434 m 30 m ALOS PALSAR RTC, openly available at 
https://asf.alaska.edu/ 

Slope 0-70.96° 30 m ALOS PALSAR RTC, openly available at 
https://asf.alaska.edu/ 

Aspect –1-360 30 m ALOS PALSAR RTC, openly available at 
https://asf.alaska.edu/ 

Plan curvature <-0.576->0.371 30 m ALOS PALSAR RTC, openly available at 
https://asf.alaska.edu/ 

Profile curvature <-0.545->0.386 30 m ALOS PALSAR RTC, openly available at 
https://asf.alaska.edu/ 

LULC (Water bodies, built-
up, forest, agriculture,  

flooded area) 
– 30 m Sentinel Image, openly available in 

[ESA] at https://www.esa.int. 

Stream Proximity to 
<100 m->500 m 30 m Survey department 

Precipitation 2,055-4,003 mm 30 m Department of hydrology and meteorology 

Road Proximity to 
<100 m->500 m 30 m Survey department 

Landslide Inventory (Training 
and Testing dataset) – 30 m Google Earth Image and Field Survey 

2.2.1. Landslide Inventory 

Scientists and technicians can determine comparable circumstances in other locations and 
evaluate the possible risk of future landslides by examining the features and causes of previous 
landslides. Inside the study area, a total of 46 landslides were mapped. Using the Subset Features 
Tools in ArcGIS, the landslides in the landslide inventory were randomly divided into a training 
set area (80 %) with 37 points and a test set area (20 %) with 9 points. These were the dependent 
variable (landslide polygon) data that were utilized to train the model. Landslides vary in size 
according to their geography and location (Fig. 2). The approach of using a landslide inventory 
map based on historic landslide events, field site documentation, and satellite imagery 
interpretation is a common and effective method for assessing landslide risk. The division of the 
landslide inventory into a training set and a test set is a standard practice in machine learning and 
geospatial analysis, allowing for the development and validation of predictive models. The choice 
of a 80 % training set and a 20 % test set is a reasonable approach, as it provides enough data for 
both model development and validation. 

 
Fig. 2. Landslide inventory map 
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2.2.2. Landslide triggering factors 

The landslide triggering factors are independent variables used to model the landslide 
susceptibility mapping. Future landslides can be predicted using the relationship between the 
environment and previous landslides. In this study, eight factors were utilized to identify the 
landslide-prone areas, which were divided into four categories: topographic, hydrological, 
geological, and other variables. 

Google Earth images and DEM were used to create the landslide inventory map for this study, 
which was then verified using information from a field survey A high-resolution Google Earth 
Engine image displaying the landslide scar was used to examine the inventory map. We verified 
the satellite-based landslide database via a field study and looked at how different landslide types 
affected vegetation, water supply, physical structures, and the lives of people. The Phewa 
watershed's forest and ecology have suffered significantly as a result of the landslide hazard. In 
comparison to other conditioning elements, the slope angle is a factor that is equally significant 
but has a bigger influence. Due to their steepness and potential for increased environmental stress, 
areas with greater slopes typically produce more landslides. ALOS DEM was used to calculate 
the slope of the study area. There are six different classifications of slope [34]. 

In ArcGIS 10.7.1, the computed slope was then classed into five categories: 0-7.792°, 
7.793-16.14°, 16.15-23.1°, 23.11-30.33°, 30.34-39.79°, and 39-8-70.96°. The research area has a 
slope that ranges from 0 degrees to 70.96 degrees. Most of the research area was highly rocky and 
steep (Fig. 3(a)). Aspect is also another crucial LSM conditioning component. It influences 
stratum instability by regulating moisture in the rocks and soil as a result of wind and varying the 
amount of solar exposure in the study area. Nine classes (Flat, North, Northeast, East, Southeast, 
South, Southwest, West, and Northwest) were formed using angular values based on the aspect’s 
facing orientation using ArcGIS 10.7.1 after receiving input through the ALOS DEM [27] 
(Fig. 3(b)). One of the most crucial initiating elements for a landslide is precipitation [35]. Most 
of the landslides occurred in areas with the most rainfall. The departments of hydrology and 
meteorology, Government of Nepal provided 32-year data (1990-2021), which were interpolated 
in GIS to generate a rainfall map (Fig. 3(c)). A sentinel image available from ESA was used to 
classify Land use/Cover area. Five classifications, mainly agriculture, water bodies, forest, 
built-up, and flooded areas, were used as the training dataset. The Land Use/Cover factor was 
scaled to a spatial resolution of 30 m to ensure smooth model operation. According to 
classification data, 44.95 % of the area was covered by forest, 38.52 by agricultural, 10.76 % by 
built-up areas, 4.28 % by water bodies, and 1.47 % by flooded land (Fig. 3(d)). 

