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Abstract. In response to the significant challenges posed by strong non-stationarity and the 
vulnerability to intense background noise in rolling bearing signals, as well as the inherent 
limitations of conventional convolutional neural networks (CNN) when processing 
one-dimensional (1D) signals without fully leveraging the inter-data relationships, this study 
introduces an innovative diagnostic approach for rolling bearings. The method employs the 
Time-Reassigned Multi-Synchro Squeezing Transform (TMSST) to preprocess 1D vibration 
signals. By harnessing the temporal correlations across various intervals, TMSST generates a set 
of time-frequency feature maps that are subsequently fed into a CNN to adaptively extract and 
classify the fault characteristics of rolling bearings. To substantiate the efficacy of the proposed 
model, the Case Western Reserve University's bearing dataset serves as the benchmark for the 
fault diagnosis analysis. Moreover, the study incorporates several alternative data processing 
techniques for comparative evaluation of the classification accuracy. The findings reveal that the 
proposed model, when juxtaposed with other image encoding methods, consistently delivers 
superior diagnostic performance across a spectrum of load conditions and noise environments. It 
achieves an impressive global accuracy of 95.67 %, thereby facilitating robust end-to-end fault 
pattern recognition in rolling bearings. 
Keywords: rolling bearing, convolutional neural networks, diagnosis method, time-reassigned 
multi-synchro squeezing transform, time-frequency feature maps. 

1. Introduction 

Rolling bearings, integral to the rotating machinery, exert a pivotal influence on the operational 
stability and longevity of the mechanism under diverse loading and positional scenarios. The real-
time surveillance of the vibration signals emanating from the machinery is of paramount 
importance for its stable function, offering maintenance personnel an all-encompassing 
assessment of the equipment's operational status [1]. However, the conventional fault diagnosis 
techniques, which are predominantly dependent on the manual analysis by experts, have proven 
to be insufficient in tackling the challenges of voluminous, heterogeneous, and rapid data streams 
characteristic of the modern machinery industry. Specifically, in the context of vast datasets from 
mechanical equipment under fluctuating operational conditions, the traditional methods often 
encounter limitations in their monitoring capabilities and generalization performance, particularly 
when faced with intricate and mutable fault information [2]. Consequently, the integration of 
mechanical equipment data with intelligent algorithms to forge intelligent fault diagnosis 
technologies has emerged as an essential strategy to surmount these challenges [3]. 

The conventional intelligent fault diagnosis process is typically structured around three 
fundamental stages: Initially, signal acquisition is executed through sensors and related devices to 
gather foundational data on the machinery's operational status. Subsequently, signal processing 
methodologies are applied to distill features from the acquired signals, thereby uncovering the 
characteristic information indicative of equipment faults. Ultimately, leveraging the extracted 
feature data, machine learning (ML) or deep learning (DL) algorithms are engaged for fault 
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identification, ascertaining the nature and severity of the equipment's faults [4]. By amalgamating 
intelligent algorithms with mechanical equipment data, intelligent fault diagnosis methods not 
only enhance the precision and efficiency of fault diagnosis but also promote predictive 
maintenance, thereby providing a solid foundation for the secure and stable operation of 
mechanical equipment [5]. 

The 1D vibration signals of rolling bearings encapsulate a wealth of information regarding 
their operational status, characterized by their inherent nonlinearity and non-stationarity. 
Consequently, the extraction of fault features stands as an indispensable step in the realm of fault 
diagnosis [6]. Time-frequency analysis emerges as a robust signal processing technique that 
concurrently examines both temporal and spectral aspects of a signal. The spectrum of common 
time-frequency analysis methods encompasses Empirical Mode Decomposition (EMD) [7], 
Short-Time Fourier Transform (STFT) [8], and Wavelet Transform (WT) [9]. EMD offers the 
capability to adaptively decompose signals into a series of Intrinsic Mode Functions (IMFs) that 
represent different scale-specific components. However, the process may encounter the problem 
of mode mixing, leading to inaccurate decomposition and affecting subsequent analysis and 
judgment. STFT, while adept at conducting time-frequency analysis, is constrained by its fixed 
time resolution, which may not adequately capture the abrupt transitions present in vibration 
signals. This characteristic results in STFT losing some feature quantities, leading to misjudgment 
of bearing fault signals. Conversely, WT is distinguished by its variable time window that 
contracts with increasing signal frequency and expands otherwise, thereby extending the 
capabilities of STFT and mitigating its inherent limitations, which has led to its broad adoption in 
various applications. However, when processing signals with complex spectra, it may not provide 
accurate analysis results, which can lead to misjudgment or missed judgment when analyzing 
bearing fault characteristics. 

