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Abstract. For a moving mass-beam system, the critical velocity of the moving mass is a key 
parameter that relates to the vibration stability of the system. In fact, the critical velocity obtained 
by the commonly used assumed mode method (AMM) differs from the actual situation. In this 
study, an analytical procedure is introduced to determine the critical velocity and frequency of the 
moving mass-beam system. The influence of moving mass is considered in the modal functions 
of the beam, and the frequency equations of the system were obtained through the modal analysis 
method and Laplace transform. And beams with four types of boundary condition were analyzed, 
which are hinged-hinged (HH) beam, clamped-hinged (CH) beam, clamped-clamped (CC) beam, 
and cantilever (CF) beam. By solving the frequency equations, the vibration frequencies of the 
system can be obtained, and the critical velocity can be determined. The results of the proposed 
method were validated by the finite element method (FEM). Through some examples, it was found 
that the natural frequency and critical velocity obtained by AMM is relatively high. And the 
critical velocities of the same moving mass-beam system under different supporting conditions 
ranked in ascending order are as follows: 𝑣ுு ൏ 𝑣ு ൏ 𝑣ி ൏ 𝑣. It is also found that when the 
moving mass undergoes variable motion on a beam, the vibration frequency obtained with 
acceleration considered is higher than that obtained with acceleration neglected. The results of this 
article will be helpful for structural design and its dynamic analysis. 
Keywords: beam with moving mass, analytical determination, critical velocity, frequency. 

1. Introduction 

The concentrated mass and beam coupled vibration model is widely used in engineering, such 
as vehicles and bridges, bridge crane, liquids and pipelines, which can be simplified into this 
model for analysis. In recent years, due to the demand for engineering applications, the critical 
velocity and vibration stability of moving mass-beam systems have received increasing attention. 
Wu [1] used FEM to study the dynamic response of an inclined beam under moving load. It had 
been found that if the moving-load velocity is smaller than the critical velocity, then the larger the 
moving-load velocity, the larger the maximum vertical and horizontal displacements of the center 
point of the inclined beam. Nikkhoo [2] investigated the modal control of an Euler-Bernoulli beam 
under the excitation of moving mass and defined a “critical velocity” in terms of the fundamental 
period and span of the beam. Dehestani et al. [3] presented an analytical-numerical method to 
determine the dynamic response of beams carrying a moving mass with various boundary 
conditions, and they also introduced the critical influential velocities to analyze the moving mass 
problems. Dimitrovova [4] presented an analysis of the critical velocity of a load moving 
uniformly along a beam on a visco-elastic foundation composed of one or two sub-domains. 
Zarfam et al. [5] used the eigenfunction expansion method to study the effect of moving mass on 
the natural frequency of beam and a critical value of a so-called parameter “mass staying time” is 
presented to avoid dynamic instability of the system. Bashmal [6] investigated the dynamic 
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deflection of the beam subject to a continuously moving load analytically to predict the critical 
and cancellation velocities. The forced and free vibrations of axially functionally graded Rayleigh 
and Euler-Bernoulli beams subjected to a moving load are studied and compared by Ebrahimi-
Mamaghani et al. [7] The influence of various key factors such as axial material gradation and 
rotary inertia factor on the critical velocity were also analyzed. Wang et al. [8] studied the critical 
velocity problem of a Timoshenko beam on an elastic half-space under moving loads. Chen et al. 
[9] investigated the effect of the nonlinear terms arising from exact geometry on the dynamic 
response of the mass-beam-foundation system, and the case when the moving velocity of the point 
mass exceeds the critical velocity were also analyzed. Dimitrovova [10, 11] analyzed the critical 
velocity and instability issues of a two-layer model of the railway track under moving loads. 
Rezazadeh et al. [12] gave a review about bowed rotating system diagnosis and balancing 
approaches. And they pointed out that frequency analysis is an important means for the diagnosis 
of vibration systems.  

