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Abstract. The metric representation of a vertex 𝑣 of a graph 𝐺 is a finite vector representing 
distances of 𝑣 with respect to vertices of some ordered subset 𝑆 ⊆ 𝑉 ሺ𝐺ሻ. If no suitable subset of 𝑆 provides separate representations for each vertex of 𝑉ሺ𝐺ሻ, then the set 𝑆 is referred to as a 
minimal resolving set. The metric dimension of 𝐺 is the cardinality of the smallest (with respect 
to its cardinality) minimal resolving set. A resolving set 𝑆 is secure if for any 𝑣 ∈ 𝑉– 𝑆, there exists 𝑥 ∈ 𝑆 such that ሺ𝑆– ሼ𝑥ሽሻ ∪ ሼ𝑣ሽ is a resolving set. For various classes of graphs, the value of the 
secure resolving number is determined and defined. The secure metric dimension of the graph 
classes is being studied in this work. The results show that different graph families have different 
metric dimensions. 
Keywords: secure metric dimension, classes of graphs. 

1. Introduction 

Let 𝐺 ൌ ሺ𝑉,𝐸ሻ be a connected, simple, finite graph. On which the ordering ሺ𝑥ଵ, 𝑥ଶ, . . . , 𝑥ሻ is 
imposed, let 𝑆̅ ൌ ሼ𝑥ଵ, 𝑥ଶ, . . . , 𝑥ሽ. The metric description of 𝑏 with regard to 𝑆̅ is defined as the 
ordered 𝑘-tuples 𝑟ሺ𝑏 |𝑆̅ሻ ൌ ሺ𝑑ሺ𝑥ଵ, 𝑏ሻ,𝑑ሺ𝑥ଶ, 𝑏ሻ, . . . ,𝑑ሺ𝑥, 𝑏ሻሻ for each 𝑏 ∈ 𝑉ሺ𝐺ሻ. If  𝑟ሺ𝑥| 𝑆̅ሻ ൌ 𝑟 ሺ𝑏|𝑆̅ሻ implies 𝑥 ൌ 𝑏 for every 𝑥, 𝑏 ∈ 𝑉ሺ𝐺ሻ, then the set 𝑆̅ is referred to as a resolving 
set of 𝐺. A minimal resolving set, also known as a basis, is a resolving set of 𝐺 with minimum 
cardinality. The dimension of 𝐺, represented by 𝑑𝑖𝑚ሺ𝐺ሻ, is the cardinality of a minimum 
resolving set [1]. 

There is previous study in the literature on the location of sets in a connected graph [2, 3]. 
Nearly forty years ago, Slater introduced the idea of finding sets (resolving sets) and a reference 
set (metric dimension). Afterwards, the aforementioned theory [4] was independently discovered 
by Harary and Melter. They started referring to location numbers as metric dimensions. On 
resolving sets, resolving dominating sets, independent resolving sets, etc., many papers have been 
composed. In a graph, the concept of security is linked to many kinds of sets. A dominating set 𝐷 
of 𝐺 is a secure set, for instance, if there is an 𝑥 ∈ 𝐷 such that ሺ𝐷 െ ሼ𝑢ሽሻ ∪ ሼ𝑣ሽ is a dominating 
set for any 𝑣 ∈ 𝑉 െ 𝐷 [5, 6]. Farooq et al. [7] studied the metric dimension of the line graph of 
the Bakelite network and subdivided the Bakelite network. According to [8], a path graph is the 
only graph with a metric dimension of 1. For 𝑛  3, the metric dimension of the cycle graph is 2. 
This idea is especially helpful for applications including chemistry and space routing. For instance, 
in space routing, the objective is to assign the smallest number of robots feasible to certain vertices 
so that they can visit each vertex exactly once. The problem can be resolved by applying the idea 
of metric dimension. The minimal landmarks needed for the hexagonal network 𝐻𝑋ሺ𝑛ሻ and the 
honeycomb network 𝐻𝐶ሺ𝑛ሻ are three and six, respectively, according to research by Abbas et al. 
[9]. The local metric dimension of a number of specific line graphs was examined by Yang et al. 
[10]. Jothi et al. [11] investigated the relation between the metric dimension of a bipartite graph 
and its projections. Additionally, they provided some realization results for the bounds on the 
metric dimension of a bipartite graph. The dominant metric dimension of the generalized Petersen 
graph was examined by Susilowati et al. [12]. Mazidah et al. [13] examined the resolving 
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independent domination number of path graph, cycle graph, friendship graph, helm graph and fan 
graph. The maximum number of vertices in a bipartite graph with a particular diameter and metric 
dimension was computed by Dankelmann et al. [14]. Additional details can be discovered in the 
literature [15-19]. 