Yan et al. have provided a comprehensive review of the applications of Continuous Wavelet 
Transform (CWT), Discrete Wavelet Transform (DWT), Wavelet Packet Transform (WPT), and 
Second-Generation Wavelet Transform (SGWT) within the domain of fault diagnosis [10]. 
TMSST is a signal processing technique particularly suited for processing nonlinear and 
non-stationary signals. It is an improvement based on the traditional SST. Through time 
reassignment technology, TMSST further processes signals to improve the accuracy and 
resolution of time-frequency analysis. Time reassignment can reduce cross-terms in 
time-frequency representation, thereby more clearly revealing the intrinsic structure of the signal. 
By adjusting the time axis of the signal, the time-frequency representation of the signal becomes 
more focused, making it easier to identify and extract fault characteristics. In parallel, fault 
recognition is equally pivotal in the diagnostic process, as mere feature extraction is insufficient 
for handling the demands of voluminous data processing. Traditional fault recognition tools 
encompass Bayesian classifiers [11], Artificial Neural Networks (ANNs) [12, 13], and Support 
Vector Machines (SVMs). Both Bayesian classifiers and ANNs are adept at discerning fault types, 
provided that a substantial number of training samples are at their disposal. However, procuring 
an ample dataset of fault samples in practical scenarios can be quite challenging. SVMs, endowed 
with robust generalization capabilities, commendable versatility, and high classification precision, 
are capable of achieving effective classification even with a modest number of samples, which 
has propelled their widespread application in the research of mechanical fault diagnosis [14-17]. 
Nonetheless, SVMs may underperform with redundant data due to their inherent limitations in 
learning deep features, attributed to their shallow architecture [18]. 

The unprecedented success of CNN in the domain of image classification has spurred 
significant interest in transforming sensor-collected signals into image-based representations 
through specialized encoding techniques, a topic that is currently at the forefront of research [19]. 
Tao et al. have pioneered a method that amalgamates Short-Time Fourier Transform (STFT) with 
Classification Generative Adversarial Networks (cGAN) to transmute 1D signals into two-
dimensional (2D) time-frequency images, thereby achieving commendable diagnostic accuracy 
[20]. Yuan et al. have harnessed the Hilbert-Huang Transform (HHT) to translate the temporal 
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sequences of vibration signals into time-frequency images, subsequently employing a CNN to 
discern fault-sensitive features within the time-frequency spectrum from these images for fault 
classification [21]. Zheng et al. introduced a novel Multi-Synchronous Compression S-Transform, 
integrating the S-Transform within a multi-synchronous compression framework, and 
substantiated the efficacy of this approach through both simulated and field signals [22]. In 
addition, Zhou et al. have presented a rolling bearing diagnosis methodology predicated on the 
Wigner-Ville Distribution (WVD) [23]. These methodologies underscore the potential of 
transmuting vibration signals into image representations for fault diagnosis via CNNs. By 
capitalizing on the prodigious feature extraction process of CNNs, it becomes feasible to distill 
meaningful insights from time-frequency images and classify various fault types with precision. 
This investigative trajectory is replete with promise for augmenting the fidelity and expedience of 
mechanical fault diagnosis systems. 

This paper introduces an innovative TMSST-CNN model. which offers significant 
improvements in signal transformation and fault recognition. TMSST is used to convert raw data 
into feature-rich images without relying on preset parameters, effectively extracting useful 
information from these complex signals. Subsequently, these feature maps can be combined with 
CNN to further enhance the accuracy of fault diagnosis by leveraging CNN's powerful feature 
extraction capabilities after transforming the signals into images. The proposed methodology’s 
efficacy is corroborated using rolling bearing data procured from the Case Western Reserve 
University Bearing Data Center and Fault Diagnosis Prototype Rig. Moreover, the model’s 
generalization capability is rigorously tested across a variety of load conditions and noisy 
environments. The findings indicate that the TMSST-CNN model surpasses alternative 2D image 
encoding techniques in the realm of rolling bearing fault diagnosis, attaining an accuracy of 
95.67 %. 