Literature research shows that in recent years, AMM, FEM, and the Galerkin truncation 
method (GTM) have been commonly used methods for studying the moving mass-beam problems. 
Shao et al. [13] employed the complex modal method, GTM and FEM to investigate the free 
vibration characteristics of fixed-fixed Timoshenko pipe conveying fluid, including natural 
frequency, mode, critical velocity, bifurcation of static equilibrium configuration. Deng et al. [14] 
studied the vibration characteristics of a supercritical fluid-conveying pipe with a retaining clip 
and the critical fluid velocity is acquired with GTM. Khiem et al. [15] analyzed a cracked FGM 
beam bonded with a piezoelectric layer as distributed sensor under moving load and used the 
frequency response for crack detection. Tan and Tang [16] studied the free vibration 
characteristics of the pipe with fixed-fixed ends non-linearly based on the Timoshenko beam 
theory, and the influences of system parameters on equilibrium configuration, critical velocity, 
and free vibration frequency was analyzed. Bouna and Nbendjo [17] investigated vibration control 
of a multi-span continuous beam bridge under moving mass using quasi-zero stiffness isolator. 
The nonlinear ordinary differential governing equations established by mode superposition 
method and the Galerkin method and solved by the method of multiple scales. Santos [18] 
introduced a novel finite element formulation for the dynamic analysis of Euler-Bernoulli beams 
subjected to moving loads. Sobhanirad and Hassani [19] proposed an efficient approach for 
obtaining the maximum acceleration with fewer calculations for multi-span beams with unequal 
spans under moving loads. The author [20] studied the dynamic characteristic of a space rotating 
flexible arm with moving mass, which can rotate around the fixed end in horizontal and vertical 
planes simultaneously. And the equations of the structure were derived by the Lagrange’s equation 
with AMM. 

Regarding to the critical velocity for moving mass-beam system, both Nikkhoo [2] and Zarfam 
et al. [5] provided consistent definitions, the velocity of the moving mass at which the fundamental 
frequency of the beam is zero. If the velocity of a certain moving mass exceeds the critical velocity, 
it could cause dynamic instability. In previous studies, AMM was the most commonly used 
method to solve the frequency of the moving mass-beam system, and then the critical velocity was 
obtained. Generally, the modal functions of beam without moving mass were considered in AMM 
for analysis. However, the modal functions of a system composed of beam and moving mass is 
different from that of a beam without moving mass. This leads to the fact that the critical velocity 
and frequency obtained by AMM are inconsistent with the actual situation. Therefore, it is 
necessary to use the modal functions of the actual moving mass-beam model to calculate the 
critical velocity and frequency. Furthermore, what are the differences in critical velocities of 
beams under different support conditions is also an extremely important problem. For example, 
when the boundary conditions of the beam are HH and CC respectively, in which case the critical 
velocity is higher, or they may be identical to each other. Making clear this problem will contribute 
to the design and improvement of the structure. However, no literature has been found to study 
this issue so far. 

The present study developed an analytical procedure to determine critical velocity and 
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frequencies for mass-beam system under four supporting conditions. The frequency equations of 
the system were derived through modal analysis method and Laplace transform. And the 
frequency and critical velocity were obtained by solving the frequency equation. Then, by 
comparing with the results of AMM and FEM, the results of this paper were verified. The critical 
velocities of the moving mass-beam system under different supporting conditions were 
investigated through several examples. Moreover, the influence of acceleration on natural 
frequency was discussed. Finally, many useful conclusions were achieved. 

2. Governing equations and boundary conditions 

Consider the problem of a moving mass travelling on a Euler-Bernoulli beam, the governing 
equation can be expressed as [3]: 

𝐸𝐼 𝜕ସ𝑤𝜕𝑥ସ + 𝑚ഥ 𝜕ଶ𝑤𝜕𝑡ଶ = 𝛿ሺ𝑥 − 𝐿ሻ𝑚ቆ𝑔 − 𝐷ଶ𝑤𝐷𝑡ଶ ቇ, (1)

where 𝐸 and 𝐼 are Young’s modulus and second moment of the cross section respectively, 𝑚ഥ  is 
the mass density per unit length of the beam, and 𝑚 is the mass of the moving mass.  𝐿 = 𝑣𝑡 + 0.5𝑣ሶ 𝑡ଶ indicates the position of the moving mass on the beam, 𝑣 and 𝑣ሶ  are the 
traveling velocity and acceleration of the moving mass respectively. 𝑤 is the displacement of the 
beam in the transverse direction, and: 𝐷ଶ𝑤𝐷𝑡ଶ = 𝑣ଶ 𝜕ଶ𝑤𝜕𝑥ଶ + 2𝑣 𝜕ଶ𝑤𝜕𝑥𝜕𝑡 + 𝑣ሶ 𝜕𝑤𝜕𝑥 + 𝜕ଶ𝑤𝜕𝑡ଶ . (2)