Our main aim in this paper is to compute the secure resolving set of some graphs, including 
the join of ሺ𝑚,𝑛ሻ Kite graph, the 1-join of square of path 𝑃ଶ graph, coconut tree 𝐶𝑇ሺ𝑚,𝑛ሻ and 
extended jewel graph. 

Definition 1.1 The basis of the graph is the resolving set with the least vertices [7]. 
Definition 1.2 [20]: A ሺ𝑚,𝑛ሻ Kite graph is made up of a cycle of length 𝑚 with 𝑛 edges and a 

path connected to one of the cycle's vertices. 
Definition 1.3 [21]: A Coconut tree 𝐶𝑇ሺ𝑚,𝑛ሻ: for any positive integers 𝑛 and 𝑚  2 is 

derived from the path 𝑃 by attaching 𝑛 additional pendant edges at an end vertex of 𝑃. 
Illustration 1.3. Consider ∆ହ, for which 𝑅 ൌ ሼ𝑢ଵ,𝑢ସሽ. Then, 𝑅 is resolving, and for any  𝑢 ∈ 𝑉 െ 𝑅, there exists 𝑣 ∈ 𝑅 such that ሺ𝑅 െ ሼ𝑣ሽሻ ∪ ሼ𝑢ሽሻ is a resolving set of ∆ହ. It can be easily 

seen that 𝑠𝑑𝑖𝑚 ሺ∆ହሻ ൌ 2. 

 
Fig. 1. An example on a Kite graph 

2. Secure resolving dimension for several known graphs [5, 6]  

1. 𝑠𝑑𝑖𝑚ሺ𝐾ሻ ൌ 𝑛 െ 1 ൌ 𝑑𝑖𝑚ሺ𝐾ሻ.  
2. 𝑠𝑑𝑖𝑚ሺ𝐾ଵ,𝑛ሻ ൌ 𝑛  𝑑𝑖𝑚ሺ𝐾ଵ,𝑛ሻ.  
3. 𝑠𝑑𝑖𝑚 ൫𝐾,൯ ൌ 𝑚  𝑛 െ 2 ൌ 𝑑𝑖𝑚൫𝐾,൯, ሺ𝑚,𝑛  2ሻ. 
4. 𝑠𝑑𝑖𝑚 ሺ𝑃ሻ ൌ 2  𝑑𝑖𝑚 ሺ𝑃ሻ ൌ 1, ሺ𝑛  3ሻ. 
5. 𝑠𝑑𝑖𝑚ሺ𝐶ሻ ൌ 2 ൌ 𝑑𝑖𝑚ሺ𝐶ሻ. 
6. For Trapezoid graph 𝑇𝑟, 𝑑𝑖𝑚ሺ𝑇𝑟ሻ ൌ 2 and 𝑠𝑑𝑖𝑚ሺ𝑇𝑟ሻ ൌ 2, for all 𝑛  6.  
7. For 𝑍 െ ሺ𝑃ሻ graph, 𝑑𝑖𝑚ሺ𝑍 െ ሺ𝑃ሻሻ ൌ 2 and 𝑠𝑑𝑖𝑚ሺ𝑍 െ ሺ𝑃ሻሻ ൌ 2. 
8. For Tortoise graph 𝑇𝑜, 𝑑𝑖𝑚 ሺ𝑇𝑜ሻ ൌ 2 and 𝑠𝑑𝑖𝑚ሺ𝑇𝑜ሻ ൌ 2. 
9. 𝑠𝑑𝑖𝑚ሺ𝑃ଶ ⊽ 𝑃ሻ ൌ 2 ൌ 𝑑𝑖𝑚ሺ𝑃ଶ ⊽ 𝑃ሻ. 

