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Abstract. Regression analysis is essential for prediction analysis and variable identification since 
air pollution studies are complicated by competing suggestions and require careful interpretation. 
In the existing predictive analysis, estimating indoor radon levels is challenging due to 
multicollinearity issues and the existing algorithm's assumption of independent predictor 
variables, making it difficult to accurately assess individual effects. Hence a novel Unsupervised 
Bayesian Multiple Regression Analysis is used to correctly offer the specific impacts of each 
predictor variable by taking the complex interactions between factors in the estimation of indoor 
radon levels. Furthermore, in the variable identification, indoor radon levels are influenced by 
complex residual distributions, with existing algorithms failing to predict non-Gaussian residuals 
due to outlier-sensitive least squares estimation. So a novel Quadratic Discriminant Extreme 
Learning Machine is implemented to overcome this issue, which creates models that are better 
able to reliably detect the factors driving indoor radon levels and are more robust to non-Gaussian 
residual distributions. The proposed method demonstrates excellence in predictive analysis and 
variable identification achieving high coefficient of relation and low MAE. 
Keywords: indoor air quality, prediction model, environmental factors, data analysis, variable 
identification. 

1. Introduction 

The natural decay of uranium in the earth's crust produces radon, a radioactive gas that poses 
health risks. Radon enters the soil, undergoes advection and diffusion, and is released into space. 
Environmental factors such as temperature and humidity influence its exhalation rate [1]. 
Dosimeter detectors provide comprehensive data on average long-term exposure levels by 
measuring and recording radon concentrations over 12 months. This information is essential for 
risk assessment, mitigation strategy implementation, and well-informed policy formulation to 
safeguard public health [2]. The following factors affect indoor radon concentrations: humidity, 
temperature, and pressure. Air circulation is impacted by temperature, radon adsorption and 
buildup are impacted by humidity, and entrance and departure are impacted by pressure 
differentials. Comprehending these associations is essential for formulating efficacious tactics and 
pinpointing situations with elevated danger [3]. 

High quantities in geogenic materials and building sealing techniques lead to radon seepage 
into interior spaces. Radon seepage is caused in part by soil and building air exchange rate. 
Enhancing ventilation, depressurizing sub-slabs, caulking access sites, and altering the soil are 
examples of mitigation techniques. It’s essential to regularly assess indoor air quality [4]. In Italy’s 
Euganean Hills, researchers analyze radon's origins and regulating factors to create hazard 
prediction maps. These maps guide targeted mitigation efforts, addressing the region's elevated 
radon levels, the second leading cause of lung cancer. Collaborative strategies and regulations aim 
to safeguard public health through informed awareness and preventive measures [5]. 

Uranium and thorium, primordial radionuclides in the earth’s crust, undergo decay processes, 
producing radon and thoron noble gases with potential health implications. The concentration of 
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radon is influenced by soil radium content, radiating power, and moisture levels. Variances in 
these soil characteristics impact the emanation of radon, contributing to fluctuations in indoor air 
levels. Moreover, environmental factors, including carbon dioxide acting as a carrier gas, play a 
pivotal role in radon transport through soil. Understanding these intricate interactions is vital for 
assessing radon exposure risks and implementing effective mitigation strategies, especially in 
regions where geological conditions may contribute to heightened radon concentrations [6]. 
Radon concentrations exhibit considerable variability influenced by diverse factors, including 
tectonic events, geochemical origins, weather patterns, and human activities. Tectonic events, 
such as earthquakes or ground movements, can impact soil structures and subsequently affect 
radon release. Geochemical origins, encompassing the distribution of radionuclides in geological 
formations, significantly contribute to regional radon disparities. Weather conditions, including 
temperature and precipitation, influence radon transport and diffusion. Human activities, like 
construction and mining, can disturb radon-rich geological formations, altering its release 
dynamics. To navigate this complexity, machine learning techniques are proposed. These 
advanced algorithms can analyze vast datasets, considering temporal and geographical variables, 
enhancing our understanding of radon dynamics for more targeted risk assessment and mitigation 
strategies [7-9]. 

Chronic Obstructive Pulmonary Disease (COPD), a prevalent respiratory condition impacting 
300 million people globally, poses significant public health challenges. Radon exposure, a known 
source of ionizing radiation, has been associated with DNA damage and an increased risk of lung 
cancer. This linkage between COPD and radon exposure was substantiated in a comprehensive 
2020 study, emphasizing the potential health ramifications. The study revealed a correlation 
between atmospheric radon levels during dust occurrences and improved regression coefficients. 
This underscores the critical need for understanding the interplay between environmental factors, 
radon exposure, and respiratory health to devise targeted preventive measures and healthcare 
interventions for COPD [10-11]. Lung cancer, a leading cause of global cancer-related deaths, is 
primarily linked to indoor radon exposure, posing a significant public health risk. Recognizing 
this threat, Spain and the European Union have implemented radon protection laws since 2019 to 
control workplace exposure. These regulations focus on mitigating the risk of elevated radon 
concentrations in enclosed environments. By enforcing preventive measures, such as improved 
ventilation and building design, these laws aim to limit radon infiltration and protect workers from 
potential health hazards. The proactive approach underscores a commitment to public safety, 
emphasizing the importance of regulatory frameworks in minimizing the impact of indoor radon 
on lung cancer incidence [12]. In Montenegro, a dedicated project endeavors to forecast indoor 
radon concentrations surpassing the national limit, employing advanced statistical methods like 
logistic multivariate regression. This technique enables the project to analyze multiple variables 
simultaneously, including geological factors, building characteristics, and environmental 
conditions. By harnessing a comprehensive dataset, the project seeks to develop a predictive 
model that identifies areas prone to exceeding the national radon limit of 200 Bq/m3 in newly 
constructed buildings. The utilization of logistic multivariate regression underscores a 
commitment to data-driven risk assessment, allowing for targeted interventions and ensuring 
compliance with radon exposure standards to safeguard public health in Montenegro [13-14]. 

Climate change in Bulgaria brings significant variations in climatic factors, affecting radon 
levels. Decision trees, such as CART-type algorithms, are used to analyze predictors in 
radiological cave research [15-16]. Tobacco smoking is a leading modifiable risk factor for lung 
cancer, accounting for 32.5 % of smoking-related mortality in Spain. Radon exposure, as the 
second greatest contributor, is studied in relation to small cell lung cancer in the Small Cell Study 
[17-18]. This comprehensive overview underscores the complex interplay of environmental 
factors, health risks, and regulatory efforts in the context of radon. 

The Major contributions in this paper are given as follows: 
1) To predict the indoor radon levels, a novel Unsupervised Bayesian Multiple Regression 

Analysis has been introduced which enhances prediction accuracy by accounting for complex 



ASSESSING ENVIRONMENTAL INFLUENCES ON RADON LEVELS: ANALYSIS OF INDEPENDENT VARIABLES.  
ANIL PAWADE, SHRIKANT CHARHATE 

 MATHEMATICAL MODELS IN ENGINEERING 3 

interactions between factors, allowing for a more precise estimation of the specific impacts of each 
predictor variable on indoor radon levels. 

2) To identify variables affecting indoor radon levels, a novel Quadratic Discriminant Extreme 
Learning Machine (QDELM) is proposed for the enhanced resilience to non-Gaussian 
distributions which enables more reliable detection of the factors driving indoor radon levels, 
leading to more precise predictions. 

The above-mentioned contributions have been taken into consideration to address the issues 
with the current approaches. The content of the paper is arranged as follows: The literature study 
is covered in Section 2, the methodology and operation of the proposed method are explained in 
Section 3, and the evaluation, performance analysis, and comparison elements of the proposed 
framework are covered in Section 4. The conclusion of the study is found in Section 5. 