Another crucial factor for Landslide Susceptibility Mapping is the closeness to streams 
because these areas are more likely to experience landslides and soil erosion due to the erosive 
action of water. Based on the Euclidean distance, six buffer zones have been defined around the 
stream (Fig. 4(a)). Proximity to roads, similar to stream proximity, is a significant factor that 
directly contributes to landslides. Furthermore, a recently constructed road could contribute to 
slope instability. For the road map to function properly, the spatial resolution was rescaled to 
match the resolution of the ALOS DEM. Due to this, six categories were created based on the 
Euclidean distance from the centerline of roadways: below 100 meters, 100-200 meters, 
200-300 meters, 400-500 meters, and above 500 meters [27] (Fig. 4(b)). The surface that is 
perpendicular to the slope direction is depicted by the plan curvature. It typically comes in three 
types: laterally convex, laterally concave, and linear, each represented by a positive, negative, or 
zero number. It was divided into three classes based on Wang et al. [27]: below –0.576,  
–0.576-0.371, and above 0.371 (Fig. 4(c)). The surface that is parallel with the direction of the 
steep slope is shown by the profile curvature. It typically comes in three varieties: upwardly 
convex, upwardly concave, and linear, each represented by a negative, positive, or zero value. 
Three classifications were developed: below –0.545, –0.545-0.386, and above 0.386, following 
Wang, et al. [27] (Fig. 4(d)). 
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Fig. 3. Map of a) slope, b) aspect, c) rainfall/precipitation, d) land use/cover 

  
Fig. 4. Map of a) stream proximity, b) road proximity, c) plan curvature and d) profile curvature 
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2.3. Methods 

The frequency ratio model is considered a reliable and experimental method that can be used 
to generate precise maps of the study area's landslide susceptibility and to analyze the relationship 
between landslide incidences and cause factors [32]. The FR method was explained in detail. All 
factor maps were categorized into their appropriate class numbers using the same resolution 
(30 m). Landslide data were divided into 80 % for training and 20 % for testing. The factor map 
and landslide raster were both added to ArcMap to calculate the number of landslide pixels in each 
class. Eq. (3) was used to ascertain the FR for each class. Eq. (4) gives the Relative Frequency 
(RF) for each of the classes. An integer was used to reclassify each variable’s RF value. For every 
factor, the prediction ratio (PR) was determined thereafter. The reclassification factor map was 
multiplied by the prediction rate using ArcMap’s raster calculator tool. Ultimately, five groups 
were developed based on natural breaks from the raster calculator output, resulting in the landslide 
susceptibility map. An accuracy assessment for FR was carried out using 20 % of the test dataset. 
Using the approach developed by the ArcGIS platform, the model was tested by examining the 
area under the curve (AUC) value of the Receiver Operating Characteristics (ROC) curve. The 
Frequency Ratio (FR) and Relative Frequency (RF) for each class were calculated using Eqs. (3) 
and (4), as provided by Kannan, et. al. [33]: 

Slide Ratio = Number of Landslide pixels in classTotal number of Landslide pixels , (1)Class Ratio = Number of pixels in individual classTotal number of pixels in whole class , (2)Frequency Ratio = Slide RatioClass Ratio, (3)Relative Frequency ሺRFሻ = FR value of an individual class Total FR value of factor ∗ 100. (4)

A frequency ratio (FR) table was generated after analyzing the landslide inventory using 
landslide conditioning factors. 

PR was calculated utilizing Eq. (5), which Meena et al. (2022) suggested: 𝑃𝑅 = 𝑆𝐴௠௔௫ − 𝑆𝐴௠௜௡𝑆𝐴௠௔௫ − 𝑆𝐴௠௜௡ 𝑚𝑖𝑛, (5)

where PR denotes the prediction rate and SA denotes the indicator of spatial association between 
the spatial element and the landslide. The calculated absolute difference between the highest and 
minimum SA values is divided by the smallest absolute difference among all factors. The PR 
values of the proposed component weights were examined for susceptibility mapping. 

