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Abstract. Given a connected graph 𝐺 𝑉,𝐸 , let 𝑑 𝑥,𝑦  represent the separation between 𝑥 
and 𝑦 at its vertices. If each vertex in a collection 𝐵 is uniquely identified by its vector of distances 
to the vertices in 𝐵, then that set of vertices resolves a graph 𝐺. A metric dimension of 𝐺 is 
represented by 𝑑𝑖𝑚 𝐺  and is the smallest cardinality of a resolving set of 𝐺. If the subgraph 𝐵 
induced by 𝐵 is a nontrivial connected subgraph of 𝐺, then a resolving set 𝐵 of 𝐺 is connected. 
The metric dimension of 𝐺 is the cardinality of the minimal resolving set, while the connected 
metric dimension of 𝐺 is the cardinality of the smallest connected resolving set. The connected 
metric dimension of the knots graph, whitehead link graph and jewel graph are determined in this 
study. Finally, we derive the explicit formulas for the triangular book graph, quadrilateral book 
graph and crystal planar map. 
Keywords: distance, metric dimension, resolving set, connected metric dimension. 

1. Introduction 

The length of the shortest path between any two vertices in a connected graph 𝐺 𝑉,𝐸 , 
where 𝑉 is the set of vertices and 𝐸 is the set of edges, is indicated by the distance 𝑑 𝑢, 𝑣 . For 
any given 𝑏, the 𝑘-vector 𝑟 𝑣|𝑏 𝑑 𝑣, 𝑏 ,𝑑 𝑣, 𝑏 , . . . ,𝑑 𝑣, 𝑏  is the metric representation 
of 𝑣. If there is a unique representation for every pair of 𝐺 vertices in 𝑟 𝑣 |𝑏 , then 𝐵 is a resolving 
set. Among all the resolving sets of 𝐺, 𝑑𝑖𝑚 𝐺 , the metric dimension of 𝐺, has the least 
cardinality. A metric basis is a resolving set with low cardinality. Landmarks are the vertices of 𝐺 
on a metric basis. 

A minimum resolving set, also known as a metric basis for 𝐺, is a resolving set that has the 
smallest cardinality for 𝐺. The metric dimension of 𝐺, which is represented as 𝑑𝑖𝑚 𝐺 . The 
problem of figuring out the metric dimension of a graph was tackled by Harary et al. [1]. Slater 
discussed the use of this concept to long-range navigational aids [2]. Melter et al. [3] studied the 
metric dimension problem of grid graphs. Khulller et al. have also investigated the metric 
dimension problem for trees and multi-dimensional grids [4]. They also talked about how the idea 
of metric dimension is used in robot navigation. Note that 𝐺 𝐻 represents the connecting point 
of two graphs, 𝐻 and 𝐺, and for 𝑛 ≥ 1, 𝑓 𝐾 𝑃  represents a fan. The metric dimension of 
fan 𝑓  was discovered by Caceres et al. [5]. The Jahangir graph, denoted as 𝐽  with 𝑛 ≥ 2, is the 
graph that is produced from a wheel 𝑊  by removing 𝑛 alternate spokes. It is also sometimes 
referred to as the gear graph.  

The metric dimension of the Jahangir graph 𝐽 , as well as the partition and connected 
dimension of the wheel graph 𝑊  were calculated by Tomescu et al. [6]. Paths on 𝑛 vertices 
constitute a family of graphs with constant metric dimension since Chartrand et al. demonstrated 
in [7] that a graph 𝐺 has metric dimension 1 if and only if 𝐺 𝑃 . According to Javaid et al. in 
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[8], the planar graph Antiprism 𝐴  is a family of regular graphs with a constant metric dimension 
such that for any 𝑛 ≥ 5, 𝑑𝑖𝑚 𝐴 3. Ahmad et al. [9] calculated the metric dimension of 𝑃 𝑛, 2 ʘ𝐾 . Sooryanarayana et al. [10] created various types of 𝑟-sets and determined the 
minimal cardinality of these sets. Singh et al. [11] computed the metric and edge metric 
dimensions of the Dutch and French windmill graphs, two types of windmill graphs. Susilowati 
et al. [12] computed the complement metric dimension of the corona and comb products graphs. 
Wijaya et al. [13] introduced a simple method for creating new Ramsey minimal graphs from 
known Ramsey minimal graphs by applying a subdivision operation. A computer program and an 
algorithm were developed by Muhammad et al. [14] to determine the base and dimension of a 
network. Rehman et al. [15] gave explicit formulae for the metric dimension of Arithmetic Graph 𝐴  when 𝑚 has exactly two distinct prime divisors. They gave restrictions on the metric 
dimension of 𝐴  when 𝑚 has at least three distinct prime divisors. Feng et al. [16] examined the 
metric dimension of the power graph of a finite group. The exact value of the metric dimension of 
Andrásfai graphs was found by Pejman et al. [17]. The constant metric dimension of 𝑃 1,2,3  
and 𝑀  was obtained by Ali et al. [18], while the 𝑘-metric dimension of linked corona graphs was 
found to have tight limitations and closed formulas by Moreno et al. [19].  

