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Abstract. Aiming at the difficulty in obtaining the eigenfrequency of the vibration component of 
rolling bearing faults in a strong background noise environment and the problem of extraction 
efficiency, the adaptive chirp mode decomposition (ACMD) combined with Improved maximum 
second-order cyclostationary blind deconvolution (ICYCBD) fault feature extraction algorithm is 
proposed. Firstly, to improve the signal-to-noise ratio, the original signal is adaptively 
decomposed using the ACMD method, and the optimal components are selected based on the 
principle of maximizing the correlation gini coefficient index. Secondly, to improve the accuracy 
of parameter setting and extraction efficiency, an improved CYCBD method is proposed to 
estimate the cyclic frequency set of CYCBD using the proposed enhanced energy harmonic 
product spectrum (EEHPS) method for the optimal components, the envelope spectrum peak 
factor index is improved by proposing the envelope spectral period pulse factor (EPPF) index, and 
the filtering length of the CYCBD is selected adaptively using the step search to obtain the 
optimized filtered signal. Finally, the envelope spectrum analysis is carried out to extract the fault 
information accurately. The simulation signals and experimental data show that the method can 
quickly and accurately extract the fault characteristics of rolling bearings under strong background 
noise, and the comparison with other methods shows the effectiveness and superiority of the 
proposed method. 
Keywords: rolling bearing, fault diagnosis, ACMD, CYCBD, EEHPS, EPPF. 

1. Introduction 

As one of the key moving parts in mechanical equipment, rolling bearings play an important 
role in the mechanical transmission system, are involved in a variety of industries, and are the 
basis and guarantee of mechanical operation. However, due to long time operation and working 
environment, rolling bearings often have a series of failures. If these failures are not detected and 
diagnosed in time, they may lead to accidents and property losses, seriously affecting productivity 
and safety. However, affected by environmental noise and other factors, fault information is often 
difficult to extract. Therefore, how to be able to quickly and accurately identify rolling bearing 
fault characteristics for the development of maintenance plans and improve equipment reliability 
is of great significance [1, 2]. 

In recent years, blind deconvolution algorithms have been widely used in early faults. The 
principle of the blind deconvolution method is to extract the source signal of the fault impulse 
through the process of back-convolution of the signal. Minimum entropy deconvolution (MED) 
is an earlier blind deconvolution method applied in the field of fault diagnosis, and Wang et al. 
[3] used the MED technique applied to weak fault feature extraction of rolling bearings. However, 
MED is used in rolling bearing fault diagnosis, the individual pulses that may occur are not the 
periodic pulses caused by faults [4]. To overcome the drawbacks of MED, Mcdonald et al. [5] 
proposed the maximum correlation Kurtosis deconvolution (MCKD), which can highlight 
continuous pulses that are flooded by noise and has a good noise reduction effect [6]. However, 
MCKD is affected by the number of displacements, can only locally extract a limited number of 
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impact pulses, and requires more parameters to be input, so the method has some limitations. 
Buzzoni et al. [7] proposed the maximum second-order cyclostationary blind deconvolution 
(CYCBD), which solves the problem that MCKD can only locally extract a finite number of pulses 
by taking advantage of the fact that bearing vibration signals are cyclically stable. Compared to 
MED and MCKD methods, CYCBD can extract continuous-period pulses and enhance the pulse 
amplitude [8]. The CYCBD algorithm is suitable for the fault diagnosis of localized damage of 
gears, which can effectively extract the fault impact components from the signal, but it needs to 
set the cycle frequency set, the filtering length, and these two important parameters in advance 
according to the a priori knowledge to have a better diagnostic effect [9]. To address this problem, 
Ma et al. [10] optimized the parameters of the CYCBD algorithm using the sparrow search 
optimization algorithm, and Lin et al. [11] optimized the parameters of the CYCBD algorithm 
using the improved envelope spectral fault characteristic ratio metrics as the fitness function of 
the particle swarm algorithm. However, the high computational complexity of the optimization 
algorithm will lead to a long algorithm time, while it may fall into the local optimum. 

Considering the interference situation of strong background noise, suitable methods should be 
selected to preprocess the signal before deconvolution to improve the signal-to-noise ratio. 
Whereas rolling bearing signals have nonstationary and nonlinear characteristics, adaptive 
time-frequency analysis methods provide greater flexibility and accuracy in dealing with 
nonstationary and nonlinear signals [12]. Among these methods, empirical modal decomposition 
[13], local average decomposition [14], and ensemble empirical modal decomposition [15] have 
made significant research progress in the field of time-frequency analysis. However, these 
methods often encounter problems related to mode aliasing and endpoint effects when dealing 
with nonstationary signals [16]. The variational modal decomposition (VMD) [17] does not use a 
recursive sieve structure but rather obtains the components by solving a variational problem with 
successive iterative updates in the frequency domain. It overcomes the endpoint effect and some 
modal aliasing problems [18], but the VMD relies on a priori modal quantity judgment and is less 
reliable. For this reason, Chen et al. [19]. proposed adaptive chirp mode decomposition (ACMD), 
which extracts the signal modes one by one by recursive decomposition without an a priori mode 
number. It can eliminate irrelevant components and noise interference, improve the accuracy of 
fault diagnosis, and greatly reduce the algorithm time. 