For a hinged-hinged (HH) beam, the boundary conditions are: 

𝑤|௫ୀ = 0,     𝐸𝐼 𝜕ଶ𝑤𝜕𝑥ଶ ቤ௫ୀ = 0,    𝑤|௫ୀ = 0,     𝐸𝐼 𝜕ଶ𝑤𝜕𝑥ଶ ቤ௫ୀ = 0, (3)

where 𝐿 is the length of the beam. If one end of the beam is clamped, and the other end is hinged 
(CH), the boundary conditions are: 

𝑤|௫ୀ = 0,     𝜕𝑤𝜕𝑥ฬ௫ୀ = 0,     𝑤|௫ୀ = 0,     𝐸𝐼 𝜕ଶ𝑤𝜕𝑥ଶ ቤ௫ୀ = 0. (4)

For clamped-clamped (CC) beam, the boundary conditions are: 

𝑤|௫ୀ = 0,     𝜕𝑤𝜕𝑥ฬ௫ୀ = 0,     𝑤|௫ୀ = 0,     𝜕𝑤𝜕𝑥ฬ௫ୀ = 0. (5)

And for cantilever (CF) beam, the boundary conditions are: 

𝑤|௫ୀ = 0,     𝜕𝑤𝜕𝑥ฬ௫ୀ = 0,     𝐸𝐼 𝜕ଶ𝑤𝜕𝑥ଶ ቤ௫ୀ = 0,     𝐸𝐼 𝜕ଷ𝑤𝜕𝑥ଷ ቤ௫ୀ = 0. (6)

3. Frequency equations 

The transverse displacement of the beam 𝑤 can be expressed in terms of the generalized 
coordinate 𝑞ሺ𝑡ሻ and displacement shape function Φሺ𝑥ሻ: 
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𝑤 = Φሺ𝑥ሻ𝑞ሺ𝑡ሻ. (7)

Substituting Eq. (2) and Eq. (7) into Eq. (1), we will get: 𝐸𝐼 ⋅ Φᇱᇱᇱᇱሺ𝑥ሻ𝑞ሺ𝑡ሻ + 𝑚ഥΦሺ𝑥ሻ𝑞ሷ ሺ𝑡ሻ + 𝑚𝛿ሺ𝑥 − 𝐿ሻሾ𝑣ଶΦᇱᇱሺ𝑥ሻ𝑞ሺ𝑡ሻ       +2𝑣Φ′(𝑥)𝑞ሶ(𝑡) + 𝑣ሶΦ′(𝑥)𝑞(𝑡) + Φ(𝑥)𝑞ሷ(𝑡)ሿ = 𝛿(𝑥 − 𝐿) ⋅ 𝑚𝑔. (8)

In order to analyze the natural frequency 𝜔 of the system, an undamped vibration system is 
considered. Hence, Eq. (8) can be transformed into the following two equations: 𝑞ሷ(𝑡) + 𝜔ଶ𝑞(𝑡) = 0, (9)𝐸𝐼Φ′′′′(𝑥) + 𝑚𝛿(𝑥 − 𝐿)ሾ𝑣ଶΦᇱᇱ(𝑥) + 𝑣ሶΦᇱ(𝑥)ሿ − 𝜔ଶሾ𝑚ഥ + 𝑚𝛿(𝑥 − 𝐿)ሿΦ(𝑥) = 0. (10)

Perform Laplace transform on Eq. (10), we have: 𝐹(𝑠) = 1𝑠ସ − 𝑘ସ ሾ𝑠ଷΦ(0) + 𝑠ଶΦᇱ(0) + 𝑠Φᇱᇱ(0) + Φᇱᇱᇱ(0)ሿ       + 𝑚𝐸𝐼 𝑒ି௦𝑠ସ − 𝑘ସ ሾ𝜔ଶΦ(𝐿) − 𝑣ଶΦ′′(𝐿) − 𝑣ሶΦ′(𝐿)ሿ, (11)

where 𝐹(𝑠) is the Laplacian transformation function of Φ(𝑥), 𝑘 is the eigenvalue, and: 

𝑘ସ = 𝑚ഥ𝜔ଶ𝐸𝐼 . (12)

Next, we will consider the frequency equations of the system under four different boundary 
conditions. 