The metric dimensions of a number of graphs, including the Tadpole, Lilly, and special trees 
(star, bistar, and coconut trees), were ascertained by Mohamed et al. [20]. In addition to giving a 
summary of several metric dimension findings and uses, Mohamed [21] offered a self-contained 
introduction to the metric dimension. The tortoise network, the open ladder network, the 𝑍- 𝑃  
network, and the trapezoid network were among the networks that Mohamed et al. [22] 
investigated. The connected metric dimension is defined in [23, 24]. 

In [23], the connected metric dimension of path graph 𝑃 , cycle graph 𝐶 , wheel graph 𝑊 , 
star graph 𝐾 , , and complete graph 𝐾  is investigated. It is shown that the connected metric 
dimension of cycle graph 𝐶 , 𝑛 ≥ 3 is 2, wheel graph 𝑊 , 𝑛 ≥ 7 is 1, star graph 𝐾 , , 𝑛 ≥ 4 is 𝑛– 1, complete graph 𝐾 , 𝑛 ≥ 3 is 𝑛 − 1 and path graph 𝑃 , 𝑛 ≥ 2 is 2. In [24], it is 
shown that the connected metric dimension at a vertex of tree 𝑇 is 1 if 𝑣 is an end vertex and 2 if 𝑣 is not an end vertex, Petersen graph 𝑃 is 4, and wheel graph 𝑊 , 𝑛 ≥ 7 is 1. For further 
information, see the literature [25-37]. This work determines the connected metric dimension of 
knot graphs, whitehead link graphs and jewel graph. Finally, we derive the explicit formulas for 
the triangular book graph, quadrilateral book graph and crystal planar map. 

2. Definitions and basic terminology  

Definition 1. [32] A link 𝐿 is an embedding of a topological sum of finitely many copies of a 
circle 𝑆  into three-dimensional topological space 𝑅 , 𝐿: 𝑆 ⊔ 𝑆 ⊔ 𝑆 ⊔. . .⊔ 𝑆 → 𝑅 . The 
restriction of 𝐿 to one of the copies of 𝑆  is called a component of 𝐿. Note that each component 
of a link is a Knot. 

Definition 2. [32] An illustration of a knot or link is a projection of the latter into a plane that 
shows the markings for each crossing (over- or under-crossing) in the projection’s image. This 
indicates that a knot diagram is an image of a knot projected onto a plane; a diagram in 𝑅  is 
composed of several arcs and crossings. It did not permit the following at a crossing where one 
arc is the over pass and the other forms an under pass. 

   
Fig. 1. A diagram of knot or link 

Definition 3. [32] A graph of a knot or link diagram is made up of crossings acting as the 
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graphs' vertices and the arcs connecting two crossings acting as its edges. 
Definition 4. An alternating knot 𝐴  is a knot with a knot diagram where crossings alternate 

between overpasses and underpasses. Alternating diagrams are not required for all knot diagrams 
of alternating knots. All prime knots with seven or fewer crossings are alternating knots, as are 
the trefoil and figure-eight knots. 

We may observe that for 𝑛 7, every link graph includes at least two multiple edges based 
on the occurrence of many edges in the graph. In a link graph with an even number of vertices 
(𝑛 8,10, …), there are always samples with a single edge. Using the same method as for the 
17th-link graph for 𝑛  6, we can observe this. 

 
a) 𝑛  6 

 
b) 𝑛  8 

 
c) 𝑛  10 

Fig. 2. Series of link graph starting by chain Borromean ring without any multiple edge 

The Whitehead link graph starts the following series of 𝑛-crossing, 𝑛 ≥ 5, 2-component link 
graphs.  

 
Fig. 3. Series of link graph starting by chain Borromean ring 

3. Applications of knots graph 

First, knot theory provides a wealth of examples for several areas of topology, including 
geometric group theory and specific types of algebra. The second is a list of scientific and 
engineering uses, such as separating DNA, combining liquids, and understanding the Sun’s corona 
structure. Knot invariants arise in many forms, including integers, polynomials, and homology 
theories. 