2. Literature survey 

Shboul et al. [19] presented the eXtreme Gradient Boosting (XGBoost) and Light Gradient 
Boosting Machine (LightGBM) machine learning (ML) techniques, which are backed by 
multivariate analysis (MA). A set of soil samples were subjected to an investigation that included 
measurements of radon surface exhalation rates as well as relevant characteristics including 
moisture content, particle size distributions, and concentrations of Ra-226, Th-232, and K-40. The 
investigation identified a number of critical variables, including moisture content, Ra-226 
concentration, and bigger soil particles, that affect radon exhalation rates. Contour plots of the 
experimental and machine learning produced data were made to show the complex interactions 
between these factors. These illustrations showed that higher soil moisture content reduces the 
pace at which radon is exhaled. However, there were limits to this research’s ability to identify 
significant adverse effects. 

Seyis et al. [20] were installed in six monitoring stations in Western Turkey: four in Gebze, 
one in Armutlu, and one in Sarıköy. Eight distinct parameters (soil radon, soil temperature, soil 
moisture, air temperature, air pressure, precipitation, wind speed, and wind direction) were 
measured at these sites during 18 months from April 2008 to November 2010. Thus, every 15 
minutes, soil radon was measured every 60 minutes, and data on soil temperature, moisture 
content, air temperature, air pressure, precipitation, wind direction, and speed was recorded. 
Eventually, correlation coefficients were found between these variables. Nevertheless, this work 
uses in situ measurements over a long period to evaluate temporal fluctuations in soil radon 
concentrations and their relationships with possible regulating factors. 

Joo et al. [21] presented the association, using multiple regression analysis and huge data of 
those factors, between the ambient radiation dose rate and meteorological variables. On Ulleung 
Island, Republic of Korea, measurements were made of 36 distinct climatic variables and the rate 
of ambient radiation dosage between 2011 and 2015. The primary meteorological factors 
impacting the ambient radiation dose rate were discovered by applying stepwise selection methods 
and Pearson correlation analysis to the large dataset. These variables were then employed as the 
independent variables for the regression model. Multiple regression models were then created for 
the monthly datasets as well as the dataset for the full period. However, the various meteorological 
factors have varying degrees of effect throughout time and have a considerable impact on the rate 
of environmental radiation exposure at different times. 

Benà et al. [22] implemented a robust multivariate machine learning technique (Random 
Forest) to generate the GRP map of the Pusteria Valley's core sector. The risk map was generated 
by combining other census tract characteristics, such as population as an exposure factor and land 
use as a vulnerability component. The pilot site was selected from the Pusteria Valley in northern 
Italy because of its well-known structural, geochemical, and geological characteristics. The 
findings show that residential areas and high population densities, together with high GRP values, 
are related to high Rn risk locations. When it builds up in small spaces, though, it becomes a major 
health risk. 
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Haider et al. [23] developed advanced methods, including decision trees (DT), multiple linear 
regressions (MLR), and artificial neural networks (ANN), to better and more consistently identify 
radon anomalies of the tectonically active origin in northern Pakistan. The soil radon concentration 
and related climatic factors obtained at a seismically active area in northern Pakistan comprise the 
dataset used in the proposed research. The recorded dataset is split using a time frame of ±7 days 
surrounding the time of the earthquake into seismically active (SA) and stable (NSA) phases. 
Using three inputs (meteorological variables) and one output parameter (radon), intelligent 
algorithms are trained and cross-validated on the NSA dataset. It is currently unclear how to 
reliably identify radon anomalies that have been caused by seismic activity. 

Panahi et al. [24] introduced a novel modeling procedure to estimate the radon potential in the 
northwest of Gangwon Province, South Korea, utilizing deep learning models based on 
convolution neural network (CNN), long short-term memory (LSTM), and recurrent neural 
network (RNN). The data used in this study are divided into two sets: independent variables (radon 
conditioning factors: lithology, distance from lineament, mean soil concentrations of calcium 
oxide [Cao], potassium oxide [K2O], and ferric oxide [Fe2O3], effective soil depth, topsoil 
texture, and soil drainage) and dependent variables (measured soil gas radon concentrations). 
However, the scarcity of knowledge makes mapping radon potential difficult. 

Zhang et al. [25] Using these variables as a basis, decision tree models were built to simulate 
the “background” radon fluctuation and detect anomalies by contrasting the observed radon 
changes with the “background” variations. With a 0.8 correlation coefficient, the predicted 
“background” variation and the observed data from the non-seismic activity period are well 
correlated. Next, the study contrasted the observed radon time series variation during the seismic 
activity period with the modeled "background" fluctuation. Out of the 24 selected earthquakes, 
the decision tree could find 15 potential radon abnormalities. The observed variations in spring 
flow and water temperature provide additional evidence for the highlighted abnormalities. 
However, a variety of interfering variables impacted the radon levels in groundwater. 

Pirkkanen et al. [26] investigated the development of lake whitefish (Coregonus clupeaformis) 
in two distinct, one-of-a-kind laboratory settings: 2 km below the surface of the Earth and in a 
radiation-shielded environment 2 km below the surface. Lake whitefish embryos raised in these 
two facilities were compared for differences using morphometric analysis and established 
developmental endpoints. Regarding hatch date and survival rate, no appreciable distinctions were 
found between the surface and subterranean facilities. In embryos raised underground, there was 
a notable increase of up to 10 % in both body weight and length. However, the lack of a scientific 
infrastructure to support the studies limits the amount of biological study that is done in deep-
underground settings. 

Li et al. [27] proposed a multi-stage ensemble-based model using monthly gross beta particle 
radioactivity distributions with a spatial resolution of 32 km over the contiguous United States 
from 2001 to 2017. In the contiguous United States, 129 RadNet sensors recorded particulate 
radioactivity. In the first step, researchers used six strategies to build 264 base learning models, 
from which researchers picked nine base models with varying predictions. Using a non-negative 
weighted regression technique, researchers aggregated the base learner predictions of the chosen 
candidates in stage two, taking into account their local performance and geography. For exposure 
assessment, there aren’t any geographically and temporally resolved particle radioactivity data 
available at this time. 

Njoku et al. [28] presented the 2002–2020 period's link between LULC, elevation, and LST in 
Ilorin. Understanding the degree of correlation between LULC, elevation, and LST as well as the 
factors influencing the temporal and geographical fluctuation in the connection was the main goal. 
Landsat data products were used to create LST and NDVI. A mono-window technique was utilized 
to generate LST, and the NDVI was employed as a stand-in for LULC. LULC's geographical 
pattern was examined by the use of Moran's I spatial autocorrelation statistics. The precise path 
by which recognized elements influence the thermal character of the urban environment, as well 
as the factors that influence the geographical and temporal fluctuation of the link between LULC 
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and the LST, remain unclear. 
From the above studies it is clear that in [19] The capacity of this study to detect notable 

negative effects was limited, in [20] Study employs in situ measurements to assess temporal soil 
radon fluctuations and correlations, in [21] Meteorological factors exhibit varying effects, 
influencing environmental radiation exposure rates differently over time, in [22] High radon risk 
linked to residential areas, dense populations, and elevated GRP values. Major health risk in 
confined spaces, in [23] Identifying seismic-induced radon anomalies remains unclear; reliable 
methods are currently elusive, in [24] The difficulty in mapping radon potential stems from a lack 
of understanding, in [25] The radon levels in groundwater were affected by many interacting 
factors, in [26] Insufficient scientific infrastructure hampers biological studies in 
deep-underground settings, in [27] Lack of geographically and temporally resolved particle 
radioactivity data hinders exposure assessment, in [28] Unclear how recognized elements impact 
urban thermal characteristics and LULC-LST fluctuations geographically. Hence, there is a need 
for a novel method to eliminate these drawbacks and improve the accuracy of variable 
identification and predictive analysis. 