3. Result 

3.1. Landslide susceptibility map  

The statistical approach used frequency ratio methods to analyze the quantitative relation 
between landslides and conditioning factors. The calculation of the landslide susceptibility model 
(LSM) was performed using Eq. (3) and Eq. (4) on the ArcGIS platform. The landslide 
susceptibility map was reclassified into five classes using the natural breaks method, with the 
largest area in the low class (43.226 %), followed by very low (35.234 %), moderate (19.46 %), 
very high (0.846 %), and high (0.63 %), (Fig. 5 and 6).  
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Fig. 5. Landslide susceptibility map 

 
Fig. 6. Classes of landslide susceptibility map 

 
Fig. 7. Feature Importance for LSM 

3.2. Conditioning factor importance  

The frequency ratio method used eight conditioning parameters Slope, Aspect, Plan curvature, 
Profile curvature, Precipitation, Proximity to Stream, Proximity to Road and Land use/Land cover 
for LSM. The methods use 80 % training data to train the model. In FR methods Land use/cover, 
Proximity to Stream, Proximity to Road, Precipitation and slope have greater importance followed 
by Aspect, profile curvature, and plan curvature have comparatively lower importance in this 
study area (Fig. 7). 

3.2.1. Precipitation 

To assess the relationship between rainfall parameters and landslide events, a rainfall map was 
created and then reclassified into five classes. The map presented in Fig. 3(c) shows the variation 
in rainfall from 2,055 mm to 4,003 mm annually, which is the range between the area’s reported 
highest and minimum rainfall. According to the map, the area’s rainfall gradually decreases from 
east to west. Landslides are more likely to occur under high rainfall than during low rainfall. 
Rainfall was found to be a key factor in landslides, as seen in Fig. 7. The findings showed that the 
reactionary precipitation class for landslides is 2,445-2,834 mm/year, followed by 2,055-2,445 
mm/year, 3,613-4,003 mm/year, 3,224-3,613 mm/year, and 2,834-3,224 mm/year (Table 3). 

3.2.2. Slope 

Five classes, with slopes ranging from 0° to 70.96°, were developed for the study area 
(Fig. 3(a)). In contrast to the other categories, slopes with steeper angles have a variable potential 
for risks (Fig. 7). The slope component is influential up to 40° because a rising slope increases 
landslide occurrence, while above 40°, an increasing slope decreases landslide activity. The data 
revealed that slopes 0°-7.792° are the most vulnerable to landslides, whereas slopes 39.8°-70.96° 
are the most resistant, followed by 7.793°-23.1° (Table 3). 
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Table 3. Detailed analysis of the variables affecting the frequency of landslides 

SN Parameter Class Class 
pixel* 

% Class 
pixel 

Land 
slide 
pixel 

% landslide 
pixel FR RF PR 

1 Slope  
(degree) 

0-7.792 196195 16.7729 173 23.1283 1.3789 0.2532 

3.09293 

7.793-16.14 223878 19.1396 103 13.7701 0.7195 0.1321 
16.15-23.1 313368 26.7902 171 22.8610 0.8533 0.1567 
23.11-30.33 244444 20.8978 198 26.4706 1.2667 0.2326 
30.34-39.79 144303 12.3366 98 13.1016 1.0620 0.1950 
39.8-70.96 47525 4.0630 5 0.6684 0.1645 0.0302 

  Total   1169713   748   5.4449     

2 Aspect 

Flat 2129 0.1821 1 0.1337 0.7342 0.0884 

2.18724 

North 109020 9.3243 41 5.4813 0.5879 0.0708 
Northeast 192247 16.4425 51 6.8182 0.4147 0.0499 

East 171134 14.6368 67 8.9572 0.6120 0.0737 
Southeast 201667 17.2482 196 26.2032 1.5192 0.1828 

South 232843 19.9146 257 34.3583 1.7253 0.2076 
Southwest 110651 9.4638 33 4.4118 0.4662 0.0561 

West 118858 10.1657 78 10.4278 1.0258 0.1235 
Northwest 30658 2.6221 24 3.2086 1.2237 0.1473 