4. Main results 

Corollary 1. Let 𝐺 is triangular book graph Tn with 𝑛 vertices, then 𝑐𝑑𝑖𝑚 𝑇 𝑛 − 2.  
Corollary 2. Let 𝐺 is quadrilateral book graph 𝐵  with 𝑛 vertices, then 𝑐𝑑𝑖𝑚 𝐵 . 
Theorem 3. Let 𝐺 is Knots graph 𝐾  with 𝑛 vertices, then 𝑐𝑑𝑖𝑚 𝐾 3 as shown in Fig. 4.  
Proof. We label 𝐾  as shown in Fig. 4. It is clear that the number of vertices is 𝑛. Let  𝑤 𝑣 ,𝑣 , 𝑣 . So that the proof has two cases: 
Case (1). The representation of the vertices when 𝑛 6,10,14, … are as follows: 
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𝑟 𝑣 |𝐵 =
⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪⎪
⎧ 0,1,1 , 𝑖 = 1,1,0,1 , 𝑖 = 2,𝑖 − 12 , 𝑖 − 12 , 𝑖 − 32 , 3 ≤ 𝑖 + 2 ≤ 𝑛 2 ,𝑖2 , 𝑖 − 22 , 𝑖 − 22 , 4 ≤ 𝑖 + 2 ≤ 𝑛2 + 1,𝑛 − 24 ,𝑛 + 24 ,𝑛 − 24 , 𝑖 = 𝑛2 + 2,𝑛 − 𝑖 + 22 ,𝑛 − 𝑖 + 22 ,𝑛 − 𝑖 + 42 , 𝑛2 + 3 ≤ 𝑖 + 2 ≤ 𝑛,𝑛 − 𝑖 + 12 ,𝑛 − 𝑖 + 32 ,𝑛 − 𝑖 + 32 , 𝑛2 + 4 ≤ 𝑖 + 2 ≤ 𝑛 − 1.

 (1)

 
Fig. 4. Knots graph 𝐾  

Case (2). The representation of the vertices when 𝑛 = 8,12,16, … are as follows: 

𝑟 𝑣 |𝐵 =

⎩⎪⎪
⎪⎪⎪
⎪⎨
⎪⎪⎪
⎪⎪⎪
⎧ 0,1,1 , 𝑖 = 1,1,0,1 , 𝑖 = 2,𝑖 − 12 , 𝑖 − 12 , 𝑖 − 32 , 3 ≤ 𝑖 + 2 ≤ 𝑛 2 + 1,𝑖2 , 𝑖 − 22 , 𝑖 − 22 , 4 ≤ 𝑖 + 2 ≤ 𝑛,𝑛4 ,𝑛4 ,𝑛4 − 1 , 𝑖 = 𝑛2 + 1,𝑛 − 𝑖 + 22 ,𝑛 − 𝑖 + 22 ,𝑛 − 𝑖 + 22 , 𝑖 =  𝑛2 + 2,𝑛 − 𝑖 + 12 ,𝑛 − 𝑖 + 32 ,𝑛 − 𝑖 + 32 , 𝑛2 + 3 ≤ 𝑖 + 2 ≤ 𝑛 − 1,𝑛 − 𝑖 + 22 ,𝑛 − 𝑖 + 22 ,𝑛 − 𝑖 + 42 , 𝑛2 + 4 ≤ 𝑖 + 2 ≤ 𝑛.

 (2)

Clearly, the induced subgraph of 𝐵 is connected and the representations of vertices in 𝐾  graph 
are distinct as shown above, this implies that 𝐵 is conncted resolving set, but it is not necessarily 
the lower bound. Hence, an upper bound is 𝑐𝑑𝑖𝑚(𝐾 ) ≤ 3. So, we show that 𝑐𝑑𝑖𝑚(𝐾 ) ≥ 3. Let 𝐵 = 𝑣 ,𝑣 , 𝑣  be a connected resolving set with |𝐵| = 3. Assume that 𝐵  is another minimal 
connected resolving set. If we select an ordered set 𝐵 ⊆ 𝐵 − {𝑣 ,𝑣 }, 1 ≤  𝑖, 𝑗 ≤ 3, 𝑖 ≠ 𝑗, so that 
there exist two vertices 𝑣 , 𝑣 ∈ 𝐾  such that 𝑟(𝑣 |𝐵) = 𝑟(𝑣 |𝐵) = (1,1, … , 1). It should be noted 
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that 𝐵  is not a connected resolving set, which is contrary to the assumption. As a result, 𝑐𝑑𝑖𝑚(𝐾 ) ≥ 3 is the lower bound. In conclusion 𝑐𝑑𝑖𝑚(𝐾 ) = 3. 
Theorem 4. Let 𝑤𝑙  is whitehead link graph with 𝑛 vertices, then 𝑐𝑑𝑖𝑚(𝑤𝑙 ) = 3 as shown 

in Fig. 5. 