Hinged-hinged (HH) beam: 
Substituting Eq. (7) into Eq. (3), the boundary conditions of hinged-hinged beam become: Φ(0) = 0,     Φ′′(0) = 0,     Φ(𝐿) = 0,     Φ′′(𝐿) = 0. (13)

Then substituting the first two terms of Eq. (13) into Eq. (11) yields: 

𝐹(𝑠) = 𝑠ଶ𝑠ସ − 𝑘ସ Φᇱ(0) + 1𝑠ସ − 𝑘ସ Φᇱᇱᇱ(0)       + 𝑚𝐸𝐼 ሾ𝜔ଶΦ(𝐿) − 𝑣ଶΦ′′(𝐿) − 𝑣ሶΦ′(𝐿)ሿ 𝑒ି௦𝑠ସ − 𝑘ସ. (14)

Perform inverse Laplace transform on the above equation, we will obtain: Φ(𝑥) = 12𝑘 (sinh𝑘𝑥 + sin𝑘𝑥)Φᇱ(0) + 12𝑘ଷ (sinh𝑘𝑥 − sin𝑘𝑥)       × Φᇱᇱᇱ(0) + 𝑚2𝐸𝐼𝑘ଷ ሾ𝜔ଶΦ(𝐿) − 𝑣ଶΦᇱᇱ(𝐿) − 𝑣ሶΦᇱ(𝐿)ሿ       × 𝑈(𝑥 − 𝐿)ሾsinh𝑘(𝑥 − 𝐿) − sin𝑘(𝑥 − 𝐿)ሿ, (15)

where 𝑈(𝑥 − 𝐿) represents the unit step function, and Φ′(0), Φ′′′(0), Φ(𝐿), Φ′(𝐿), Φ′′(𝐿) are five undetermined unknowns. Substituting 𝑥 = 𝐿 into Eq. (15) and its first-order 
and second-order derivative equations with respect to 𝑥 respectively, yields: 12𝑘 (sinh𝑘𝐿 + sin𝑘𝐿)Φ′(0) + 12𝑘ଷ (sinh𝑘𝐿 − sin𝑘𝐿)Φ′′′(0) −Φ(𝐿) = 0, (16)



ANALYTICAL DETERMINATION OF CRITICAL VELOCITY AND FREQUENCIES OF BEAM WITH MOVING MASS UNDER DIFFERENT SUPPORTING 
CONDITIONS. LIANG ZHAO, SHUN-LI WANG 

1018 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460  

12 (cosh𝑘𝐿 + cos𝑘𝐿)Φ′(0) + 12𝑘ଶ (cosh𝑘𝐿 − cos𝑘𝐿)Φ′′′(0) −Φ′(𝐿) = 0, (17)𝑘2 (sinh𝑘𝐿 − sin𝑘𝐿)Φ′(0) + 12𝑘 (sinh𝑘𝐿 + sin𝑘𝐿)Φ′′′(0) −Φ′′(𝐿) = 0. (18)

Considering the last two boundary conditions of Eq. (13), Eq. (15) transformed into the 
following two equations: 12𝑘 (sinh𝑘𝐿 + sin𝑘𝐿)Φ′(0) + 12𝑘ଷ (sinh𝑘𝐿 − sin𝑘𝐿)Φ′′′(0)+ 𝑚2𝐸𝐼𝑘ଷ ሾsinh𝑘(𝐿 − 𝐿) − sin𝑘(𝐿 − 𝐿)ሿ       × ሾ𝜔ଶΦ(𝐿) − 𝑣ሶΦ′(𝐿) − 𝑣ଶΦ′′(𝐿)ሿ = 0, (19)

𝑘2 (sinh𝑘𝐿 − sin𝑘𝐿)Φ′(0) + 12𝑘 (sinh𝑘𝐿 + sin𝑘𝐿)Φ′′′(0)+ 𝑚2𝐸𝐼𝑘 ሾsinh𝑘(𝐿 − 𝐿) + sin𝑘(𝐿 − 𝐿)ሿ       × ሾ𝜔ଶΦ(𝐿) − 𝑣ሶΦ′(𝐿) − 𝑣ଶΦ′′(𝐿)ሿ = 0. (20)