2. Time-reassigned multi-synchro squeezing transform 

2.1. Time-reassigned synchro squeezing transform 

In this section, we first briefly introduce the theoretical basis of the TSST [24]. A 
single-component signal with varying frequency can be described in Eq. (1): 𝑠̂ሺ𝜔ሻ = 𝐴ሺ𝜔ሻ𝑒௜ఝሺఠሻ, (1)

where, 𝐴(𝜔) and 𝜑(𝜔) represent the amplitude and phase of the signal in the frequency domain, 
while −𝜑ᇱ(𝜔) denotes the group delay (GD). When a signal is represented in the time-frequency 
domain, the Ideal Time-frequency Representation (ITFR) can be expressed as Eq. (2): 𝐼𝑇𝐹𝑅(𝑡,𝜔) = 𝐴(𝜔)𝑒௜ఝ(ఠ)𝛿൫𝑡 + 𝜑ᇱ(𝜔)൯, (2)

where, 𝛿() represents the Dirac delta function. According to Eq. (2), ideally, the time-frequency 
characteristics of a signal should only appear on the GD trajectory. The STFT can be used to 
extend the signal given by Eq. (1) into the time-frequency domain. In the frequency domain, the 
STFT of signal 𝑔ො(𝜉) using a moving window function can be expressed as Eq. (3): 

𝐺(𝑡,𝜔) = (2𝜋)ିଵ න 𝑠̂ାஶ
ିஶ (𝜉)𝑔ො(𝜉 − 𝜔)𝑒௜(కିఠ)௧𝑑𝜉. (3)

Assuming that the analyzed signal exhibits slow frequency variations, which implies that the 
magnitude of ∃𝜺 is sufficiently small, and given that ∀𝜔 satisfies conditions |𝐴′(𝜔)| ≤ 𝜀 and |𝜑′′(𝜔)| ≤ 𝜀, it is possible to derive a first-order expansion of the signal. This expansion provides 
a simplified representation of the signal’s behavior, capturing its essential characteristics in the 
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time-frequency domain. The first-order approximation allows for a more tractable analysis while 
preserving key information about the signal's dynamics, as show in Eq. (4): 𝑠̂(𝜉) = 𝐴(𝜔)𝑒௜ቀఝ(ఠ)ାఝᇲ(ఠ)(కିఠ)ቁ. (4)

Substituting Eq. (4) into Eq. (3), we can obtain: 𝐺(𝑡,𝜔) = (2𝜋)ିଵ∫ିஶାஶ𝐴(𝜔)𝑒௜(ఝ(ఠ)ାఝᇱ(ఠ)(కିఠ))𝑔ො(𝜉 − 𝜔)𝑒௜(కିఠ)௧𝑑𝜉      = (2𝜋)ିଵ𝐴(𝜔)𝑒௜ఝ(ఠ)∫ିஶାஶ𝑒௜(௧ାఝᇱ(ఠ))(కିఠ)𝑔ො(𝜉 − 𝜔)𝑑𝜉      = 𝐴(𝜔)𝑒௜ఝ(ఠ)𝑔൫𝑡 + 𝜑ᇱ(𝜔)൯,  (5)

where, 𝑔(𝑡) represents the window function in the time domain. According to Eq. (5), the time-
frequency energy propagates along the GD trajectory. To enhance the energy concentration of 
Eq. (5), the 2D GD estimation is as follows: 

𝑡̂(𝑡,𝜔) = Reቆ𝑖𝜕ఠ𝐺(𝑡,𝜔)𝐺(𝑡,𝜔) ቇ. (6)

Substituting Eq. (5) into Eq. (6), we can obtain: 𝑡̂(𝑡,𝜔) = −𝜑ᇱ(𝜔). (7)

Next, we perform a 1D integration of A along the time direction to compress the ambiguous 
time-frequency energy into the GD trajectory. This process can be expressed as Eq. (8): 

𝑇𝑠(𝑢,𝜔) = න 𝐺ାஶ
ିஶ (𝑡,𝜔)𝛿൫𝑢 − 𝑡̂(𝑡,𝜔)൯𝑑𝑡. (8)

Combining Eq. (7) and Eq. (8), we can obtain: 