Table 1. Research studies on radon and radiation analysis 
Ref. 
No Techniques used Effectiveness 

[19] XGBoost, LightGBM, multivariate 
analysis 

Identified critical variables affecting radon exhalation 
rates, demonstrated complex interactions between 

factors 

[20] Correlation analysis, in situ 
measurements 

Evaluated temporal fluctuations in soil radon 
concentrations and their relationships with regulating 

factors 

[21] 
Multiple regression analysis, 

stepwise selection methods, Pearson 
correlation analysis 

Identified primary meteorological factors impacting 
ambient radiation dose rate, created regression models 

for monthly and full-period datasets 

[22] Random Forest, multivariate 
analysis 

Generated GRP map of Pusteria Valley's core sector, 
identified high radon risk locations 

[23] Decision trees, multiple linear 
regression, artificial neural networks 

Developed methods to identify radon anomalies of 
tectonic origin in northern Pakistan, trained algorithms 

on seismic and stable datasets 

[24] 
Convolutional neural network, long 
short-term memory, recurrent neural 

network 

Used deep learning models to estimate radon potential 
in Gangwon Province, South Korea 

[25] Decision trees, correlation analysis 
Built decision tree models to simulate background 

radon fluctuations and detect anomalies during seismic 
activity 

[26] Morphometric analysis, comparison 
studies 

Investigated development of lake whitefish embryos in 
underground settings, found notable differences in body 

weight and length 

[27] Ensemble-based model, weighted 
regression 

Proposed a multi-stage ensemble-based model for 
exposure assessment using gross beta particle 

radioactivity distributions 

[28] Correlation analysis, spatial statistics 
Explored link between LULC, elevation, and LST in 

Ilorin, identified factors influencing temporal and 
geographical fluctuation 

Table 1 presents various research studies on radon and radiation analysis, highlighting the 
effectiveness of various techniques. These studies include utilizing advanced machine learning 
techniques like XGBoost and LightGBM to understand radon behavior, assessing temporal 
changes in soil radon concentrations, identifying meteorological factors influencing radiation dose 
rates, and identifying high-risk radon areas. They also use decision trees, multiple linear 
regression, and artificial neural networks to detect radon anomalies and deep learning models to 
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estimate radon potential. However, compared to this existing techniques our proposed model 
offers a comprehensive approach by incorporating various factors such as topographical features, 
environmental components, and meteorological conditions. Utilizing advanced techniques like 
multiple regression, decision trees, and machine learning, it captures complex relationships and 
provides real-time capabilities for timely responses to radon fluctuations. Its adaptability to 
diverse environments and detailed analysis support informed policy-making, making it a superior 
model. 

3. Assessing environmental influences on radon levels: analysis of independent variables 

Regression analysis is pivotal for predictive analysis and variable identification, but there is a 
challenge in air pollution studies due to conflicting recommendations on its application. To ensure 
precise evaluations of air pollution levels in specific locations, it is crucial to carefully consider 
the complexities of interpreting environmental data. Hence, a novel “Assessing Environmental 
Influences on radon levels: Analysis of Independent Variables” is introduced, to overcome a task 
complicated by numerous dynamic factors. In the existing predictive analysis, estimating indoor 
radon levels is exceedingly challenging due to the intricate interplay of various elements such as 
diverse home environments, ventilation systems, etc., which leads to multicollinearity issues. 
Existing predictive algorithms struggle with this because they assume that predictor variables are 
independent, making it difficult to assess the individual effects of each predictor variable 
accurately. This assumption of independence fails to capture the complex relationships between 
predictors, resulting in inaccurate predictions and an inability to properly disentangle the 
individual contributions of each variable. Thus, a novel Unsupervised Bayesian Multiple 
Regression Analysis is introduced in this approach for the integration of prior knowledge about 
the relationships between variables. By incorporating this prior information, the analysis 
understands and model the complex interactions between predictor variables, while a technique 
of Unsupervised Bayesian analysis helps to disentangle the effects of multicollinearity by 
considering the joint distribution of the predictors. This approach allows for a more accurate 
assessment of the individual effects of each predictor variable. Further, Universal Multiple 
Regression Analysis aims to handle complex data structures and relationships between variables, 
thereby overcoming multicollinearity issues and providing more accurate estimates of indoor 
radon levels. With the combination of these methods, this method effectively captures the 
interdependencies among variables, leading to more accurate estimates. Furthermore, these 
techniques allow for a precise assessment of the individual effects of each predictor variable, 
enabling the model to attribute variations in indoor radon levels accurately. Moreover, in the 
variable identification, determining the factors influencing indoor radon levels is a complex 
process particularly due to the complexity of the residual distribution. when the residual follows 
a Non-Gaussian distribution, the existing algorithms fail to predict this Non-Gaussian residual as 
they rely on least squares estimation that is highly sensitive to outliers, resulting in inadequate 
solutions and compromised predictive accuracy. So, a novel Quadratic Discriminant Extreme 
Learning Machine is implemented for variable identification, where Extreme Learning Machines 
effectively handle Non-Gaussian residual distributions and provide more accurate predictions of 
indoor radon levels by leveraging the random initialization of input weights and the analytical 
solution for output weights. QDELM utilizes Extreme Learning Machines and Quadratic 
Discriminant Analysis to effectively handle non-Gaussian residuals and capture complex 
relationships between predictors and response variables. This approach enhances model resilience 
to non-Gaussian residual distributions, enabling more accurate identification of factors influencing 
indoor radon levels. Wherein, Quadratic Discriminant Analysis models the distribution of each 
class using a quadratic decision boundary, allowing for greater flexibility in capturing the complex 
relationships between predictors and response variables. The combination of these methods 
develops models that are more resilient to non-Gaussian residual distributions and better equipped 
to identify the factors influencing indoor radon levels accurately. The above mentioned proposed 
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techniques are introduced based on Linear regression, which is a statistical tool for modeling the 
relationship between a dependent variable and one or more independent variables, seeks to 
determine the linear equation that best predicts the dependent variable based on the independent 
variables. In the process of radon and radiation analysis, linear regression addresses the problem 
by modeling relationships, identifying key factors, predicting levels, quantifying influences, and 
controlling for multiple variables. Its ease of interpretation and role as a foundation for advanced 
modeling make it a valuable tool for understanding and managing radon and radiation risks. 

 
Fig. 1. Analysis of independent variables for the assessment of environmental influences on radon levels 

Fig. 1 displays the analysis of independent variables for the assessment of environmental 
influences on radon levels. A novel approach, integrating Unsupervised Bayesian Multiple 
Regression Analysis which is the combination of Universal Multiple Regression Analysis and 
Unsupervised Bayesian Analysis addresses challenges in predicting indoor radon levels. 
Additionally, a Quadratic Discriminant Extreme Learning Machine is introduced for variable 
identification, which is a combination of Quadratic Discriminant Analysis and Extreme Learning 
Machine, handling Non-Gaussian residual distributions and enhancing predictive accuracy. This 
comprehensive methodology produces resilient models capable of precisely estimating indoor 
radon levels and identifying influential factors in air pollution studies. The following section will 
include further details on this method. 

3.1. Unsupervised Bayesian multiple regression analysis 

Unsupervised Bayesian Multiple Regression Analysis is a novel approach which introduced 
for the predictive analysis problem to address the issue of radon concentration due to the complex 
interactions between several factors, including different house surroundings, ventilation systems, 
etc. to determine the precise impacts of each predictor variable separately, therefore Unsupervised 
Bayesian Multiple Regression Analysis has been implemented to solve the predictive analysis 
problem. The proposed approach was the combination of two existing techniques namely 
Unsupervised Bayesian analysis and Universal multiple regression analysis which will be 
explained detailed in below. 