Eq. (16)-Eq. (20) form a homogeneous linear system of equations with respect to the five 
undetermined unknowns mentioned above. To make the system of equations have untrivial 
solutions, the value of the coefficient determinant must be zero. So, we have: 

⎣⎢⎢
⎢⎢⎡𝑘

ଶሾsinh(𝑘𝐿) + sin(𝑘𝐿)ሿ sinh(𝑘𝐿) − sin(𝑘𝐿)𝑘ଶሾcosh(𝑘𝐿) + cos(𝑘𝐿)ሿ cosh(𝑘𝐿) − cos(𝑘𝐿)𝑘ଶሾsinh(𝑘𝐿) − sin(𝑘𝐿)ሿ sinh(𝑘𝐿) + sin(𝑘𝐿)𝑘ଶሾsinh(𝑘𝐿) + sin(𝑘𝐿)ሿ sinh(𝑘𝐿) − sin(𝑘𝐿)𝑘ଶሾsinh(𝑘𝐿) − sin(𝑘𝐿)ሿ sinh(𝑘𝐿) + sin(𝑘𝐿)  
      −2𝑘ଷ 00 −2𝑘ଶ0 0𝐷ሾsinh(𝑘𝐿 − 𝑘𝐿) − sin(𝑘𝐿 − 𝑘𝐿)ሿ −𝑉௧ሾsinh(𝑘𝐿 − 𝑘𝐿) − sin(𝑘𝐿 − 𝑘𝐿)ሿ𝐷ሾsinh(𝑘𝐿 − 𝑘𝐿) + sin(𝑘𝐿 − 𝑘𝐿)ሿ −𝑉௧ሾsinh(𝑘𝐿 − 𝑘𝐿) + sin(𝑘𝐿 − 𝑘𝐿)ሿ 
       002𝑘−𝑉ሾsinh(𝑘𝐿 − 𝑘𝐿) − sin(𝑘𝐿 − 𝑘𝐿)ሿ−𝑉ሾsinh(𝑘𝐿 − 𝑘𝐿) + sin(𝑘𝐿 − 𝑘𝐿)ሿ⎦⎥⎥

⎥⎤ = 0, 
(21)

where 𝐷 = 𝑚𝜔ଶ/𝐸𝐼, 𝑉௧ = 𝑚𝑣ሶ/𝐸𝐼 and 𝑉 = 𝑚𝑣ଶ/𝐸𝐼. After some mathematical manipulations, 
the frequency equation is obtained as follows: 

sinℎ 𝜉 sin 𝜉 + 𝑟𝜉2 ሾsinℎ( 𝜉 − 𝜂) sinℎ 𝜂 sin 𝜉 − sinℎ 𝜉 sin( 𝜉 − 𝜂) sin 𝜂ሿ       − 𝑒2𝜉 ሾsinh(𝜉 − 𝜂) sinh𝜂sin𝜉 + sinh𝜉 sin(𝜉 − 𝜂) sin𝜂ሿ       + 𝑎2𝜉ଶ ሾsinh𝜉sin(𝜉 − 𝜂)cos𝜂 − sinh(𝜉 − 𝜂)cosh𝜂sin(𝜉)ሿ = 0, (22)

where 𝜉 = 𝑘𝐿, 𝜂 = 𝑘𝐿, 𝑟 = 𝑚 𝑚ഥ𝐿⁄ , 𝑒 = 𝑚𝑣ଶ𝐿 𝐸𝐼⁄ , 𝑎 = 𝑚𝑣ሶ𝐿ଶ 𝐸𝐼⁄ . 
After the same mathematical manipulations, the frequency equations of beams with other 

boundary conditions can be obtained.  