  Total   1169207   748   8.3088     

3 Land use land 
cover 

Waterbodies 50402 4.2851 58 7.7540 1.8095 0.0695 

11.2871 
Builtup Area 126584 10.7620 159 21.2567 1.9752 0.0759 

Forest 528767 44.9549 11 1.4706 0.0327 0.0013 
Agricultural Area 453114 38.5230 286 38.2353 0.9925 0.0381 

Flooded Area 17350 1.4751 234 31.2834 21.2081 0.8151 
  Total   1176217   748   26.0181     

4 

Precipitation 

2055-2445 mm 334377 28.4340 268 35.8289 1.2601 0.2713 

4.12205 
2445-2834 mm 221919 18.8711 246 32.8877 1.7428 0.3752 
2834-3224 mm 147478 12.5409 34 4.5455 0.3624 0.0780 
3224-3613 mm 145921 12.4085 53 7.0856 0.5710 0.1229 
3613-4003 mm 326279 27.7454 147 19.6524 0.7083 0.1525 

  Total   1175974   748   4.6446     

5 Proximity to 
road 

< 100 m 644470 54.7921 523 69.9198 1.2761 0.3439 

4.76995 

100-200 m 233081 19.8163 118 15.7754 0.7961 0.2145 
200-300 m 133735 11.3700 74 9.8930 0.8701 0.2345 
300-400 m 74520 6.3356 28 3.7433 0.5908 0.1592 
400-500 m 44323 3.7683 5 0.6684 0.1774 0.0478 

> 500 m 46080 3.9177 0 0.0000 0.0000 0.0000 
  Total   1176209   748   3.7105     

6 Proximity to 
streams 

< 100 m 214698 18.2534 372 49.7326 2.7246 0.4446 

5.7011 

100-200 m 183236 15.5785 158 21.1230 1.3559 0.2213 
200-300 m 160348 13.6326 98 13.1016 0.9610 0.1568 
300-400 m 139667 11.8743 43 5.7487 0.4841 0.0790 
400-500 m 118947 10.1127 30 4.0107 0.3966 0.0647 

> 500 m 359313 30.5484 47 6.2834 0.2057 0.0336 
  Total   1176209   748   6.1279     

7 Profile 
curvature 

< –0.545 195469 16.6204 93 12.4332 0.7481 0.2609 
1.63939 –0.535 -0.386 659496 56.0757 433 57.8877 1.0323 0.3600 

> 0.386 321116 27.3039 222 29.6791 1.0870 0.3791 
  Total   1176081   748   2.8674     

8 Plan  
curvature 

< –0.576 210721 17.9172 117 15.6417 0.8730 0.3024 
1 –0.576 -0.371 618042 52.5510 425 56.8182 1.0812 0.3745 

> 0.371 347318 29.5318 206 27.5401 0.9326 0.3230 
  Total   1176081   748   2.8868     

* No. of pixel= (Total Area/Cell size area) = Total area/ (30*30) 
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3.2.3. Aspect 

The slope orientation is displayed on the aspect map in Fig. 3(b), and the places with higher 
aspect values have a relatively large impact on the landslide hazard level, and vice versa. 
According to Table 3, the most prominent aspect class is south, followed by Southeast, Northwest, 
and West. The south aspect zone of the study area is prone to landslides, with values of 0.0011. 

3.2.4. Land use/cover 

The tabulated results from this study made it very clear that different types of land use/cover 
had different effects on landslide events. According to the results of Table 3, the built-up and 
flooded regions of this study area are more sensitive to landslides, but the forest and agricultural 
areas are more resistant to landslides than other categories of land use/cover. The land use/cover 
was found to play a crucial trigger factor (33.394 %) among the other eight variables of landslides, 
as shown in Fig. 7. 

3.2.5. Stream proximity 

A large number of landslide events and pixels were found near streams, with fewer landslide 
events found far from drainage. The information in Table 3 shows that both the variables i.e., the 
independent variable (proximity to stream) and the dependent variable (landslide) have a 
significant relationship with each other. According to the statistical information in Table 3, a 
buffer of less than 100 meters from the stream network is the class that is most prone to 
experiencing a landslide, followed by buffers of 200 to 300 meters, 400 to 500 meters, and more 
than 500 meters. The stream proximity was found to play a crucial trigger factor (16.867 percent) 
of landslides, as shown in Fig. 7. 