Unsupervised Bayesian analysis is a statistical technique used to analyze data without labeled 
outcomes. It involves incorporating existing information or assumptions about relationships 
among variables, such as correlations between factors. The goal of unsupervised learning is to 
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identify hidden patterns or structures in the data without predefined labels or instructions. 
Bayesian analysis updates probabilities as new data is observed, refining the understanding of the 
data over time. It also manages uncertainty by providing a range of probable values, allowing for 
better understanding of predictions and conclusions. The Bayes Theorem is the core of Bayesian 
analysis, which mathematically combines prior information with new data to update the 
probability of a hypothesis. Bayesian methods are well-suited for managing complex data 
interactions, as they model these interactions more accurately than traditional methods. 
Furthermore, by incorporating prior knowledge and updating probabilities with new data, 
Bayesian analysis becomes more robust, providing reliable results even in complex and noisy data. 
It connects the posterior distribution of the parameters (𝑃(𝜃|𝑋)) to the prior distribution of the 
parameters (𝑃(𝜃)) and the probabilities of the data given the parameters (𝑃(𝑋|𝜃)), which shown 
in Eq. (1): 

𝑃(𝜃|𝑋) = 𝑃(𝑋|𝜃)𝑃(𝜃)𝑃(𝑋) . (1)

The combination of the probabilities and parameter priors yields the posterior for a specific 
model, which implemented in both batch and online versions, which shown in Eq. (2) and Eq. (3): 

𝑝(𝜃|𝐷,𝑚) = 𝑝(𝐷|𝜃,𝑚)𝑝(𝜃|𝑚)𝑝(𝐷|𝑚) . (2)

Eq. (2) refers to batch processing which handling data in large sets, often all at once, and is 
well-suited for offline analysis scenarios where the complete dataset is accessible for processing: 

𝑝(𝜃|𝐷, 𝑥,𝑚) = 𝑝(𝑥|𝜃,𝐷,𝑚)𝑝(𝜃|𝐷,𝑚)𝑝(𝑥|𝐷,𝑚) . (3)

Eq. (3) refers to online processing which involves the incremental handling of data, either in 
real-time or in small batches, which is ideal for scenarios involving streaming or continuous data 
streams. 

Batch processing and Online processing aims to compute the predictive posterior distribution 
by combining prior knowledge and updating probabilities given in Eq. (4): 𝑝(𝑥|𝐷,𝑚) = න𝑑𝜃 𝑝(𝑥|𝜃,𝐷,𝑚)𝑝(𝜃|𝐷,𝑚), (4)

where: 𝑃(𝜃|𝑋) is the posterior distribution, representing the updated beliefs about the parameters 
given the observed data 𝑋; 𝑃(𝑋|𝜃) is the probability, indicating the probability of observing the 
data 𝑋 given a particular set of parameters 𝜃; 𝑃(𝜃) is the prior distribution, representing the prior 
beliefs about the parameters before observing the data; 𝑃(𝑋) is the marginal probability, serving 
as a normalizing constant ensuring that the posterior distribution integrates to 1; data set 𝐷, and a 
model m with parameters 𝜃; prior over model parameters: 𝑝(𝜃|𝑚); probability of model 
parameters for data set 𝐷: 𝑝(𝐷|𝜃,𝑚); prior over model class: 𝑝(𝑚). 

A posterior distribution (𝑃(𝜃|𝑋)) representing updated views about the parameters, given the 
observed data 𝑋 is the output of Unsupervised Bayesian analysis. According to Bayes’ Theorem, 
this posterior distribution captures the integration of prior beliefs (𝑃(𝜃)) with the probabilities of 
the data given the parameters (𝑃(𝑋|𝜃)). The posterior distribution offers a thorough and current 
understanding of the underlying parameters by combining the information from previous studies 
with the new signal found in the data. The foundation of Bayesian inference is this integration 
process, which allows for a methodical approach to revealing hidden structures, patterns, or 
parameters in unsupervised learning settings. Moreover, this output provides better to Universal 
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multiple regression analysis which is explained below. 
Furthermore, Universal multiple regression analysis aims to represent the connection between 

one independent variable and one dependent variable. It is an extension of the notion of basic 
linear regression. It utilizes multiple explanatory factors to predict the value of a response variable, 
thereby enhancing predictive power, especially crucial in navigating the complexities of air 
pollution studies where numerous variables influence indoor radon levels. By modeling the linear 
connections between multiple explanatory factors and the response variable, it captures intricate 
real-world relationships essential for accurate predictions. This method extends ordinary 
least-squares regression to incorporate multiple predictors, providing flexibility in analyzing air 
pollution data and adapting to intricate complexities. Additionally, it offers quantitative 
assessments of each variable's contribution to the variance in indoor radon levels, facilitating 
informed decision-making and prioritizing interventions. Its robustness to multicollinearity 
ensures reliable coefficient estimates even with highly correlated predictor variables, enhancing 
model reliability. An equation for multiple linear regression takes the following generic form in 
Eq (5): 𝑌 = 𝛽଴ + 𝛽ଵ𝑋ଵ + 𝛽ଶ𝑋ଶ + ⋯+ 𝛽௡𝑋௡ + 𝜀, (5)

where: 𝑌 is the dependent variable (e.g., indoor radon concentration); 𝛽଴ is the intercept; 𝛽ଵ, 𝛽ଶ,…, 𝛽௡ are the coefficients for the independent variables 𝑋ଵ, 𝑋ଶ,…, 𝑋௡; 𝜀 is the error term. 
The output of universal multiple regression analysis is a predictive model represented by 

Eq. (5), where the coefficients (𝛽଴,𝛽ଵ, … ,𝛽௡) are determined based on the observed data. This 
model provides predictions (𝑌) for the dependent variable (e.g., indoor radon concentration) using 
the values of the independent variables (𝑋ଵ,𝑋ଶ, … ,𝑋௡). The output of universal multiple 
regression analysis improves predictive analysis by providing a robust model that considers 
multiple factors, offers insights into variable contributions. 

Unsupervised Bayesian Multiple Regression Analysis combines the strengths of unsupervised 
Bayesian analysis and universal multiple regression. It enhances predictive analysis by providing 
insights into the contributions of each independent variable, reducing uncertainty in parameter 
estimate. This approach combines the modeling capabilities of universal multiple regression with 
the probabilistic output of unsupervised Bayesian analysis, addressing challenges in predictive 
analysis. The outcome is a sophisticated prediction model that considers uncertainties, combines 
prior information, and raises an intricate understanding of data correlations. This comprehensive 
approach produces a powerful tool for predictive modeling, offering robust solutions to complex 
analytical problems by computing the posterior distribution of the regression coefficients 𝛽 and 
the error term 𝜖 given the observed data and the model given as Eq. (6): 

𝑝(𝛽, 𝜖|𝑌,𝑋,𝐷,𝑚) = 𝑝(𝑌|𝛽, 𝜖,𝑋,𝐷,𝑚) ⋅ 𝑝(𝛽, 𝜖|𝐷,𝑚)𝑝(𝑌|𝑋,𝐷,𝑚) , (6)

where, 𝑝(𝛽, 𝜖 ∣ 𝑌,𝑋,𝐷,𝑚) is the posterior distribution of the regression coefficients 𝛽 and the 
error term 𝜖 given the observed data 𝑌, the independent variables 𝑋, the observed data 𝐷, and the 
model 𝑚; 𝑝(𝑌|𝛽, 𝜖,𝑋,𝐷,𝑚) is the probability function representing the probability of observing 
the dependent variable 𝑌; 𝑝(𝛽, 𝜖|𝐷,𝑚) is the prior distribution representing the regression 
coefficients 𝛽 and the error term 𝜖 before observing the data 𝐷 and the model 𝑚; 𝑝(𝑌|𝑋,𝐷,𝑚) is 
the marginal probabilities representing the probability of observing the data 𝑌 given the 
independent variables 𝑋, the observed data 𝐷, and the model 𝑚. 

This combines the prior knowledge and updating probabilities using Bayes theorem to obtain 
the posterior distribution, which represents the updated beliefs about the regression coefficients 
and the error term after observing the data. 