In summary, this paper proposes ACMD combined with the improved CYCBD algorithm for 
the two problems of difficult-to-extract fault information and extraction efficiency under strong 
background noise interference. The method mainly obtains a number of signal modal components 
through ACMD and selects the optimal components according to the correlation Gini coefficient 
to reduce the influence of noise. Subsequently, the optimal components are processed using the 
improved CYCBD method, and on the one hand, for the case where the signal cyclic frequency is 
unknown, a cyclic frequency estimation method based on Teager’s energy operator combined with 
the improved harmonic product spectrum, referred to as the enhanced energy harmonic product 
spectrum, is proposed [20, 21]. On the other hand, for the optimization problem of CYCBD filter 
length, the index of envelope spectral peak factor is improved, the index of envelope cycle pulse 
factor is proposed [22], and the filter length is determined by using step search. The experimental 
results prove that the method successfully realizes the successful realization of fault feature 
extraction, therefore, this study can provide a useful reference for rolling bearing fault diagnosis. 
The main contributions of the work are as follows: 

1) Noise reduction by preprocessing with the ACMD algorithm improves the accuracy and 
reliability of bearing fault diagnosis. The maximum principle of the correlation Gini coefficient 
index is proposed to select the signal modal components, which improves the selection mechanism 
and adaptivity of the sensitive signal components The potential problem of insufficient extraction 
of bearing fault feature information is solved, to improve the reliability of cycle frequency 
estimation of CYCBD. 

2) The improved CYCBD method is used to filter the signal after ACMD noise reduction, and 
the rolling bearing fault feature extraction is completed quickly and accurately. Simulated signals 
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are used to study the influence of CYCBD parameters on the filtering effect. The optimization 
method combining the enhanced energy harmonic product spectrum, and the envelope period 
pulse factor avoids the problems of long-time and local optimization using the optimization 
algorithm. Comparison with other methods is made to verify the effectiveness and superiority of 
the present method. 

This paper is structured as follows: Section 2 introduces the basic principles of ACMD, 
CYCBD, improved CYCBD, and related Gini coefficients, Section 3 describes the steps to 
implement the method in this paper, Section 4 verifies the effect of CYCBD parameters and the 
effectiveness of the proposed method through simulation, Section 5 verifies the validity and 
superiority of the method in this paper by comparing the experimental signals with other methods, 
and Section 6 draws conclusions based on the simulation and experimental conclusions are drawn 
based on the simulation and experimental results. 

2. Theoretical background  

2.1. ACMD Principle 

The ACMD approach makes its execution process very adaptive and smooth by iterating over 
the components layer by layer. Assuming that the nonstationary signal 𝑠(𝑡) contains 𝑀 signal 
components, the mathematical model is: 

𝑠(𝑡) = ෍𝑠௜(𝑡)ெ
௜ୀଵ = ෍𝐴௜(𝑡)cosቆ2𝜋න 𝑓௜(𝜏)𝑑𝜏௧

଴ + 𝜃௜ቇெ
௜ୀଵ , (1)

where: 𝐴௜(𝑡), 𝑓௜(𝑡) denote the instantaneous amplitude and frequency of the 𝑖-th signal 
component, respectively; 𝜃௜ denote the phase of the 𝑖th signal component. Based on the use of 
modulation and demodulation techniques, a broadband signal is transformed into a number of 
narrowband signals. The demodulation result is: 

𝑠௜(𝑡) = ෍𝑎௜(𝑡)cosெ
௜ୀଵ ቆ2𝜋න 𝑓ሚ௜(𝜏)𝑑𝜏௧

଴ ቇ + 𝑏௜(𝑡)sinቆ2𝜋න 𝑓ሚ௜(𝜏)𝑑𝜏௧
଴ ቇ. (2)

Among them: 

⎩⎪⎨
⎪⎧𝑎௜(𝑡) = 𝐴௜(𝑡)cosቆ2𝜋න ቀ𝑓௜(𝜏) − 𝑓ሚ௜(𝜏)ቁ 𝑑𝜏௧

଴ + 𝜃௜ቇ ,
𝑏௜(𝑡) = −𝐴௜(𝑡)sinቆ2𝜋න ቀ𝑓௜(𝜏) − 𝑓ሚ௜(𝜏)ቁ 𝑑𝜏௧

଴ + 𝜃௜ቇ , (3)

where: 𝑎௜(𝑡) and 𝑏௜(𝑡) are the two demodulated signals; cos ቀ2𝜋∫଴௧𝑓ሚ௜(𝜏)𝑑𝜏ቁ and sin ቀ2𝜋 ∫ 𝑓ሚ௜(𝜏)𝑑𝜏௧଴ ቁ are the demodulation operators; 𝑓ሚ௜(𝑡) is the frequency function of the 

demodulation operator; and the instantaneous amplitude 𝐴௜(𝑡) = ඥ𝑎௜(𝑡)ଶ + 𝑏௜(𝑡)ଶ of the 𝑖th 
signal component. 