3. Main results 

Here, we demonstrate that the secure metric dimension of including the join of ሺ𝑚,𝑛ሻ Kite 
graph, the 1-join of square of path 𝑃ଶ graph, coconut tree 𝐶𝑇ሺ𝑚,𝑛ሻ and extended jewel graph. We 
also derive the explicit formulas for the secure metric dimension of shadow graph of path 𝐷ଶሺ𝑃ሻ, 
Jelly fish 𝐽,, Lilly graph 𝐿, Twig graph 𝑇𝑔, Joint sum of two copies of 𝐶, quadrilateral graphs 𝑄 and subdividing all the edges of 𝑃ʘ𝐾ଵ. 

Theorem 3.1: Let 𝐺 is Join of ሺ𝑚,𝑛ሻ Kite graph 𝐾, with 𝑛 vertices and ሼ𝑣ଵ, 𝑣 ଶ⁄ ାଷሽ be a 
secure metric basis of 𝐺, then 𝑠𝑑𝑖𝑚ሺ𝐾,ሻ ൌ 2. 

 
Fig. 2. Join of ሺ𝑚,𝑛ሻ Kite graph 𝐾, 
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Proof. The secure resolving set in general form is 𝑆̅ ൌ ሼ𝑣ଵ,𝑣ାଷሽ ⊂ 𝑉ሺ𝐺ሻ. The following are 
representations of the vertices 𝑣 ∈ 𝑉ሺ𝐺ሻ with respect to 𝑆̅: 
𝑟ሺ𝑣|𝑆̅ሻ ൌ

⎩⎪⎪
⎨⎪
⎪⎧ቀ0,𝑛2ቁ , 𝑖 ൌ 1,ቀ1,𝑛2ቁ , 𝑖 ൌ 2,ሺ𝑖 െ 2,𝑚െ 𝑖  2ሻ, 3  𝑖  𝑚  1,ሺ𝑚, 1ሻ, 𝑖 ൌ 𝑚  2,ሺ𝑚, 0ሻ, 𝑖 ൌ 𝑚  3,ሺ𝑖 െ 3, 𝑖 െ 𝑚 െ 3ሻ, 𝑚 4  𝑖  𝑛.

 
Since all vertices have unique representations, we obtain 𝑠𝑑𝑖𝑚ሺ𝐾,ሻ ൌ 2. 
Theorem 3.2: Let 𝐺 is 1-join of square of path 𝑃ଶ with 𝑛 vertices and ሼ𝑣ଵ,𝑣 ଶ⁄ ାଷሽ be a secure 

metric basis of 𝐺, then 𝑠𝑑𝑖𝑚ሺ𝑃ଶሻ ൌ 2. 

 
Fig. 3. 1-join of square of path 𝑃ଶ 

Proof. We label the 1-join of square of path 𝑃ଶ as shown in Fig. 2 such that 𝑛 is the vertices 
number. It is clear that |𝑉ሺ𝐺ሻ| is 𝑛 ൌ 𝑘  4. Let 𝑆 ഥ ൌ ሼ𝑣ଶ,𝑣ିଵሽ. 