Algorithm 1 displays the pseudocode of Unsupervised Bayesian Multiple Regression Analysis. 
Algorithm 1: Unsupervised Bayesian Multiple Regression Analysis. 
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Input:  
A dataset with observations of the dependent variable (𝑌) and multiple independent variables (𝑋ଵ,𝑋ଶ, … ,𝑋௡). 
Output: 
Coefficients (𝛽଴,𝛽ଵ, … ,𝛽௡) representing the linear relationship between the dependent 

variable and independent variables. 
Procedure: 
Step 1-Initialize Prior for Bayesian Analysis: 
Set initial beliefs about the distribution of parameters based on prior knowledge (prior 

distribution). 
Step 2-Universal Multiple Regression Analysis: 
Utilize the provided algorithm for Universal Multiple Regression Analysis using the training 

data to obtain coefficients (𝛽଴,𝛽ଵ, … ,𝛽௡). 
Step 3- Probability Calculation: 
Assess the probability of observing the data given the parameters using the obtained 

coefficients from the regression analysis. 
Step 4-Prior and Probability Combination: 
Combine the prior distribution and probabilities to obtain the unnormalized posterior 

distribution. 
Step 5-Normalization: 
Normalize the unnormalized posterior distribution to obtain the posterior distribution. 
Step 6-Update Beliefs: 
Use the posterior distribution as the updated beliefs about the parameters. 
End  

 
Fig. 2. Flowchart of unsupervised Bayesian multiple regression analysis 

The benefits of both universal multiple regression analysis and unsupervised Bayesian analysis 
are combined in the Unsupervised Bayesian Multiple Regression Analysis method. It accepts 
previous knowledge about parameter distributions and training data with observations of 
dependent and independent variables as input. The approach first initializes the regression 
coefficients, then iteratively optimizes them by adding observed data and use Bayesian analysis 
to modify them. A probabilistic representation of the parameters is the result, which offers a more 
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complex understanding of the correlations between the variables. Through the integration of 
Bayesian ideas into the multiple regression framework, this hybrid technique improves predictive 
modeling. Fig. 2 describes the flowchart of Unsupervised Bayesian Multiple Regression Analysis. 

The flowchart illustrates the Unsupervised Bayesian Multiple Regression Analysis algorithm. 
It begins by inputting training data and prior beliefs. The algorithm initializes prior beliefs for 
Bayesian analysis and applies the Universal Multiple Regression Analysis to obtain initial 
coefficients. probability is calculated, and the prior and probabilities are combined to create the 
unnormalized posterior distribution, which is then normalized. The updated beliefs are derived, 
and the algorithm outputs both the posterior distribution and the final regression coefficients, 
offering a comprehensive probabilistic model. In addition, the output of the Unsupervised 
Bayesian Multiple Regression Analysis method solves the variable identification problem by 
utilizing "Quadratic Discriminant Extreme Learning Machine". Further details are provided in the 
next section. 

3.2. Quadratic discriminant extreme learning machine  

Quadratic Discriminant Extreme Learning Machine is a novel approach which implemented 
for the variable identification problem due to the intricacy of the residual distribution makes it 
more difficult to identify the variables affecting indoor radon levels. The variable identification 
problem has therefore been addressed with the introduction of the Quadratic Discriminant 
Extreme Learning Machine. The proposed approach combined two approaches quadratic 
discriminant analysis and the Extreme Learning Machine, which are described in more depth as 
follows. 

Extreme Learning Machines (ELM) is a type of feedforward neural network used for tasks 
such as classifications and regression. The unique aspect of ELM is its ability to compute the 
output layer’s weights using a generalized inverse of the hidden layers output matrix. In this 
approach, ELM effectively handles Non-Gaussian residual distributions and provide more 
accurate predictions of indoor radon levels. Their strength lies in random input weight 
initialization and analytical output weight solutions. This approach enhances prediction accuracy, 
enabling ELMs to adapt to complex relationships within the data, especially when dealing with 
residuals that deviate from Gaussian distributions in indoor radon level predictions. 

The output of ELM is calculated as follows given in Eq. (7): 𝑦 = 𝛽𝐻, (7)

where: 𝑦 is the output layer vector; 𝜃 is the weight vector between the hidden layer and the output 
layer; 𝐻 is the hidden layer output matrix. 

The Hidden Layer Output Matrix (𝐻) is calculated as follows given in Eq. (8): 𝐻 = 𝑔(𝑤 ∙ 𝑥 + 𝑏), (8)

where: 𝑔 is the activation function; 𝑤 is the weight vector between input and hidden layer; 𝑥 is 
the input vector; 𝑏 is the bias vector. 

The following provides a thorough argument for the existing method: 
A learning framework for single hidden layer feed forward neural networks (SLFN) is called 

Extreme Learning Machines. Extreme Learning Machines work on the general principle of 
generating connection weights at random between the input and hidden layers, then analytically 
computing the weights connecting the hidden layer to the output layer. 

The architecture of Extreme Learning Machines is seen in Fig. 3. The hidden layer, which has 
a variable number of nodes depending on the issue, comes after the input layer, which is the signal 
source node. The transformation function of the hidden layer is based on the attenuation of a 
nonnegative linear function and its radial basis. In response to the input pattern, the hidden layer 
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modifies activation function parameters and learning speed more slowly, whereas the output layer 
modifies linear weight and learning speed more quickly. Eq. (9) is a mathematical representation 
of 𝑁 neurons in the buried layer: 

෍𝛽௫ே
௫ୀଵ 𝑓൫𝜔௜𝑎௜ + 𝑦௝൯ = 𝑜௝ ,      𝑖 = 1, … ,𝑁, (9)

where 𝜔௜ = ሾ𝜔௜ଵ,𝜔௜ଶ, … ,𝜔௜௡ሿ் is the threshold of the 𝑖th hidden neuron, and 𝑦௝ is its value. The 
weight vector is what links the input neurons with the 𝑖th hidden neuron. Let  𝛽௫ = ሾ𝛽௫ଵ,𝛽௫ଶ, … ,𝛽௫௠ሿ் is the weight vector that joins the output neurons to the 𝑖th hidden 
neuron. 

 
Fig. 3. Architecture of extreme learning machines 

The output of Extreme Learning Machines is a trained neural network model with optimized 
connection weights between the input and hidden layers, as well as the analytically computed 
weights connecting the hidden layer to the output layer. In the context of the provided 
mathematical representation (Eq. (9)), the output involves the modified activation function 
parameters and learning speeds in the hidden layer, and the linear weights and learning speeds in 
the output layer. This output improves variable identification in indoor radon levels by efficiently 
capturing nonlinear patterns, adapting to data complexity, and providing optimized connections. 
The output of Extreme Learning Machines is given to quadratic discriminant analysis which 
explained as follows. 

Moreover, each class in quadratic discriminant analysis is given a quadratic decision boundary, 
which allows for more flexibility when modeling complex interactions between predictors and 
response variables. Quadratic Discriminant Analysis is appropriate in scenarios where linear 
bounds, as in Linear Discriminant Analysis, are insufficient to appropriately reflect the underlying 
relationships because it permits a more intricate depiction of class distributions, which allows for 
the accommodation of complicated data patterns. The following provides a thorough argument of 
Quadratic Discriminant Analysis method: 

Compared to Linear Discriminant Analysis, Quadratic Discriminant Analysis handles different 
covariance matrices for each class, which makes it flexible enough to handle situations when there 
are different variances across classes. Because of its adaptability, Quadratic Discriminant Analysis 
more effectively represents the intricate and non-linear decision boundaries that are observed in 
datasets with a variety of class features. The benefit of using Quadratic Discriminant Analysis is 
that, as opposed to linear decision boundaries, it produces a first class decision boundary by being 
less stringent and accepting varying covariance matrix characteristics for different classes. A 
single-variable statistical technique called quadratic discriminant analysis has been used to build 
an algorithm based on the groups that reveal the agents or influencing layers that are visible. For 
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class 𝑘, the discriminant function is represented as follows as in Eq. (10): 

𝛿௞(𝑥) = 𝑥்෍ 𝜇௞ −ିଵ௞ 12 𝜇௞்෍ 𝜇௞ +ିଵ௞ log(𝜋௞), (10)

where: 𝑥 is the vector of environmental parameters, ∑  ௞ is the covariance matrix for class; 𝜇௞ is 
the mean vector for class; 𝜋௞ is the prior probability of class. 