The instantaneous frequency of the 𝑖th signal component is 𝑓௜(𝑡) − 𝑓ሚ௜(𝑡); when 𝑓ሚ௜(𝑡) is equal 
to the actual instantaneous frequency 𝑓௜(𝑡) the FM term of the demodulated signal can be 
completely removed, thus obtaining a pure amplitude modulated signal containing the narrowest 
frequency band. Therefore, ACMD extracts the target component and estimates the instantaneous 
frequency of the component by minimizing the bandwidths of 𝑎௜(𝑡) and 𝑏௜(𝑡). The ACMD is a 
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simple and efficient method for estimating the instantaneous frequency of the component. 
The original signal of ACMD decomposition will be continuously updated, which is based on 

the principle that the original signal is subtracted from the extracted 𝑖th component to get the 
remaining signal 𝑅௜. The decomposition will be continued by using 𝑅௜ the original signal for the 
next step of decomposition. 𝑗 decompositions are performed and the signal is decomposed as: 

𝑠(𝑡) = ෍𝑠̃௜(𝑡) + 𝑅௝(𝑡)௝
௜ୀଵ . (4)

Set the algorithm termination condition so that the algorithm ends when the ratio of 𝑅௝(𝑡) 
energy to 𝑠(𝑡) energy reaches a threshold value. 

2.2. CYCBD Principle 

The CYCBD algorithm focuses on the process of finding an inverse filter h such that the source 
signal 𝑆଴ is recovered from the noisy observed signal 𝑋 [7]. The formula is shown below: 𝑠 = 𝑋 ∗ ℎ = (𝑠଴ ∗ 𝑔) ∗ ℎ ≈ 𝑠଴, (5)

where ∗ is the convolution operator, 𝑆 is the estimated signal input, and g is the unknown pulse. 
The second-order cyclic smoothness (𝐼𝐶𝑆ଶ ) index is defined as follows: 

𝐼𝐶𝑆ଶ = ℎு𝑋ு𝑊𝑋ℎℎு𝑋ு𝑋ℎ = ℎு𝑅௑ௐ௑ℎℎு𝑅௑௑ℎ , (6)

where 𝑅௑ௐ௑ and 𝑅௑௑ are the weighted correlation matrix and the correlation matrix, respectively, 
and W is the weighting matrix, which can be expressed as: 

𝑊 = ൥⋱ 0𝑃ሾ|𝑠|ଶሿ0 ⋱൩ (𝐿 − 𝑁 + 1)∑ 𝑠ଶ௅ିଵ௟ୀேିଵ . (7)

A signal |𝑠|ଶ containing a periodic component is called 𝑃ሾ|𝑠|ଶሿ and has the following 
expression: 

𝑃ሾ|𝑠|ଶሿ = 1𝐿 − 𝑁 + 1෍𝑒௞௞ (𝑒௞ு|𝑠|ଶ) = 𝐸𝐸ு|𝑠|ଶ𝐿 − 𝑁 + 1, (8)𝐸 = ሾ𝑒ଵ ⋯𝑒௞ ⋯𝑒௄ሿ, (9)𝑒௞ = ൦𝑒ି௝ଶగ ௞்௦(ேିଵ)⋮𝑒ି௝ଶగ ௞்௦(௅ିଵ)൪. (10)

Which, 𝑁 is the source signal length; 𝐿 is the filter length, 𝑘 is the number of samples, and 𝑇ௌ 
is the fault period, which is related to the fault frequency. Therefore, the set of cycle frequencies 
of discrete-time signals is set as: 

𝛼 = 𝑘𝑇ௌ . (11)

Solving for the 𝐼𝐶𝑆ଶ value is equivalent to solving a generalized eigenvalue problem, where 
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the maximum 𝐼𝐶𝑆ଶ value should be solved for the maximum eigenvalue, that is: 𝑅௑ௐ௑ℎ = 𝑅௑௑ℎ𝜆. (12)

2.3. Correlation Gini coefficient index 

The ACMD algorithm is used to decompose the original signal into a series of modal 
components, which contain more fault characteristic information, but also noise information and 
spurious decomposition. To screen out the effective modal components, the Gini coefficient is 
characterized by robustness under interference conditions, but the Gini coefficient index cannot 
distinguish the false components. While the correlation coefficient can reflect the correlation 
between the components and the original signal and can well eliminate irrelevant spurious 
components. Therefore, to overcome the limitations of both, the correlation Gini coefficient index 
is introduced, and its expression is as follows: 

⎩⎨
⎧𝐺𝐼 = 1 − 2෍𝑥௥ሾ𝑝ሿ‖𝑥‖ଵே

୮ୀଵ ൬𝑁 − 𝑝 + 0.5𝑁 ൰ ,𝑆஼ீூ = ඥ|𝐶|𝐺𝐼,  (13)

where 𝑆஼ீூ is the correlation Gini coefficient index, 𝐶 is the Pearson correlation coefficient, 𝐺𝐼 is 
the Gini coefficient, ‖⋅‖ଵ denotes Paradigm 𝑙ଵ, 𝑥 is the squared-enveloped discrete time series, 𝑁 
is the length of 𝑥, and 𝑥௥ denotes the ascending 𝑥 sequence. 