3

n

1 2

n-1

n-2

n-4

n-3

n-5

 
Fig. 5. Whitehead link graph 𝑤𝑙  

Proof. We label 𝑤𝑙  as shown in Fig. 5. It is clear that the number of vertices is n.  
Let 𝐵 = {𝑣 ,𝑣 ,𝑣 }. So that the proof has two cases: 

Case (1). The representation of the vertices when 𝑛 = 7,9,11, … are as follows: 

𝑟(𝑣 |𝐵) =

⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪
⎪⎧(0,1,1), 𝑖 = 1,(𝑖 − 1, 𝑖 − 2, 𝑖), 2 ≤ 𝑖 + 2 ≤ 𝑛 − 32 ,𝑛 − 32 ,𝑛 − 52 ,𝑛 − 32 , 𝑖 = 𝑛 − 1 2 ,𝑛 − 32 ,𝑛 − 32 ,𝑛 − 52 , 𝑖 = 𝑛 + 12 ,(𝑛 − 𝑖 − 1,𝑛 − 𝑖,𝑛 − 𝑖 − 2), 𝑛 + 32 ≤ 𝑖 ≤ 𝑛 − 4,(1,2,0), 𝑖 =  𝑛 − 3,(2,3,1),  𝑖 = 𝑛 − 2,(1,2,1), 𝑖 = 𝑛 − 1,(2,3,2), 𝑖 = 𝑛.

 (3)

Case (2). The representation of the vertices when 𝑛 = 8,10,12, … are as follows: 

𝑟(𝑣 |𝐵) =
⎩⎪⎪
⎪⎪⎨
⎪⎪⎪
⎪⎧(0,1,1), 𝑖 = 1,(𝑖 − 1, 𝑖 − 2, 𝑖), 2 ≤ 𝑖 + 2 ≤ 𝑛 − 22 ,𝑛 − 22 ,𝑛 − 42 ,𝑛 − 42 , 𝑖 = 𝑛 2 ,(𝑛 − 𝑖 − 1,𝑛 − 𝑖,𝑛 − 𝑖 − 2), 𝑛2 + 1 ≤ 𝑖 ≤ 𝑛 − 4,(1,2,0),  𝑖 =  𝑛 − 3,(2,3,1), 𝑖 = 𝑛 − 2,(1,2,1), 𝑖 = 𝑛 − 1,(2,3,2), 𝑖 = 𝑛.

 (4)

Corollary 5. Let 𝐺 be a crystal planar map 𝐶  with 𝑛 vertices where 𝑘 blocks, then 𝑐𝑑𝑖𝑚(𝐶 ) = 3. 
Theorem 6. Let 𝐺 be a jewel graph 𝐽  with 𝑘 blocks and 𝑛 vertices, then 𝑐𝑑𝑖𝑚(𝐽 )  = 2. 
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Fig. 6. Jewel graph 𝐽  

Proof. We label a jewel graph 𝐽  as shown in Fig. 6. It is clear that the number of vertices is 𝑛 = 𝑘 + 3 and 𝑘 is the number of blocks of 𝐺. Let 𝐵 = {𝑣 ,𝑣 }. 
Begin 
    𝑗 = 2  
    for 𝑖 = 1: 3 
        𝑑(𝑣 ,𝐵) = (𝑖 − 1, 𝑗) 
        𝑗 = 𝑗 − 1 
    end  
    for 𝑖 = 4:𝑛 
        𝑑(𝑣 ,𝐵) = (1,1) 
    end 
end 

5. Conclusions 

Metric dimension is used in many fields, including image processing, combinatorial 
optimization, robot navigation, network discovery and verification, and wireless sensor network 
localization. The connected metric dimension of the knots graph, whitehead link graph and jewel 
graph are determined in this study. Finally, we derived the explicit formulas for the triangular 
book graph, quadrilateral book graph and crystal planar map. 
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