The output of the discriminant function in quadratic discriminant analysis is 𝛿௞(𝑥). It is a 
metric that utilized for classifying observations into several groups. More specifically, the above 
Eq. (8) is used to construct the discriminant function 𝛿௞(𝑥) for each class 𝑘. Next, the most likely 
class for a particular input vector 𝑥 is projected to be the one with the greatest discriminant 
function value. This output contributes to solving the variable identification problem by the 
discriminant function in Quantitative Discriminant Analysis involves coefficients that are 
associated with each environmental parameter (variable). These coefficients are derived from the 
mean vectors, covariance matrices, and prior probabilities of the different classes during the 
training phase. 

The Quadratic Discriminant Extreme Learning Machine provides a useful method for 
identifying variables related to indoor radon levels. The combined result is a trained neural 
network that recognizes complex nonlinear patterns. To further improve variable identification, 
the Quadratic Discriminant Extreme Learning Machine also makes use of discriminant function 
coefficients from Quadratic Discriminant Analysis. By effectively addressing the intricacies of 
the data and maximizing the relationships between variables in the model, this all-encompassing 
method raises the accuracy of indoor radon level estimates. The pseudocode for the Quadratic 
Discriminant Extreme Learning Machine is shown in Algorithm 2. 

Algorithm 2: Quadratic Discriminant Extreme Learning Machine. 
Input: 𝑋: Input data matrix of size (𝑛 ×  𝑚), where 𝑛 is the number of samples and 𝑚 is the number 

of features. 𝑌: Target class labels or output matrix of size (𝑛 × 𝑝), where 𝑝 is the number of output nodes. 
Number of classes, 𝐾. 
Number of hidden nodes, 𝐻. 
Output: 
Output Weights 𝑊 of size (𝐻 × 𝐾). 
Bias vector 𝑏 of size (1 ×  𝐾). 
Class-specific mean vectors 𝜇௞ (𝑘 = 1 to 𝐾). 
Class-specific covariance matrices Σ௞ (𝑘 = 1 to 𝐾). 
Class priors 𝜋௞ (𝑘 = 1 to 𝐾).  
Algorithm Steps: 
Step 1 – Apply Quadratic Discriminant Analysis (QDA):  
a) For each class 𝑘 (𝑘 = 1 to 𝐾):  
   i. Calculate the class-specific mean vector 𝜇௞. 
   ii. Calculate the class-specific covariance matrix Σ௞ . 
   iii. Calculate the class prior probability 𝜋௞. 
Step 2 – Initialize Extreme Learning Machine (ELM): 
a) Randomly initialize input weights 𝑤௜ (𝑖 = 1 to 𝑚) and biases 𝑏௜ (𝑖 = 1 to 𝐻) connecting 

input layer to hidden layer. 
Step 3 – Calculate ELM hidden layer output matrix 𝑯_𝒐𝒖𝒕 using QDA parameters:  
a) For each hidden node ℎ (ℎ = 1 to 𝐻):  
   i. Calculate activation using QDA mean vectors and covariance matrices:  𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛௛ =  𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑋𝑤௜ + 𝑏௜ ,𝜇௛,Σ௛) for each hidden node. 
Step 4 – Compute the ELM output weights 𝑾 and bias 𝒃 using the following equation:  
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a) 𝑊 =  𝑝𝑖𝑛𝑣(𝐻௢௨௧)𝑌, where pinv denotes the pseudo-inverse. 
b) 𝑏 =  0.5 (𝑌 − 𝐻௢௨௧ 𝑊) # Bias can be calculated for better fitting. 
End  
The Quadratic Discriminant Extreme Learning Machine algorithm combines the 

discriminative power of Quadratic Discriminant Analysis with the flexibility of Extreme Learning 
Machine to optimize weights and biases. It utilizes Quadratic Discriminant Analysis’s 
class-specific statistics to enhance ELM’s ability to capture nonlinear patterns, resulting in 
improved variable identification and accurate predictions for multi-class classification tasks. 
Fig. 4 represents the flowchart of Quadratic Discriminant Extreme Learning Machine for Radon 
Prediction. 

 
Fig. 4. Flowchart of quadratic discriminant extreme learning machine for radon prediction 

The data processing process depicted in the flowchart starts with the input data, initializes 
Quadratic Discriminant Analysis and ELM components, looks for objective update criteria, 
computes output from a hidden layer, determines when to stop, computes output weight and 
biases, integrates QDA and ELM components, stresses variable identification, and outputs the 
intended outcome in the end. Because the process is data-driven, each step's goal must be 
determined within a certain context or domain. The “END” label marks the end of the flowchart. 

Overall, the proposed approach integrates Unsupervised Bayesian Multiple Regression 
Analysis with a Quadratic Discriminant Extreme Learning Machine for comprehensive indoor 
radon level predictions. It utilizes Unsupervised Bayesian Multiple Regression Analysis for 
predictive analysis in radon concentration, which combines universal multiple regression and 
unsupervised Bayesian analysis for linear relationships. Then, it makes use of a Quadratic 
Discriminant Extreme Learning Machine for variable identification in indoor radon levels, which 
combines the Quadratic Discriminant Analysis and Extreme Learning Machines for efficient 
handling of nonlinear patterns. This synergistic method enhances variable identification, 
providing a sophisticated predictive model that considers uncertainties and complex correlations 
in the data. The algorithm combines statistical and machine learning techniques for robust indoor 
radon level predictions, addressing multifaceted interactions. Section 4 will describe the 
performance and comparison of the proposed technique. 

4. Results and discussion 

The proposed approach for predictive analysis and variable identification is examined in this 
section, with particular attention focused to dependent and independent variables. It looks at the 
performance of the Unsupervised Bayesian Multiple Regression Analysis and Quadratic 
Discriminant Extreme Learning Machine method. 
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4.1. Experimental setup 

Every home’s radon gas concentration is determined using a dosimeter that was created by 
BARC Mumbai. The dosimeter is maintained one meter above the ground, and measurements are 
taken in the summer, winter, and rainy seasons. 

Tool used: Tableau Desktop; OS: Windows 10 home; Processor: Intel (R) Core (TM) i5-
8265U CPU@1.60 GHZ 1.80 GHZ; RAM: 16 .00 GB. 

4.2. Dataset description 

Three different seasons were observed at the Dadar, Mumbai location: the rainy season (June 
to September), the winter season (October to January), and the summer season (February to May). 
The measured values of radon concentrations were used to calculate the Pearson Correlation 
Coefficient for three environmental parameters: temperature, humidity, and atmospheric pressure. 
Table 2 summarizes the Pearson correlation matrix for radon and climatic parameter. 

Table 2. Pearson correlation matrix for radon and climatic parameter 
Season Temp [°C] Humidity % Pressure kPa 
Rainy  0.1591 0.128 0.107 
Winter 0.208 0.189 0.152 

Summer 0.233 0.402 0.234 

There is no discernible relationship between environmental parameters and radon 
concentration at the Dadar, Mumbai, Maharashtra location. However, Table 2 shows that during 
the summer, humidity had a recorded influence of 𝑟 = 0.402, while for other parameters, the 
correlation coefficient in absolute value is less than 0.25 during the rainy, winter, and summer 
seasons. 

4.3. Experimental results 

Tableau was used for data analysis and simulation, with both independent and dependent 
variables (such as temperature, humidity, and air pressure) as input. A differential equation was 
used to compute the integrated radon concentration, which was then compared to the measured 
value. There were not many variations between the calculated and observed values, according to 
the study. As a result, it concluded that temperature, humidity, and air pressure have a negligible 
effect on the integrated radon concentration that was computed because of the differential equation 
that was used in the simulation. 

4.4. Performance analysis of the proposed method 

This integrated predictive analysis and variable identification approach is evaluated using key 
indicators such as air pressure and radon content. It also evaluates how well Unsupervised 
Bayesian Multiple Regression Analysis enhances predictive analysis and detects diseases caused 
by radon concentrations. It is evaluated how well Quadratic Discriminant Extreme Learning 
Machine identify specific variables identification. 