2.4. ICYCBD principle 

2.4.1. Enhanced energy harmonic product spectrum 

Harmonic Product Spectrum (HPS) is a method used to extract features of periodic signals, 
using features in the frequency domain to reveal harmonic components and fundamental 
frequencies in the signal [23]. This method is often used in speech signal processing, usually for 
the extraction of fundamental frequency traces. By applying HPS, we can accurately capture and 
highlight the harmonic components in the signal, thus revealing critical information. Its 
mathematical definition is as follows: 

𝐻(𝜔) = 𝐹(𝜔) ⋅ 𝐹(2𝜔)⋯𝐹(𝐾𝜔) = ෑ𝐹௄
௞ୀଵ (𝑘𝜔), (14)

where 𝐹(𝑥) is the amplitude spectrum and 𝐾 denotes the number of harmonics considered. 
The cyclic frequency is correlated with the fault frequency, so the cyclic frequency estimation 

can be realized by applying HPS to rolling bearing fault signals, but studies have shown that there 
are two problems in applying the traditional harmonic product spectrum to directly analyze the 
vibration signals: it is susceptible to the interference of the background noise and it is subject to 
the high-frequency noise that leads to the higher-order harmonic distortions in the frequency 
domain. 

To solve these problems, the enhanced energy product spectrum (EEHPS) method is proposed 
based on the Teager energy operator combined with the improved harmonic product spectrum. By 
demodulating the signal using the Teager energy operator followed by spectral analysis, this 
method can transfer the frequency analysis from the high resonance frequency range to the very 
low fault frequency range, reduce the influence of higher-order harmonics, simplify the signal, 
and at the same time be able to increase the fault impact component and suppress part of the noise. 
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The Teager energy operator is a nonlinear operator that efficiently extracts the instantaneous 
energy of a signal [20]. For a discrete signal 𝑥(𝑡), it is defined in differential estimation as: E[𝑥(𝑛)] = [𝑥(𝑛)]ଶ − 𝑥(𝑛 + 1)𝑥(𝑛 − 1). (15)

As can be seen from the above equation, the Teager energy operator takes into account the 
instantaneous frequency, is more sensitive to the transient components of the signal, and is 
therefore suitable for highlighting the shock components of the signal and suppressing some of 
the noise. 

Regarding the interference of background noise, Zhao et al. [21] proposed an improved method 
by dimensionless processing of HPS and considering background noise. The EEHPS method is 
based on the Teager energy operator combined with an improved harmonic product spectrum. The 
mathematical expression is given below: 

𝐻(𝜔) = ቆ𝐸(𝜔)𝑁(𝜔) ⋅ 𝐸(2𝜔)𝑁(2𝜔)⋯𝐸(𝐾𝜔)𝑁(𝐾𝜔)ቇଵ௄ = ቌෑ𝑊௄
௞ୀଵ (𝑘𝜔)ቍଵ௄ , (16)

where 𝑁(𝐾𝜔) is the average noise value around 𝐾𝜔, 𝐾 is the number of harmonics, and where 𝐸(𝑥) is the amplitude spectrum after the Teager energy operator processing. Through the 
improvement, the interference of background noise can be effectively reduced, and the 
characteristic information in the signal can be revealed more clearly, which further improves the 
reliability and accuracy of vibration signal analysis. The method can directly analyze the vibration 
signal and is more sensitive to the periodic pulse. 

2.4.2. Envelope spectral period pulse factor index 

Typically, determining the optimal filter length requires adaptive selection based on empirical 
or predefined metrics in a search iteration method. Therefore, in selecting the appropriate filter 
length, suitable metrics need to be identified for adaptive selection. 

Zhang et al. [22]. proposed a new indicator Crest factor of envelope spectrum (EC), which is 
defined as the ratio of the maximum value of the envelope spectrum to the effective value, and 
illustrated its superiority. Liu et al. [24]. used this indicator for the optimization of CYCBD 
parameters based on the particle swarm algorithm. However, this index only takes into account 
the peak characteristics of the signal and does not take into account the periodic pulse component, 
which cannot reflect the periodicity of the signal, while the rolling bearing fault signal is periodic. 

In view of the problem of applying this indicator to rolling bearing fault signals, the EC 
indicator is improved to propose the EPPF indicator, which is defined as the ratio of the effective 
value of the pulse of the first n envelope spectral cycles to the effective value of the envelope 
spectrum. The mathematical expression is as follows: 

𝑋ாா௉ி = [𝐴(𝑓)௡]ோெௌ 𝑒ோெௌ , (17)

where, 𝑛 is the number of cycle pulses corresponding to the maximum peak of the envelope 
spectrum, [𝐴(𝑓)௡]ோெௌ  is the root mean square of the first n cycle pulses, and 𝑒ோெௌ is the root 
mean square value of the envelope spectrum. This index can better reflect the rolling bearing fault 
signal periodicity. 𝑋ாா௉ி  is a dimensionless index, the larger its value, the better the signal 
periodicity. 