Begin 𝑑ሺ𝑣ଵ, 𝑆̅ሻ ൌ ቀ1, ଶቁ, 𝑑ሺ𝑣ଶ, 𝑆̅ሻ ൌ ቀ0, ଶ െ 1ቁ 
for ሺ𝑖 ൌ 3;  𝑖 ൏ൌ ଶ ;  𝑖 ൌ 𝑖  2ሻ 
    𝑑ሺ𝑣 , 𝑆̅ሻ ൌ ቀିଵଶ , ିାଵଶ ቁ 
end 
for ሺ𝑖 ൌ 4;  𝑖 ൏ൌ ଶ െ 1;  𝑖 ൌ 𝑖  2ሻ 
    𝑑ሺ𝑣 , 𝑆̅)=ቀଶ , ିାଶଶ ቁ   
end 
for ሺ𝑖 ൌ ଶ  1;  𝑖 ൏ൌ 𝑛;  𝑖 ൌ 𝑖  2ሻ 
    𝑑ሺ𝑣 , 𝑆̅ሻ ൌ ቀଶ , ିଶ ቁ   
end 
for ሺ𝑖 ൌ ଶ  2;  𝑖 ൏ൌ 𝑛 െ 1;  𝑖 ൌ 𝑖  2ሻ 
    𝑑ሺ𝑣 , 𝑆̅ሻ ൌ ቀାଵଶ , ିାଵଶ ቁ 
end 
end 
This completes the proof. 
Theorem 3.3: If 𝐶𝑇ሺ𝑚,𝑛ሻ, 𝑛  2, 𝑚  4 is coconut tree, then 𝑠𝑑𝑖𝑚ሺ𝐶𝑇ሺ𝑚,𝑛ሻሻ ൌ 𝑚. 
Proof. The secure resolving set in general form is 𝑆 ഥ ൌ ሼ𝑣ଵ, 𝑣ଶ,𝑣ିଵ,𝑣 ሽ ⊂ 𝑉ሺ𝐶𝑇ሺ𝑚,𝑛ሻሻ. The 

representations of vertices 𝑣 ∈ 𝑉ሺ𝐶𝑇ሺ𝑚,𝑛ሻሻ in regard to 𝑆 ഥare as follow. 
We choose a subset 𝑆 ഥ ൌ ሼ𝑣ଵ,𝑣ଶ,𝑣ଷ, … , 𝑣ିଵ,𝑣ሽ, and we must demonstrate that 𝑠𝑑𝑖𝑚 ሺ𝐶𝑇 ሺ𝑚,𝑛ሻሻ ൌ 𝑚 for 𝑚  4 and 𝑛  3. We obtained the representations of vertices in 
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graph 𝐶𝑇ሺ𝑚,𝑛ሻ with respect to 𝑆 ഥare: 𝑟ሺ𝑣ଵ|𝑆 ഥሻ ൌ ሺ0, 2, 2, … ,2,𝑚  2ሻ 𝑟ሺ𝑣ଶ|𝑆 ഥሻ ൌ ሺ2, 0, 2, … , 2,𝑚  2ሻ 𝑟ሺ𝑣ଷ|𝑆 ഥሻ ൌ ሺ2, 2, 0, … , 2,𝑚  2ሻ ⋮ 𝑟ሺ𝑣|𝑆 ഥሻ ൌ ሺ2, 2, 2, … ,2,𝑚 2ሻ 𝑟ሺ𝑣ାଵ|𝑆̅ሻ ൌ ሺ1, 1, 1, … ,1,𝑚  1ሻ 𝑟ሺ𝑣ାଶ|𝑆 ഥሻ ൌ ሺ𝑖 െ 𝑚, 𝑖 െ 𝑚, … , 𝑖 െ 𝑚, 2𝑚 െ 𝑖  2ሻ ⋮ 𝑟ሺ𝑣|𝑆 ഥሻ ൌ ሺ𝑖 െ 𝑚, 𝑖 െ 𝑚, … , 2𝑚െ 𝑖  2ሻ 

 
Fig. 4. Coconut tree 𝐶𝑇ሺ𝑚,𝑛ሻ 

The representations of vertices in graph 𝐶𝑇 ሺ𝑚,𝑛ሻ are distinct as seen above. This implies that 𝑆̅ is secure resolving set, but this does not prove that it is the lower bound. As a result, the upper 
bound is 𝑠𝑑𝑖𝑚ሺ𝐶𝑇ሺ𝑚,𝑛ሻሻ  𝑚. Now, we demonstrate that 𝑠𝑑𝑖𝑚ሺ𝐶𝑇ሺ𝑚,𝑛ሻሻ  𝑚. Let  𝑆 ഥ ൌ ሼ𝑣ଵ, 𝑣ଶ,𝑣ଷ, … , 𝑣ିଵ,𝑣ሽ be a secure resolving set with |𝑆 ഥ | ൌ 𝑚. Assume that 𝑆ଵഥ  is another 
minimal resolving set, or |𝑆ଵഥ | ൏ 𝑚. 