The link between temperature and radon concentration is seen in Fig. 5. The graph shows that 
the value of the radon concentration is roughly proportionate to the floor-by-floor temperature. 
With a correlation coefficient of 0.159, the temperature during the rainy season is positively and 
inversely correlated. The multiple regression equation for the measurement at the Dadar Mumbai 
site during the rainy season was computed using the following parameters: temp and correlation 
coefficient, 𝑟 = 0.159 in Eq. (11): 𝑌 = 0.240𝑋 + 36.179. (11)
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Fig. 5. Plotting a regression path between temperature and radon levels during  

the rainy season in a scattering diagram 

 
Fig. 6. A scattering diagram showing the direction of the plotted relationship between  

the wintertime temperature and radon concentration 

Fig. 6 indicates that there is a negative relationship between the two variables. The presented 
graph demonstrates that the value of the indoor radon concentration is directly correlated with the 
floor-wise temperature. The winter temperature has a slight correlation with the correlation 
coefficient of 0.208. Eq. (12) presents the multiple regression equation that was developed for the 
measurement at Dadar Mumbai location during the winter season, taking into account the 
parameters temp and 𝑟 = 0.208: 𝑌 = 0.145𝑋 + 18.51. (12)

Fig. 7 indicates a marginally favorable relationship between the two variables. With a 
correlation value of 𝑟 = 0.233, it shows the direct proportionality of indoor radon concentration 
with temperature variations floor by floor during the summer. The multiple regression equation 
that was computed for the measurement at the Dadar Mumbai site during the summer season took 
into account the temperature and the correlation coefficient, 𝑟 = 0.233, as indicated in Eq. (13): 𝑌 = 0.166𝑋 + 20.17. (13)

 
Fig. 7. A scattering diagram showing the direction of the plotted relationship  

between summertime temperature and radon concentration 
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Fig. 8 indicates a marginally favorable relationship between the two variables. The plotted 
graph demonstrates that the relationship between the value of indoor radon concentration and 
humidity is direct. The correlation coefficient, which is 0.128, shows a modest relationship 
between humidity and the rainy season. The multiple regression equation for the measurement in 
Dadar, Mumbai, during the rainy season, taking into account the humidity and 𝑟 = 0.128, is 
represented in Eq. (14): 𝑌 = 0.06𝐻 + 37.5. (14)

 
Fig. 8. Plotted regression direction between radon concentration and humidity during  

the rainy season is displayed in a scattering diagram 

 
Fig. 9. Plotted regression direction between wintertime humidity and radon levels on a scattering diagram 

Examining the association between radon concentration and humidity levels is shown in Fig. 9. 
The above graph illustrates how indoor radon levels and humidity are directly correlated 
throughout the winter. Eq. (15) displays the multiple regression equation with humidity and  𝑟 = 0.189 for the Dadar Mumbai area during the winter season: 𝑌 = 0.067𝐻 + 18.96. (15)

There is a somewhat favorable association between humidity and radon concentration in the 
summer according to the scatter plot in Fig. 10. The graph’s red trend line indicates that radon 
concentration grows in tandem with increased humidity. The somewhat favorable association 
between greater humidity levels and enhanced radon concentrations is indicated by the correlation 
coefficient, 𝑟 = 0.402 which shows in Eq. (16): 𝑌ு = 0.136𝐻 + 15.72. (16)

The link between air pressure and radon levels during the rainy season is shown in Fig. 11. 
This graph shows the straight proportionality between the independent variable, the atmospheric 
pressure during the rainy season, and the radon concentration. The regression Eq. (17) for pressure 
and radon concentration parameters in Dadar, Mumbai, during the rainy season has a correlation 
value of 𝑟 = 0.107: 𝑌 = 0.043𝑃 + 38.43. (17)
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Fig. 10. A scattering diagram showing the direction of the observed relationship  

between summertime humidity and radon concentration 

 
Fig. 11. Plotted regression direction between pressure and radon concentration during  

the rainy season is displayed in a scattering diagram. 

The 𝑋-axis represents atmospheric pressure, while the 𝑌-axis represents radon concentration. 
Fig. 12 illustrates the link between radon concentration and atmospheric pressure. This graph 
shows the straight proportionality between the independent variable, the atmospheric pressure 
during the winter, and the radon concentration. Eq. (18) displays the results of a multiple 
regression analysis using pressure and 𝑟 = 0.152 for the Dadar Mumbai area during the winter 
season: 𝑌 = 0.033𝑃 + 19.84. (18)

 
Fig. 12. Plotted regression path between wintertime pressure  

and radon concentration on a scattering diagram 

Fig. 13 illustrates the relationship between summertime air pressure and radon levels. The data 
points show that as air pressure increases from 90 to 95, there is a modest increase in radon 
concentration. The multiple regression equation for the parameters Pressure and Indoor Radon 
Concentration at location Dadar Mumbai in the summer, with 𝑟 = 0.233, is displayed in Eq. (19): 𝑌 = 0.0613𝑃 + 20.16. (19)
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Fig. 13. Plotting a regression path between summertime pressure  

and radon concentration in a scattering diagram 

4.5. Comparison method 

This section, as noted in [29], contrasts the proposed approach's Mean Absolute Error (MAE), 
Root Mean Squared Error (RMSE), Root Mean Squared Logarithmic Error (RMSLE), Percentage 
Bias, and Coefficient of relation with the existing Inverse distance weighting, Empirical Bayesian 
Kriging, and Ordinary Kriging approaches. It illustrates how the proposed approach outperforms 
or is on trend with current methods in the variables identification and predictive analysis domains. 
A thorough analysis of these measures is used to achieve this. The comparison goes beyond 
performance metrics to include Percentage Bias and Coefficient of Relation to confirm the benefit 
or efficiency of the proposed strategy in managing diagnostics that enable a thorough 
comprehension of the radon concentration of predictive analysis and variable identification. 

 
Fig. 14. Comparison of MAE with existing methods 

The comparison of the proposed model's MAE with that of other current methods is shown in 
Fig. 14. The MAE of the proposed method is contrasted with that of already available methods 
like Inverse distance weighting, Empirical Bayesian Kriging, and Ordinary Kriging approaches. 
The proposed model's MAE comes in at 5.1 %, whereas the MAE of Inverse distance weighting, 
Empirical Bayesian Kriging, and Ordinary Kriging approaches are, in that order, 10.5 %, 8.3 %, 
and 6.8 %. Thus, variable identification has improved due to the Quadratic Discriminant Extreme 
Learning Machine with low MAE. 

 
Fig. 15. Comparison of RMSE with existing methods 
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Fig. 15 displays a comparison of the RMSE of the proposed approach with those of other 
available techniques. The RMSE of the proposed approach is compared to those of existing 
techniques such as Ordinary Kriging approaches, Empirical Bayesian Kriging, and Inverse 
distance weighting. The RMSE of the proposed model is 5.5 %, while the RMSE of the techniques 
such as inverse distance weighting, empirical Bayesian kriging, and ordinary kriging are, 
respectively, 9.6 %, 8.2 %, and 7.0 %. Thus, the Unsupervised Bayesian Multiple Regression 
Analysis has enhanced predictive analysis with low RMSE. 

 
Fig. 16. Comparison of RMSLE with existing methods 

A comparison of the proposed approach’s RMSLE with other existing methodologies is shown 
in Fig. 16. The proposed method’s RMSLE is contrasted with that of other methods already in 
use, including inverse distance weighting, empirical Bayesian kriging, and ordinary kriging 
approaches. The proposed model's RMSLE is 0.08 %, whereas the RMSLE of methods utilizing 
inverse distance weighting, empirical Bayesian kriging, and conventional kriging are 0.12 %, 
0.18 %, and 0.15 %, respectively. Thus, the use of machine learning in Quadratic Discriminant 
Extreme Learning Machine has enhanced variable identification with low RMSLE. 