Considering that the filter length is too large, the computation time becomes longer, and the 
filter length is too small to effectively perform noise reduction. The step search method is used to 
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find the optimization with EPPF as the index, and to prevent the filter length from increasing while 
the index change is not obvious, resulting in the algorithm time becoming longer, the efficiency 
threshold 𝐷 and the maximum filter range are introduced. 

3. ACMD-ICYCBD algorithmic design 

Based on the above method, to improve the accuracy and efficiency of fault information 
extraction in a strong background noise environment proposed, ACMD combined with the 
improved CYCBD method, firstly, the original signal is decomposed by using ACMD to obtain 
multiple 𝑀 components, and then the optimal components are adaptively selected by using the 
proposed principle of maximizing the correlation Gini coefficient index, and after that, the cyclic 
frequency is estimated for the optimal components by using the enhanced energy harmonic 
product spectra The estimated cyclic frequency set is input into the CYCBD algorithm, and the 
initial filter length 𝐿଴, the step size 𝐿, and the efficiency threshold 𝐷 are set to adaptively 
determine the filter length using the envelope cycle impulse factor as an indicator. Through the 
improved CYCBD to the optimal component of the second noise reduction, the deconvolution of 
the signal after the Hilbert transform to get the envelope spectrum, extract the fault characteristics, 
and analyze the location of the fault occurred. The flowchart of the diagnosis method is shown in 
Fig. 1. 

 
Fig. 1. Bearing diagnosis flow chart 

4. Simulation verification 

To construct a fault simulation signal for algorithm validation that contains the periodic shock 
components 𝑥(𝑡) generated by rolling bearing faults, as well as harmonic signals 𝐵(𝑡) random 
noise 𝑛(𝑡), and other interference components, the simulation signal can be expressed as follows: 

ቐ𝑦(𝑡) = 𝑥(𝑡) + 𝐵(𝑡) + 𝑛(𝑡),𝑥(𝑡) = 𝑥଴𝑒ିଶగ఍௙೙௧sin2𝜋𝑓௡ඥ1 − 𝜁ଶ𝑡,𝐵(𝑡) = 0.5cos(2𝜋𝑓௠𝑡 + 𝜋/2),  (18)
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where, the fault period 𝑇 = 1/120 s, then the fault frequency is 𝑓௜ = 120 Hz, damping coefficient 𝜁 = 0.1, displacement constant 𝑥଴ = 1, sampling frequency 𝑓௦ = 12000 Hz, the bearing intrinsic 
frequency 𝑓௡ = 3000 Hz, the harmonic frequency 𝑓௠ = 88 Hz, the number of sampling points  𝑀 = 12000. To emphasize the noise interference, set the signal-to-noise ratio to –15 dB. 

From the time-domain waveform and envelope spectrum of the simulated signal in Fig. 2, it 
can be seen that the time-domain waveform is unable to recognize the impact component of the 
bearing fault, and there is also strong interference in the envelope spectrum, which is unable to 
distinguish the fault information. 

   
a) Time domain waveform 

 
b) Envelope spectrum 

Fig. 2. Simulated signal 

To investigate the effect of CYCBD in extracting fault features at different fault feature 
frequencies and filter lengths, while considering the error range between the theoretical fault 
feature frequency and the actual fault feature frequency, the fault feature frequencies are set to be 
118.8 Hz, 119.4 Hz, 120 Hz, 120.6 Hz, and 121.2 Hz, respectively, and the filter lengths are in the 
range of [50, 500], which are input into CYCBD for deconvolution. Every 50 steps the filter length 
is input into CYCBD for deconvolution. To better reflect the noise reduction ability after 
deconvolution, the peak signal-to-noise ratio is used as a measure of the signal after noise 
reduction, and the peak signal-to-noise ratio is defined as: 

𝑃𝑆𝑁𝑅 = [𝐴(𝑓)]௠௔௫𝑁(𝑓) , (19)

where [𝐴(𝑓)]௠௔௫ is the maximum peak of the signal envelope spectrum and 𝑁(𝑓) is the average 
noise value around the maximum peak. 

From Fig. 3, it can be concluded that the input exact input fault frequency parameter greatly 
affects the noise reduction capability of CYCBD at the same filter length, and at the same input 
fault frequency, the filter length likewise has an impact. 

In view of the above situation, it is proposed to improve the CYCBD method by using the 
enhanced energy harmonic product spectrum to estimate the cyclic frequency set and searching 
the filtering length with the envelope cycle pulse factor as the index step. According to Fig. 2, it 
can be seen that the fault characteristic information is seriously interfered with by the background 
noise, and to ensure the accuracy of the cycle frequency estimation, the ACMD algorithm is 
introduced to pre-process the signal for noise reduction. 