3.2.6. Road proximity 

The road network and the dependent variable landslide exhibit an obvious link, as shown by 
the result (Table 3). Landslides were more likely to occur on slopes close to roadways, while risk 
levels on slopes farthest from roads steadily declined. The road network has a direct impact on the 
instability of strata. In the study area, the road network’s <100 m buffer zone was vulnerable to 
landslides with values of 0.0008. The road network's buffer zone that extends beyond 500 meters 
was impervious to landslides. 

3.2.7. Curvature 

Plan and profile curvatures make up the two classes that comprise the curvature of this study 
area.  

3.2.7.1. Plan curvature 

Convergence, flat, and divergence are the three categories used in this study to categorize plan 
curvature. When the plan curvature is high, the slope has a side widely convex shape; when it is 
low, the slope has a concave shape. The runoff surface is significantly impacted by this issue. 
Convex areas typically distribute runoff uniformly, which has no impact on the stability of the 
slope. Concaved surfaces, on the other hand, help water collect in the lowest area, which causes 
landslides to happen. Under the influence of plan curvature, the study area’s landslide risks are 
primarily concentrated in the plan curvature range of less than –0.576 to more than 0.371, with  
–0.576-0.371 being the greatest and accounting for 37.45 % of all occurrences (Table 3). 
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3.2.7.2. Profile curvature 

The slope has a convex shape when the curvature is high and a concave shape when it is low. 
The profile curvature was divided into three groups for this study: concave, convex, and linear, 
underlining its Geo-morphological significance as it impacts water flow. Upwardly convex 
surfaces are represented by negative profile curvature values, whereas concave surfaces are 
represented by positive profile curvature values and the surfaces’ straight slope linear feature. 
Landslide risks in the study area are mostly concentrated in the profile curvature range of less than 
–0.545 to more than 0.386, with less than –0.545 being the least and accounting for 12.43 % of all 
occurrences (Table 3). 

4. Model performance and validation  

The validity and accuracy were assessed using the area under the curve (AUC) of receiver 
operating characteristic (ROC) curves, a quantitative method for evaluating the landslide 
susceptibility model based on prediction accuracy by using ArcGIS 10.7.1 tool. The true positive 
rate (𝑦-axis) and false positive rate (𝑥-axis) of the training and validation landslides were used to 
generate the AUC rate curves. In this work, 80 % of the landslides were utilized to train landslide 
susceptibility models, while the remaining 20 % were used for model validation. Fig. 8 
demonstrates that the frequency ratio model has an AUC value of 0.717, indicating good 
performance. The AUC value lies between 0 and 1, and the higher its value, the greater the 
prediction accuracy of the model. 

 
Fig. 8. AUC Curve for validation 

As the AUC value above 0.5 is generally considered to indicate a satisfactory outcome in 
Receiver Operating Characteristics (ROC) analysis, the values above 0.7 in this study suggest a 
good model. Oh, et al. [32] evaluated the effectiveness of the landslide susceptibility analysis 
using frequency ratio (FR) with iterative random sampling and observed that landslide 
susceptibility maps were validated with each validation dataset. They conclude that FR enables 
knowledge-driven analyses of the causal factors to be integrated into the landslide susceptibility 
analysis while also being widely used in other areas. Acharya, et al. [37] updated an inventory of 
Bhotang, Nepal using ten conditioning factors and a Google Earth Pro image. They found that the 
Area Under Curve (AUC) value of FR for validation was 0.713. Budha, et. al. [38], described the 
FR of the Panchase area, with a success rate of 0.76 AUC, indicating that the model has 76 % 
predictability. Onagh, et. al. [39] found an AUC of 0.762 during their model validation in the 
Uttarakhand district of northwestern India. In the Kulekhani watershed of Nepal the AUC for the 
statistical index method was 0.7578 [40]. Consequently, the AUC found in this study area is 0.717, 
which is quite comparable to that observed in previous studies in the Himalayas. 
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5. Discussion 