 
Fig. 17. Comparison of percentage Bias with existing methods 

Fig. 17 displays a comparison of the Percentage Bias of the proposed methodology with 
various current approaches. The Percentage Bias of the proposed approach is compared with that 
of existing techniques, such as Inverse distance weighting, Empirical Bayesian Kriging, and 
Ordinary Kriging. The percentage bias of the proposed model is 92 %, while the percentage biases 
of approaches that use Inverse distance weighting, Empirical Bayesian Kriging, and Ordinary 
Kriging are, respectively, 20 %, 42 %, and 76 %. Thus, the Unsupervised Bayesian Multiple 
Regression Analysis has enhanced predictive analysis with high Percentage Bias. 

A comparison of the proposed methodology’s coefficient of relation with many other existing 
methods is shown in Fig 18. The proposed method’s coefficient of relation is contrasted with that 
of other methods now in use, including Inverse distance weighting, Empirical Bayesian Kriging, 
and Ordinary Kriging approaches. The proposed model’s correlation coefficient is 81, compared 
to the correlation coefficients of models utilizing Inverse distance weighting, Empirical Bayesian 
Kriging, and Ordinary Kriging, which are 24, 48, and 66, respectively. Thus, the Unsupervised 
Bayesian Multiple Regression Analysis has enhanced predictive analysis with high Coefficient of 
relation. 
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Fig. 18. Comparison of coefficient of relation with existing methods 

Fig. 19 shows a comparison of the accuracy of the proposed technique with several different 
methods already in use. The accuracy of the proposed method is compared with existing 
approaches such as Ordinary Kriging, Empirical Bayesian Kriging, and Inverse distance 
weighting. The accuracy of the proposed model is 98.2 %, whereas the models that use Ordinary 
Kriging, Empirical Bayesian Kriging, and Inverse distance weighting have corresponding 
accuracy of 92.5 %, 89 %, and 85 %. Predictive analysis has therefore been improved by 
Unsupervised Bayesian Multiple Regression Analysis with accuracy rate. 

 
Fig. 19. Comparison of accuracy with existing methods 

A comparison of the precision of the proposed approach with several existing methods is 
presented in Fig. 20. The precision of the proposed technique is contrasted with current 
methodologies like Inverse Distance Weighting, Ordinary Kriging, and Empirical Bayesian 
Kriging. The proposed model’s precision is 96.3 %, whereas the models that employ inverse 
distance weighting, ordinary kriging, and empirical Bayesian kriging have respective precisions 
of 91.7 %, 89.5 %, and 86.4 %. Thus, Unsupervised Bayesian Multiple Regression Analysis has 
enhanced predictive analysis with high precision rate. 

 
Fig. 20. Comparison of precision with existing methods 

Fig. 21 compares the recall of the proposed approach with several other approaches that are 
currently in use. The proposed technique’s recall is compared to existing approaches such as 
Empirical Bayesian Kriging, Ordinary Kriging, and Inverse Distance Weighting. The proposed 
model has a recall of 97.8 %, whereas the models using conventional kriging, empirical Bayesian 
kriging, and inverse distance weighting had recalls of 84.7 %, 88.9 %, and 93.4 %, respectively. 



ASSESSING ENVIRONMENTAL INFLUENCES ON RADON LEVELS: ANALYSIS OF INDEPENDENT VARIABLES.  
ANIL PAWADE, SHRIKANT CHARHATE 

22 ISSN PRINT 2351-5279, ISSN ONLINE 2424-4627  

Thus, variable identification has improved due to the Quadratic Discriminant Extreme Learning 
Machine with high recall. 

 
Fig. 21. Comparison of recall with existing methods 

The sensitivity of the proposed method is contrasted with many alternative ways that are 
currently in use in Fig. 22. The sensitivity of the proposed method is contrasted with that of other 
methods that are already in use, including Inverse Distance Weighting, Ordinary Kriging, and 
Empirical Bayesian Kriging. The models using conventional kriging, empirical Bayesian kriging, 
and inverse distance weighting have recalls of 95 %, 92 %, and 95 %, respectively, whereas the 
recommended model had a sensitivity of 96 %. Thus, Unsupervised Bayesian Multiple Regression 
Analysis has enhanced predictive analysis with high sensitivity rate. 

 
Fig. 22. Comparison of sensitivity with existing methods 

Fig. 23 compares the specificity of the proposed approach with several other approaches that 
are currently in use. The proposed method’s specificity is compared to that of existing approaches, 
such as Empirical Bayesian Kriging, Ordinary Kriging, and Inverse Distance Weighting. The 
proposed approach has a sensitivity of 97 %, while the models utilizing inverse distance weighting, 
conventional kriging, and empirical Bayesian kriging have specificities of 96 %, 94 %, and 89 %, 
respectively. Thus, variable identification has improved due to the Quadratic Discriminant 
Extreme Learning Machine with high specificity. 

 
Fig. 23. Comparison of specificity with existing methods 

Simple linear regression is a powerful mathematical algorithm that excels under certain 
conditions due to its simplicity, efficiency, and interpretability. It models the relationship between 



ASSESSING ENVIRONMENTAL INFLUENCES ON RADON LEVELS: ANALYSIS OF INDEPENDENT VARIABLES.  
ANIL PAWADE, SHRIKANT CHARHATE 

 MATHEMATICAL MODELS IN ENGINEERING 23 

two variables with a straight line, making it easy to understand and communicate findings. It is 
computationally efficient, requiring only two parameters, making it suitable for large datasets. Its 
ease of implementation is enhanced by built-in functions in software packages and programming 
languages. 

Overall the comparison method in predictive analysis and variable identification evaluates the 
proposed approach against existing methods using various performance metrics. These include 
MAE, RMSE, RMSLE, Percentage Bias, Coefficient of Relation, Accuracy, Precision, Recall, 
sensitivity and specificity. The proposed approach outperforms or aligns with current methods in 
these domains with a Percentage Bias of 92 %, and Coefficient of relation with 81. Additionally, 
the approach achieves an impressive 5.1 % of MAE, 5.5 % of RMSE, 0.08 % of RMSLE 
establishing it as a superior option for predictive analysis and variable identification in radon 
concentration. This advantage over Inverse distance weighting, Empirical Bayesian Kriging, and 
Ordinary Kriging techniques is particularly notable in real-world circumstances with complicated 
dynamics and interference difficulties.  

5. Conclusions 

Particularly in the complex field of air pollution research, where various hypotheses needed 
for careful evaluation and careful interpretation, regression analysis was essential for prediction 
and variable identification. The proposed method Unsupervised Bayesian Multiple Regression 
Analysis was used for predictive analysis and this technique solved the multicollinearity problems 
in estimating indoor radon levels and it accurately provided the individual effects of each predictor 
variable by taking into account the intricate relationships between the many components involved 
in the prediction of radon levels inside. Furthermore, the proposed Quadratic Discriminant 
Extreme Learning Machine was used for variable identification and it solved the indoor radon 
levels issues affected by complex residual distributions, and it developed models that were more 
resistant to non-Gaussian residual distributions more capable of accurately identifying the 
variables influencing indoor radon levels. When compared to Inverse distance weighting, 
Empirical Bayesian Kriging, and Ordinary Kriging methods, the comparative analysis provides 
an unqualified demonstration of the method's superiority, exhibiting remarkable performance 
metrics like 5.5 % of RMSE, 92 % of Percentage Bias, 81 of Coefficient of relation, 98.2 % of 
accuracy, 96.3 % of precision and 96 % of sensitivity by the proposed technique Unsupervised 
Bayesian Multiple Regression Analysis, which solved the predictive analysis problems in radon 
concentration. Also, achieved 5.1 % of MAE, 0.08 % of RMSLE, 97.8 % of recall and 97 % of 
specificity by the proposed technique of Quadratic Discriminant Extreme Learning Machine 
which used for variable identification in radon concentration. This all-encompassing method 
promises sensitive operational efficiency and is a significant advancement in variable 
identification and predictive analysis in real-world scenarios. It represents a significant advance 
in this knowledge of radon concentrations and has the potential to revolutionize this sector. 
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