Firstly, after decomposing the simulated signal into a series of modal components using the 
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ACMD algorithm, the optimal components are selected based on the principle of the maximum 
correlation Gini coefficient to complete the noise reduction preprocessing. The values of the 
correlation Gini coefficient indexes of the decomposition of the 10 components in the ACMD are 
shown in Table 1, and the maximum correlation Gini coefficient 𝑆஼ீூ is 0.4429, and the optimal 
components are shown in Fig. 4, which shows that some of the noises in the signal have been 
suppressed, but the interference part is still more, and the characteristic part is still more. disturbed 
part is still more, the feature extraction effect is not good. 

 
Fig. 3. Effect of input parameters on CYCBD 

Table 1. 𝑆஼ீூ values of ACMD modal components of simulated signals 
Modal component number 𝑆஼ீூ Modal component number 𝑆஼ீூ 

1 0.4429 6 0.4317 
2 0.4266 7 0.4173 
3 0.3890 8 0.3829 
4 0.4298 9 0.3829 
5 0.4331 10 0.4237 

 

 
a) Time domain waveform 

 
b) Envelope spectrum 

Fig. 4. The optimal component of the simulated signal ACMD 

To prove the superiority of the ACMD method, VMD decomposition of the emulated signal is 
carried out to ensure that the number of components decomposed by VMD is the same as that 
decomposed by ACMD. The values of the correlation Gini coefficient indexes of the 10 
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components decomposed in VMD are shown in Table 2, and the maximum 𝑆஼ீூ is 0.4432. The 
optical components are selected by the principle of the maximum correlation Gini coefficient, as 
shown in Fig. 5. Compared with Fig. 4, it can be seen that the heterodyne component is more 
pronounced in the optimal component envelope spectrum of the VMD decomposition, although it 
also reduces some of the noise effects. In the benchmark speed of 3.10 GHz, 12-core CPU, 
memory 16 GB computer, the MATLAB R2022a environment, the ACMD algorithm time is 
3.45 seconds, and the VMD algorithm time is 15.32 seconds. And the ACMD algorithm does not 
need a priori modal components, the comprehensive analysis shows that the ACMD 
decomposition has obvious superiority. 

Table 2. 𝑆஼ீூ values of VMD modal components of simulated signals 
Modal component number 𝑆஼ீூ  Modal component number 𝑆஼ீூ 

1 0.4129 6 0.4067 
2 0.4369 7 0.4397 
3 0.4424 8 0.4347 
4 0.4385 9 0.4392 
5 0.4432 10 0.4402 

 

 
a) Time domain waveform 

 
b) Envelope spectrum 

Fig. 5. The optimal component of the simulated signal VMD 

To prove the feasibility of ACMD-ICYCBD, the fundamental frequency is extracted using 
EEHPS for the optimal component, and to avoid k is chosen too large, which affects the accuracy, 
and too small to reflect the periodicity, k is finally chosen to be 5, and the cyclic frequency set is 
estimated. As shown in Fig. 6.  

 
Fig. 6. Simulated signal enhancement energy harmonic product spectrum 

According to the enhanced energy harmonic product spectrum, the cyclic frequency set is set 
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to [120, 240, 360...12000] adaptively, and after obtaining the cyclic frequency set, the initial filter 
length 𝐿଴ is set to 100, the step size 𝐿 is set to 100, the efficiency threshold 𝐷 is set to 0.2, and the 
maximal filter length is set to 700. the EPPF metrics are used as the objective function, and the n 
is selected to be consistent with the enhanced energy harmonic product spectrum 𝑘. Energy 
Harmonic Product Spectrum k is kept consistent, and the result is shown in Fig. 7(a), and the filter 
length output result is 400. 

  
a) Variation of EPPF index of simulated signal 

 
b) Time domain waveform 

 
c) Envelope spectrum 

Fig. 7. Simulated signal ACMD-ICYCBD method 

Fig. 7(b) shows that the periodic fault shock is obvious after ACMD-ICYCBD processes the 
simulated signal. As can be seen from Fig. 7(c), the envelope spectrum appears to have very 
distinct fault frequencies and their multiplicative frequencies. The comparison shows better results 
compared to the single ACMD algorithm processing. It also confirms that EEHPS can accurately 
estimate the cyclic frequency set after ACMD noise reduction. Comparison with Fig. 2(b) 
envelope spectrum shows that the ACMD-ICYCBD method is able to extract fault features in a 
strong background noise environment. 

The ACMD-ICYCBD algorithm is adaptive to get the final filtering result without human 
intervention after inputting the signal. The overall algorithm duration is 45.42 seconds in a 
MATLAB R2022a environment on a computer with a benchmark speed of 3.10 GHz, a 12-core 
CPU, and 16 GB of RAM. 

5. Experimental verification 

In order to further verify the effectiveness and superiority of the actual acquired signals using 
the method of this paper. Rolling bearing test data were used for further analysis [25]. The 
experimental test platform is shown in Fig. 8, The platform consists of AC motors, motor speed 
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controllers, rotating shafts, support bearings, hydraulic loading systems and test bearings to carry 
out accelerated tests of rolling bearings and to obtain cycle monitoring data of test bearings. and 
the specific parameters of the bearing are shown in Table 3. 