If we select an ordered set 𝑆ଵഥ ⊆ 𝑆 ഥ െ ሼ𝑣 , 𝑣ሽ, 1  𝑖, 𝑗  𝑚, 𝑖 ് 𝑗, so that there exist two 
vertices 𝑣 , 𝑣 ∈ 𝐶𝑇ሺ𝑚,𝑛ሻ such that 𝑟ሺ𝑣|𝑆 ഥሻ ൌ 𝑟ሺ𝑣|𝑆 ഥሻ ൌ ሺ𝑖 െ 𝑚, 𝑖 െ 𝑚, . . . , 𝑖 െ 𝑚ሻ. 𝑆ଵഥ  is not a 
secure resolving set, which is contrary to assumption. As a result, 𝑠𝑑𝑖𝑚ሺ𝐶𝑇ሺ𝑚,𝑛ሻሻ  𝑚 is the 
lower bound. From the above proving, we conclude that 𝑠𝑑𝑖𝑚ሺ𝐶𝑇ሺ𝑚,𝑛ሻሻ ൌ 𝑚. 

Theorem 3.4: If 𝐸 ሺ𝑗ሻ, 𝑛  7, is extended jewel graph, then 𝑠𝑑𝑖𝑚ሺ𝐸ሺ𝑗ሻሻ ൌ 𝑛 െ 4. 
Proof. We choose a subset 𝑆 ഥ ൌ ሼ𝑣ଵ,𝑣ଶ, 𝑣ଷ, … , 𝑣ିହ,𝑣ሽ, and we must demonstrate that  𝑠𝑑𝑖𝑚ሺ𝐸ሺ𝑗ሻሻ ൌ 𝑛 െ 4 for 𝑛  7. We obtained the representations of vertices in graph  𝐸ሺ𝑗ሻ with respect to 𝑆 ഥare: 𝑟ሺ𝑣ଵ|𝑆 ഥሻ ൌ ሺ0, 2, 2, … ,2, 2ሻ 𝑟ሺ𝑣ଶ|𝑆 ഥሻ ൌ ሺ2, 0, 2, … , 2, 2ሻ 𝑟ሺ𝑣ଷ|𝑆 ഥሻ ൌ ሺ2, 2, 0, … , 2, 2ሻ ⋮  𝑟ሺ𝑣 െ 5|𝑆 ഥሻ ൌ ሺ2, 2, 2, … ,2, 0,2ሻ 𝑟ሺ𝑣 െ 4|𝑆 ഥሻ ൌ ሺ2, 2, 2, … ,2,2ሻ 𝑟ሺ𝑣 െ 3|𝑆 ഥሻ ൌ ሺ3,1, … ,1, 1ሻ 𝑟ሺ𝑣 െ 2|𝑆 ഥሻ ൌ ሺ1,3,1, … ,1, 1ሻ 𝑟ሺ𝑣 െ 1|𝑆 ഥሻ ൌ ሺ1,1,3, 3, … ,3, 3ሻ 𝑟ሺ𝑣|𝑆 ഥሻ ൌ ሺ2, 2, … , 2,0ሻ 
The representations of vertices in graph 𝐸ሺ𝑗ሻ are distinct as seen above. This implies that 𝑆 ഥ  is 

secure resolving set, but this does not prove that it is the lower bound. As a result, the upper bound 
is 𝑠𝑑𝑖𝑚ሺ𝐸ሺ𝑗ሻሻ  𝑛 െ 4. Now, we demonstrate that 𝑠𝑑𝑖𝑚ሺ𝐸ሺ𝑗ሻሻ  𝑛 െ 4. Let  𝑆 ഥ ൌ ሼ𝑣ଵ, 𝑣ଶ,𝑣ଷ, … , 𝑣ିହ,𝑣ሽ be a secure resolving set with |𝑆 ഥ | ൌ 𝑛 െ 4. Assume that 𝑆ଵഥ  is 
another minimal resolving set, or |𝑆ଵഥ | ൏ 𝑛 െ 4. 