ANALYTICAL DETERMINATION OF CRITICAL VELOCITY AND FREQUENCIES OF BEAM WITH MOVING MASS UNDER DIFFERENT SUPPORTING 
CONDITIONS. LIANG ZHAO, SHUN-LI WANG 

 JOURNAL OF VIBROENGINEERING. AUGUST 2024, VOLUME 26, ISSUE 5 1019 

Clamped-hinged (CH) beam: 

sinh𝜉cos𝜉 − cosh𝜉sin𝜉 − 𝑟𝜉4 ሾ2sinh𝜉sin𝜉 + cosh(𝜉 − 2𝜂) cos𝜉       −cosh𝜉 cos(𝜉 − 2𝜂) + sinh𝜉 sin(𝜉 − 2𝜂) + sinh(𝜉 − 2𝜂) sin𝜉       −4 sinh(𝜉 − 𝜂) sin(𝜉 − 𝜂)ሿ + 𝑒4𝜉 ሾcosh(𝜉 − 2𝜂) cos𝜉       + sinh(𝜉 − 2𝜂) sin𝜉 − sinh𝜉 sin(𝜉 − 2𝜂) + cosh𝜉 cos(𝜉 − 2𝜂)       −2cosh𝜉cos𝜉ሿ + 𝑎4𝜉ଶ ሾ2 cosh(𝜉 − 𝜂) sin(𝜉 − 𝜂) + 2 sinh(𝜉 − 𝜂)       × cos(𝜉 − 𝜂) − cosh(𝜉) sin(𝜉 − 2𝜂) − sinh(𝜉 − 2𝜂) cos(𝜉)       −cosh(𝜉 − 2𝜂)sin(𝜉)− sinh(𝜉) cos(𝜉 − 2𝜂)ሿ = 0. 
(23)

Clamped- clamped (CC) beam: 

1 − cosh𝜉cos𝜉 − 𝑟𝜉4 ሾsinh𝜉cos𝜉 − cosh𝜉sin𝜉 − 2sinh𝜂cos𝜂       +2cosh𝜂sin𝜂 + sinh𝜉 cos(𝜉 − 2𝜂) − cosh(𝜉 − 2𝜂) sin𝜉       −2 sinh(𝜉 − 𝜂) cos(𝜉 − 𝜂) +2 cosh(𝜉 − 𝜂) sin(𝜉 − 𝜂)ሿ       + 𝑒4𝜉 ሾsinh𝜉cos𝜉 + cosh𝜉sin𝜉 − sinh𝜉 cos(𝜉 − 2𝜂)       − cosh(𝜉 − 2𝜂) sin𝜉ሿ + 𝑎4𝜉ଶ ሾsinh𝜉 sin(𝜉 − 2𝜂) + sinh(𝜉 − 2𝜂)       × sin(𝜉) − 2sinh(𝜉 − 𝜂)sin(𝜉 − 𝜂)+2 sinh(𝜂) sin(𝜂)ሿ = 0. 
(24)

Cantilever (CF) beam: 

1 + cosh𝜉cos𝜉 + 𝑟𝜉4 ሾsinh𝜉cos𝜉 − cosh𝜉sin𝜉 + 2sinh𝜂cos𝜂       −2cosh𝜂sin𝜂 + sinh𝜉 cos(𝜉 − 2𝜂) − cosh(𝜉 − 2𝜂) sin𝜉       −2 sinh(𝜉 − 𝜂) cos(𝜉 − 𝜂) + 2 cosh(𝜉 − 𝜂) sin(𝜉 − 𝜂)ሿ       − 𝑒4𝜉 ሾsinh𝜉cos𝜉 + cosh𝜉sin𝜉 − sinh𝜉 cos(𝜉 − 2𝜂)       − cosh(𝜉 − 2𝜂) sin𝜉ሿ + 𝑎4𝜉ଶ ሾ2 sinh(𝜉 − 𝜂) sin(𝜉 − 𝜂)       +2sinh(𝜂)sin(𝜂) − sinh(𝜉)sin(𝜉 − 2𝜂)− sinh(𝜉 − 2𝜂) sin(𝜉)ሿ = 0. 
(25)

4. The critical velocity and vibration stability 

In the system composed of a moving mass and a beam, when the velocity of the moving mass 
reaches a certain determined value, the vibration frequency of the system will tend to zero, and 
the vibration will be in an unstable state. This velocity is called the critical velocity [5], and the 
system is in the critical state. Besides, frequency analysis is an important means for the diagnosis 
of vibration system [12]. Researchers [2, 5] studied the vibration frequency of hinged-hinged beam 
under moving mass using AMM, in which, the modal functions of beam without moving mass 
were used to solve the natural frequency of the moving mass-beam system. And the critical 
velocity was given as: 

𝑣ுு = ඨ𝜋ଶ𝐸𝐼2𝑚𝐿 . (26)

However, these studies did not consider that the modal functions of a system composed of 
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moving mass and beam is different from that of a beam without moving mass. And the critical 
velocities and natural frequencies in the two situations must also be different. 