 
Fig. 8. Experimental test platform 

Table 3. LDK UER204 bearing parameters 
Parameters Numerical value 

Inner ring diameter / mm 29.30 
Outer ring diameter / mm 39.80 

Bearing center diameter / mm 34.55 
Basic dynamic load rating / N 12820 

Ball diameter / mm 7.92 
Number of balls / pcs 8 

Basic rated static load / kN 6.65 
Contact angle / (°) 0 

 

 
a) Time domain waveform 

 
b) Envelope spectrum 
Fig. 9. Sampled signal 

The sampling frequency of the test is 25.6 kHz, and the rotational speed is 2100 r/min. The 
sampled signals in the horizontal direction of the first group of outer ring faults of Bearing1_1 are 
analyzed. According to the fault frequency formula and parameter calculation, the theoretical fault 
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frequency is 107.9 Hz. 25600 points are selected as the experimental sampling signals to ensure 
the effect of deconvolution and the time-domain waveforms and envelope spectra of the sampled 
signals are shown in Fig. 9. 

Table 4. 𝑆஼ீூ values of ACMD modal components of sampled signals 
Modal component number 𝑆஼ீூ  Modal component number 𝑆஼ீூ 

1 0.5080 7 0.4072 
2 0.3180 8 0.3451 
3 0.4379 9 0.3126 
4 0.3827 10 0.3239 
5 0.4422 11 0.2929 
6 0.4294 12 0.4346 

 
Fig. 10. ACMD partially decomposed component time domain waveforms 

As can be seen from the envelope spectrum of the sampled signal in Fig. 9(b), although the 
fault frequency 𝑓௜ can be observed, it will be affected by the transfer frequency 𝑓௥ and the noise 
influence fault frequency can’t be fully recognized. To further verify the effectiveness of this 
method, the sampled signal is processed using the method proposed in this paper. Firstly, the 
signal is decomposed by ACMD, and the tolerance level parameter of the loop iteration within 
ACMD is 10-8, and the algorithm is stopped when the residual energy is less than 3 % of the 
original signal energy, and finally, 12 modal components are obtained. As shown in Table 4, the 
maximum correlation Gini coefficient is 0.5080, and the first 8 modal components, for example, 
are shown in Fig. 10, where M1 is the optimal component. 

The optimal component time-domain waveforms and envelope spectra, as shown in Fig. 11. 
Compared with Fig. 9, it can be seen that the random interference component is significantly 
reduced, but there is still interference. 

The optimal component signals are further processed to estimate the loop set using the 
enhanced energy harmonic product spectrum, as shown in Fig. 12. 

According to the enhanced energy harmonic product spectrum, the cyclic frequency set is set 
to [108, 216,324...10800] adaptively, and after obtaining the cyclic frequency set, the initial filter 
length 𝐿଴ is set to 100, the step size 𝐿 is set to 100, and the efficiency threshold 𝐷 is set to 0.2. 
The maximum filter length is 700, and the EPPF index and EC index are adopted as the objective 
functions, where the EPPF index 𝑛 is selected to be consistent with the enhanced energy harmonic 
product spectrum 𝑘. The results are shown in Fig. 13. The maximum filter length is 700. The 
EPPF index and EC index are used as the objective function, where the EPPF index 𝑛 is selected 
to be consistent with the enhanced energy harmonic product spectrum 𝑘. The results are shown in 
Fig. 13, and the actual filter length of the EPPF index is output to be 500, and the actual filter 
length of the EC index is 100. ACMD-ICYCBD method in MATLAB R2022a environment on a 
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computer with a benchmark speed of 3.10 GHz, 12-core CPU, and 16 GB of RAM. The overall 
algorithm duration is 183.46 seconds. 

 
a) Time domain waveform 

 
b) Envelope spectrum 

Fig. 11. The optimal component of the Sampled signal ACMD 

 
Fig. 12. Enhanced energy harmonic product spectrum of the sampled signal 

 
a) Variation plot based on EPPF metrics 

 
d) Variation plot based on EC metrics 

 
b) Time domain waveform based on EPPF metrics 

 
e) Time domain waveform based on EC metrics 

 
c) Envelope spectrum based on EPPF metrics 

 
f) Envelope spectrum based on EC metrics 

Fig. 13. Sampled signal ACMD-ICYCBD method 
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From Fig. 13(b), it can be seen that the fault impact components can be clearly observed from 
the time domain waveforms after the processing of the proposed method in this paper, and in 
Fig. 13(c), it can be seen that the fault frequencies can all be recognized. Compared with 
Fig. 11(b), it can be seen that the method in this paper is able to reduce the noise effect and extract 
the weak fault frequency. 

Comparing Fig. 13(c) and 13(f), it can be seen that based on the EC indicator, only part of the 
fault characteristic information can be recognized, and it can be understood that the EC indicator 
only takes into account the peak variation of the signal, and cannot take into account the 
periodicity of the signal. On the other hand, the EPPF index can recognize the periodic change of 
the signal and avoid the situation that the single peak is too large. Comprehensive analysis shows 
that the EPPF indicator is more effective in reflecting periodic faults. 