If we select an ordered set 𝑆ଵഥ ⊆ 𝑆 ഥ െ ሼ𝑣 , 𝑣ሽ, 1  𝑖, 𝑗  𝑚, 𝑖 ് 𝑗, so that there exist two 
vertices 𝑣 , 𝑣 ∈ 𝐸ሺ𝑗ሻ such that 𝑟ሺ𝑣|𝑆 ഥሻ ൌ 𝑟ሺ𝑣|𝑆 ഥሻ ൌ ሺ2, 2, . . . , 2ሻ. It should be noted that 𝑆ଵഥ  is 
not a secure resolving set, which is contrary to assumption. As a result, 𝑠𝑑𝑖𝑚ሺ𝐸 ሺ𝑗ሻሻ  𝑛 െ 4 is 
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the lower bound. From the above proving, we conclude that 𝑠𝑑𝑖𝑚ሺ𝐸ሺ𝑗ሻሻ ൌ 𝑛 െ 4. 

 
Fig. 5. Extended jewel graph 𝐸ሺ𝑗 ሻ 

4. Secure resolving dimension for special classes of graphs 

Corollary 4.1 If 𝐺 is a shadow graph of path 𝐷ଶሺ𝑃ሻ of order 𝑛  3, then 𝑠𝑑𝑖𝑚ሺ𝐷ଶሺ𝑃ሻሻ ൌ ଶ. 
Corollary 4.2 If 𝐺 is Jelly fish 𝐽, of order 𝑛  3, then 𝑠𝑑𝑖𝑚ሺ𝐽,ሻ ൌ 𝑛 െ 5. 
Corollary 4.3 If 𝐺 is Lilly graph 𝐿, 𝑛  5, then 𝑠𝑑𝑖𝑚ሺ𝐿ሻ ൌ ାଵଶ . 
Corollary 4.4 If 𝐺 is Twig graph 𝑇𝑔, 𝑛  4, then 𝑠𝑑𝑖𝑚ሺ𝑇𝑔ሻ ൌ ାସଷ . 
Corollary 4.5 If 𝐺 is Joint sum of two copies of 𝐶, 𝑛  4, then 𝑠𝑑𝑖𝑚 ሺ𝐺ሻ ൌ 2. 
Corollary 4.6 If 𝐺 is quadrilateral graphs 𝑄, 𝑛  6, then 𝑠𝑑𝑖𝑚 ሺ𝑄ሻ ൌ ିଶଶ . 
Corollary 4.7 If 𝐺 is subdividing all the edges of 𝑃ʘ𝐾ଵ, 𝑛  7, then 𝑠𝑑𝑖𝑚ሺ𝐺ሻ ൌ 2. 

5. Conclusions 

The secure metric dimension of a graph is an NP-complete problem. The present study starts 
with the task of finding the secure metric dimension of new graph types. The secure metric 
dimensions of the join of the ሺ𝑚,𝑛ሻ kite graph and the 1-join of the square of the path graph have 
the same secure metric dimensions. The secure metric dimension of the coconut tree and the 
extended jewel graph have different secure metric dimensions. Additionally, we deduced the exact 
formulas for the joint total of two copies of 𝐶, quadrilateral graphs 𝑄, Jelly fish 𝐽,, Lilly graph 𝐿, Twig graph 𝑇𝑔, and subdividing all the edges of 𝑃ʘ𝐾ଵ. 

In the future, we plan to determine the secure metric dimension of many graphs, such as 
subdivisions of crown graphs, twig graph, Lilly graph and jelly fish graph. Many other ideas can 
be inspired from the references [22-25]. 
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