Next, some numerical examples are used to clarify this problem. The material of the beam is 
steel, which 𝐸 = 209 GPa, 𝑚ഥ = 3.12 kg/m, 𝐿 = 10 m, 𝐼 = 1×10-8 m4. The frequency equations 
Eq. (22)-Eq. (25) are solved using the Newton iteration method to obtain the eigenvalues 𝑘, and 
then the natural frequencies can be obtained using Eq. (12). 

Fig. 1 shows the first-order natural frequencies of a hinged-hinged beam obtained using the 
method proposed in this paper, AMM and the finite element method [1] (FEM). The instantaneous 
overall mass matrix 𝑀(𝑡) and stiffness matrix 𝐾(𝑡) can be determined by FEM. And then the 
frequency 𝜔 can be calculated by 𝐾(𝑡) −𝜔ேଶ𝑀(𝑡) = 0. in This Calculation, the Mass is  𝑀 = 2 kg and the Velocity is 𝑉 = 10 m/S. It Can Be Observed That the Results Obtained by the 
Proposed Method Are Significantly Different from Those Obtained by AMM. And with the 
increase of the element number, the results of FEM are gradually close to that of the proposed 
method. The results when the moving mass is 𝑚 = 1 kg and 𝑚 = 2 kg respectively are depicted 
in Fig. 2. It can be seen that the results obtained by AMM are higher than that of present study. 
And the larger the moving mass, the greater the difference in results between the two methods. 

 
Fig. 1. Comparison of first-order natural frequencies of hinged-hinged beam  

with moving mass using different methods when 𝑣 = 10 m/s 

 
Fig. 2. Comparison of first-order natural frequencies of hinged-hinged beam  

with moving mass using different methods for 𝑣 = 10 m/s, 𝑚 = 1 kg and 2 kg respectively 

Fig. 3 shows the first-order frequencies of hinged-hinged beam when the moving mass moves 
at different velocities, and 𝑚 = 1 kg is considered. It can be seen that the first-order natural 
frequency 𝜔ଵ of the system decreases as the velocity of the moving mass increases. At this point, 
the results of the proposed method and AMM are consistent. According to Eq. (26), when the 
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velocity of the moving mass reaches a value of 35.12 m/s, the value of 𝜔ଵ obtained by AMM is 
zero, and the vibration system begins to enter an unstable state. As can be seen from Fig. 3, this 
occurs when the moving mass moves to the midpoint of the beam. Therefore, the critical velocity 
is 35.12 m/s. However, we can also see from Fig.3 that when the moving mass moves at a velocity 
of 29 m/s and arrives at the middle of the beam, the value of 𝜔ଵ obtained by the proposed method 
is zero. That means the critical velocity calculated by the proposed method is 29 m/s, it is 17 % 
smaller than that of AMM. In this situation, the results of AMM indicate that the system has not 
yet reached the critical state. When the velocity of the moving mass reaches the critical velocity 
(𝑣 = 35.12 m/s) of AMM, the unstable region (𝜔ଵ = 0) of the proposed method has expanded. 
Comparatively, AMM overestimates the critical velocity. 

 
Fig. 3. The first-order frequencies of hinged-hinged beam  

when the moving mass moves at different velocities 

Figs. 4-Fig. 6 show the first-order natural frequencies of beams under different support 
conditions when the velocities of the moving mass are 29 m/s, 35 m/s, and 37 m/s, respectively. 
These results are all obtained by the proposed method. It can be seen from Fig. 4 that when  𝑣 = 29 m/s, the vibration of hinged-hinged (HH) beam is in unstable state (𝜔ଵ = 0 when the 
moving mass reaches the middle of the beam), while beams with other supporting conditions have 
not yet reached the critical state.  