To further reflect the superiority of the method in this paper, the sampled signals are processed 
by the MCKD algorithm and MCKD alone after reconstruction based on ACMD decomposition, 
respectively, for comparison. The filter length parameter is selected as 500, which is consistent 
with the optimized EPPF index, and the fault period is selected to be consistent with the fault 
frequency estimated by the enhanced energy harmonic product spectrum. Its time domain 
waveform and envelope spectrum are shown in Fig. 14. 

 
a) ACMD-MCKD time domain waveform 

 
c) MCKD time domain waveform 

 
b) ACMD-MCKD envelope spectrum 

 
d) MCKD envelope spectrum 

Fig. 14. ACMD-MCKD method and MCKD method 

Comparing Fig. 14(a-c) and Fig. 13(b) time domain waveforms, it can be found that the 
MCKD-based method can only extract the local limited fault feature information, while the 
method in this paper can extract the continuous periodic fault feature information. The time 
domain analysis shows that the periodic fault impact of this method paper is more obvious. 
Comparing the envelope spectra in Fig. 14(b) and Fig. 13(c), it can be found that the fault 
frequency of the proposed method can be recognized, while the ACMD-MCKD method can 
recognize part of the fault frequency, and the 9-fold frequency can't be recognized, and the noise 
amplitude is larger. Spectrum analysis shows that the method in this paper has less interference, 
which is conducive to fault feature extraction. Comparison of Fig. 14(b) and Fig. 14(d) envelope 
spectrum can be found, the separate MCKD method by the noise interference is serious, can only 
identify part of the fault frequency, 4 times the frequency, 5 times the frequency, 7 times the 
frequency, 8 times the frequency all can’t be identified, through the spectral analysis can be seen 
that the decomposition of the ACMD can be reconfigured to reduce the influence of the noise, 
improve the effect of fault information extraction. Comprehensive analysis shows that 
ACMD-ICYCBD has obvious superiority.  

To show the efficiency of the present sub-method, the sparrow search optimization algorithm 
in the literature 9 is now used to improve the CYCBD, due to the sparrow search optimization 
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algorithm seeking the minimum objective, the negative of the envelope cycle pulse factor is used 
as the objective function. To take into account the computation time during the iteration, the length 
of the signal should not be too long, the first 5000 points are selected as the iterative optimization 
signal, and the optimized parameter condition is selected, the search range of the cyclic frequency 𝛼 is set to (103, 113), and the search range of the filter length 𝐿 is set to (100, 700). The final 
optimal parameter cycle frequency 𝛼 is 108 and the filter length is 339 as shown in Fig. 15. 

SSA-CYCBD method in a benchmark speed of 3.10 GHz, 12 core CPU, 16 GB memory 
computer, MATLAB R2022a environment. The overall algorithm time reaches 2132.36 seconds. 
Compared to the method in this paper, 183.46 seconds is too long. It is known that the computation 
time of CYCBD using the optimization algorithm is too long and too inefficient for engineering 
practice compared to the method proposed in this paper. Meanwhile, according to the iterative 
graph in Fig. 15(a), it is known that if the number of iterations is not enough, it will fall into the 
local optimum. According to the comparison of Fig. 13(c) and 15(c), it can be seen that 
SSA-CYCBD can observe the fault frequency, but part of the multiplicative frequency is still 
disturbed, which is not as obvious as the method proposed in this paper. 

 
a) SSA-CYCBD iteration diagrams 

 
b) SSA-CYCBD time domain waveform  

 

 
c) SSA-CYCBD envelope spectrum 

Fig. 15. SSA-CYCBD method 

6. Conclusions 

Aiming at the rolling bearing fault features difficult to extract and efficiency problems under 
the strong background noise, this paper proposes the ACMD-ICYCBD method to extract fault 
features from rolling bearing signals, which is verified according to simulation and experimental 
data, and the conclusions are obtained as follows: 

1) Based on the correlation Gini coefficient ACMD method, it can extract better correlation 
components of fault components from the signal, reduce the influence of noise, and then improve 
the reliability of cyclic frequency estimation, compared with the VMD, the method does not need 
the number of a priori signal components and avoids the complexity of the parameters. 

2) The simulation signal verifies that CYCBD depends on the selection of parameters, and this 
paper overcomes the defect by improving the CYCBD algorithm and improves the effectiveness 
of the CYCBD method. It is demonstrated through simulation and experimental data that the 
Enhanced Energy Harmonic Product Spectrum (EEHPS) method is capable of estimating the 
cyclic frequency set quickly and accurately. Through experimental data, it is proved that the 
proposed EPPF index is more effective in reflecting cyclic faults than the EC index, and is more 
suitable for fault diagnosis of rotating machinery. 

3) Through simulation and experimental data, it is verified that the ACMD-ICYCBD 
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algorithm proposed in this paper can quickly and accurately extract fault information. Compared 
with the MCKD method, the method in this paper can better weaken the interference of 
heterodyne. Compared to the SSA-CYCBD method, the method in this paper is shorter and more 
efficient. 
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