The PR determined the weight of the conditioning factors in the study. Land use/cover was 
found to be the most important factor, followed by proximity to a stream, proximity to a road, 
precipitation, and slope. Aspect, plan curvature, and profile curvature were found to be less 
significant (Fig. 7). This supports previous findings of Basnet, et al. [41] that identified land use, 
road presence, precipitation, streams, aspect, and slope as primary triggers for landslides in their 
study area. The soil loss from the Phewa watershed because of the influence of LULC change was 
estimated by Bista and Basnet [42] using GIS, Remote sensing, and the RUSLE tool. They found 
that soil loss was 29.3 t/ha/yr in 2007 and 25.4 t/ha/yr in 2017. According to a study conducted by 
Rowbotham and Dudycha [43], dip slopes, particularly those under cultivation, were identified as 
the primary sources of slope collapse. The study area was significantly influenced by the closeness 
of roads, which were frequently built quickly lacking proper technical planning, drainage system, 
or slope maintenance.  

In contrast, a study by Vuillez, et al. [44] found that 84 % of newly generated landslides in the 
Phewa watershed occur within 40 meters of a road, and more than 40 % of them cross a road. 
Surface water concentration and slope decline caused by these roads also contribute to slope 
instability. The presence of steeper slopes increases the likelihood of deformation and failure. 
Solar radiation and other aspects affect vegetation coverage, surface weathering, and evaporation, 
all of which influence landslide occurrence. Cooperation between communities upstream and 
downstream is crucial in reducing landslide risk in the area, where people reside at both levels. 
Media reports have highlighted landslide events in the Phewa watershed, with heavy rainfall and 
sloppy terrain being contributing factors. Sharma [45] reported that on August 25, 2014, a 
landslide triggered by continuous rainfall resulted in three fatalities and one person being reported 
missing. The incident also led to the destruction of the Typical Restaurant & Lodge located on the 
shores of Phewa Lake at Anadu, Pumdibhumdi in Pokhara-22. According to the District Police 
Office in Kaski on July 29, 2015, five people, including women, were killed and 25 others were 
injured when 12 houses in Dundakhet, Pokhara-23 were buried by landslides [46-48]. On July 10, 
2020, around 3:00 a.m., landslide debris buried a house in Gothadi, Sarangkot, killing five people 
[49]. In an experiment by Budha, et al. [50], the Panchase area adjacent to this study area revealed 
a larger amount of landslide area in forests and cultivated lands, which are 0.762 km2 and 
0.358 km2 respectively, accounting for 75 % of the total landslide area. Basnet, et al. [41] 
discovered similar results in a section of the Phewa watershed, indicating that forests have a higher 
frequency of landslides. Previous research has shown that forests have a higher frequency of 
landslides. However, this study found that landslides are less concentrated in forested areas 
because the shadows obstruct landslide images in satellite imagery. It is crucial to carefully choose 
plant species because there is a considerable chance that landslides will occur in both farmed and 
forested areas. Landslides can be caused by forests, so to reduce the risk of landslides in the 
protected Phewa watershed, planners should take into account the importance of deeply rooted 
vegetation and minor drainage improvements. In determining landslide risk and developing risk 
mitigation strategies, it is crucial to study the landslide susceptibility mapping because the Phewa 
watershed is a protected watershed and a part of the Ramsar site. 

6. Conclusions 

A landslide susceptibility map of the Phewa watershed was generated during this study using 
a variety of maps and data gathered through fieldwork, past landslide data, satellite data, and 
Google Earth data. It recognized 46 landslides across the study area and used eight variables, 
including slope, aspect, land use/coverage, precipitation, proximity to roads and streams, profile 
curvature, and plan curvature. The frequency ratio (FR) model was applied in the Phewa watershed 
to produce LSMs, which led to a map that was categorized into five levels: very low, low, 
moderate, high, and very high. According to the study, the most important variables influencing 
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landslide risk in this region were slope, precipitation, land use/cover, and proximity to streams 
and roads. It also looked at the relationship between rainfall and landslides, finding that a higher 
frequency of landslides was linked to increased rainfall. The Area under the Curve (AUC) score 
of 0.717 for the susceptibility model indicated good performance. The LSMs offer important 
information to researchers, communities, government authorities, and planners to deal with the 
risks of landslides in the area, even though they cannot anticipate the frequency or timing. The 
results of this study will be crucial for comprehending the risk of landslides and developing 
strategies to mitigate their impact in the protected watershed of the Phewa Lake area. 
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