 
Fig. 4. First-order natural frequencies of beams under different supporting conditions when 𝑣 = 29 m/s 

Fig. 5 illustrates that when the velocity of the moving mass reaches 35 m/s, the vibration of 
the clamped-hinged (CH) beam has reached an unstable state, and the unstable region of the 
hinged-hinged (HH) beam has expanded. However, the clamped-clamped (CC) beam and 
cantilever (CF) beam have not yet reached the critical state. As shown in Fig. 6, when the velocity 
of the moving mass reaches 37 m/s, except for the clamped-clamped (CC) beam, all the other 
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supporting beams are already in unstable state. Moreover, compared to Fig. 5, the unstable 
vibration regions of both the hinged-hinged beam (HH) and clamped-hinged (CH) beam in Fig. 6 
have expanded. From the above analysis, it can be found that the critical velocities of the same 
moving mass-beam system under different supporting conditions ranked in ascending order are as 
follows: 𝑣ுு ൏ 𝑣ு ൏ 𝑣ி ൏ 𝑣. Moreover, the greater the velocity of the moving mass, the 
larger the unstable region of the beam. 

 
Fig. 5. First-order natural frequencies of beams under different supporting conditions when 𝑣 = 35 m/s 

 
Fig. 6. First-order natural frequencies of beams under different supporting conditions when 𝑣 = 37 m/s 

 
Fig. 7. Second-order natural frequencies of beams with different velocities  

of moving mass and supporting conditions 

Fig. 7 and Fig. 8 give the second-order and third-order natural frequencies of the beams with 
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different velocities of moving mass and supporting conditions, respectively. Combined with 
Fig. 4-Fig. 8, it can be observed that the greater the velocity of the moving mass, the greater the 
amplitude of changes in the natural frequencies of the beam. 

 
Fig. 8. Third-order natural frequencies of beams with different velocities  

of moving mass and supporting conditions 

5. The influence of acceleration on natural frequency 

In previous studies, the influence of the acceleration of the moving mass on natural frequency 
of the beam was not considered. Several examples are employed to illustrate this problem. Let the 
moving mass move at a variable velocity from one end of the beam to the other. The initial velocity 
is zero, and the acceleration is 𝑣ሶ = 10 m/s2. For beams with supporting conditions of HH, CH, and 
CC, when the moving mass passes through the midpoint of the beam, the acceleration is  𝑣ሶ = –10 m/s2, and when it reaches the other end of the beam its final velocity is zero. When the 
influence of acceleration is neglected, let 𝑎 = 0 for Eq. (22)-Eq. (25). The position of the moving 
mass on the beam are determined by 𝐿 = 𝑣𝑡 + 0.5𝑣ሶ 𝑡ଶ. Fig. 9 shows the first-order natural 
frequencies of beams with different supporting conditions under the two situations. In this 
calculation, the moving masses of 𝑚 = 1 kg and 𝑚 = 5 kg are considered respectively. It can be 
seen that the first-order natural frequencies of the beam are different in the two situations, and the 
larger the moving mass, the more significant the difference. In general, the frequency will be 
slightly higher when the influence of acceleration is considered. 

 
a) 

 
b) 
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c) 

 
d) 

Fig. 9. The effect of the acceleration of moving mass  
on the first order natural frequency of the beam: a) HH; b) CH; c) CC; d) CF 

6. Conclusions 

An analytical procedure for the determination of critical velocity and frequencies of beams 
with moving mass under four supporting conditions were proposed. The frequency equations of 
hinged-hinged (HH) beam, clamped-hinged (CH) beam, clamped-clamped (CC) beam, and 
cantilever (CF) beam were obtained by modal analysis method and Laplace transform. The 
following conclusions can be summarized through the numerical studies: 

1) The critical velocity obtained by AMM is higher than that of the proposed method. And the 
larger the moving mass or velocity, the greater the difference.  

2) When the velocity of the moving mass reaches the critical velocity, the first natural 
frequency of the beam tends to zero, and the vibration is in an unstable state. Moreover, the greater 
the velocity of the moving mass, the larger the unstable region (𝜔ଵ = 0) of the beam. 

3) The critical velocities of the same moving mass-beam system under different supporting 
conditions ranked in ascending order are as follows: 𝑣ுு < 𝑣ு < 𝑣ி < 𝑣. 

4) When the moving mass undergoes variable motion on a beam, the vibration frequency 
obtained with acceleration considered is higher than that obtained with acceleration neglected, and 
the larger the moving mass, the more significant the difference. 

Although some innovative achievements have been made through theoretical and numerical 
analysis, they have not been verified by experiments yet. Designing appropriate experimental 
procedures and verifying the above theoretical results will be the focus of this study in the future. 
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