𝑇𝑠(𝑢,𝜔) = (2𝜋)ିଵ න න 𝑠̂(𝜉)𝑔ො(𝜉 − 𝜔)𝑒௜(కିఠ)௧𝑑𝜉𝑑𝑡𝛿(𝑢 + 𝜑′(𝜔))ାஶ
ିஶ

ାஶ
ିஶ      = න 𝑠̂(𝜉)𝑔ො(𝜉 − 𝜔)𝛿(𝜉 − 𝜔)𝛿(𝜔 − 𝜉)𝑑𝜉𝛿൫𝑢 + 𝜑ᇱ(𝜔)൯ = 𝑠̂(𝜔)𝑔ො(0)𝛿൫𝑢 + 𝜑ᇱ(𝜔)൯.ାஶ

ିஶ
 (9)

Eq. (9) illustrates that for weakly frequency-varying signals as described by Eq. (4), the TSST 
is capable of producing an optimal time-frequency representation. This is achieved by 
compressing the ambiguous time-frequency energy onto the group delay (GD) trajectory. 
Nonetheless, in practical scenarios, mechanical failure-induced vibration signals are frequently 
tainted with noise and exhibit a high degree of complexity. To augment the energy concentration 
within the time-frequency representation (TFR) for signals that are both strongly 
frequency-varying and strongly time-varying, the subsequent section will introduce the technique 
of time-reassigned multi-synchro squeezing transform. This method is designed to enhance the 
clarity and precision of the TFR, thereby facilitating more accurate analysis and diagnosis of 
mechanical faults. 

2.2. Time-reassigned multi-synchro squeezing transform 

For a strongly frequency-varying signal, where ∃𝜀 is small enough and ∀𝜔 satisfies conditions |𝐴′(𝜔)| ≤ 𝜀 and |𝜑′′(𝜔)| ≤ 𝜀, the signal given by Eq. (1) can be extended as Eq. (10): 
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𝑠̂(𝜔) = 𝐴(𝜔)𝑒௜൫ఝ(ఠ)ାఝᇱ(ఠ)(కିఠ)ା଴.ହఝᇱᇱ(ఠ)(కିఠ)మ൯. (10)

The Fourier transform of the Gaussian window function used in STFT can be expressed as 
Eq. (11): 𝑔ො(𝜔) = √2𝜎𝜋𝑒ି଴.ହఙఠమ . (11)

Substituting Eq. (10) into Eq. (3), we obtain Eq. (12): 

𝐺(𝑡,𝜔) = (2𝜋)ିଵ න 𝐴ାஶ
ିஶ (𝜔)𝑒௜൫ఝ(ఠ)ାఝᇲ(ఠ)(కିఠ)ା଴.ହఝᇲᇲ(ఠ)(కିఠ)మ൯√2𝜎𝜋𝑒ିఙ(కିఠ)మଶ 𝑒௜(కିఠ)௧𝑑𝜉

      = (2𝜋)ିଵ√2𝜎𝜋𝐴(𝜔)𝑒௜ఝ(ఠ) න 𝑒௜൫௧ାఝᇲ(ఠ)൯(కିఠ)ାஶ
ିஶ 𝑒଴.ହ൫௜ఝᇲᇲ(ఠ)ିఙ൯(కିఠ)మ𝑑𝜉

      = 𝐴(𝜔)𝑒௜ఝ(ఠ)ඨ 𝜎𝜎 − 𝑖𝜑ᇱᇱ(𝜔) 𝑒ି ቀ௧ାఝᇲ(ఠ)ቁమଶఙିଶ௜ఝᇲᇲ(ఠ).
 (12)

According to Eq. (6), we can obtain the 2D GD estimation as Eq. (13): 

𝑡̂(𝑡,𝜔) = −𝜑ᇱ(𝜔) + 𝜑ᇱᇱ(𝜔)ଶ𝜎ଶ + 𝜑ᇱᇱ(𝜔)ଶ ൫𝑡 + 𝜑ᇱ(𝜔)൯. (13)

According to Eq. (13), for signals with strong frequency variations, the expression given by 
Eq. (6) cannot provide an accurate estimation of the true GD of the signal. Now, substituting A 
into Eq. (13), we obtain Eq. (14): 𝑡̂(−𝜑ᇱ(𝜔),𝜔) = −𝜑ᇱ(𝜔). (14)

Eq. (14) indicates that the group delay −𝜑′(𝜔) is a fixed point of 𝑡̂(𝑡,𝜔), implying that a 
fixed-point iteration algorithm can be employed to reduce the error between C and D. The first 
iteration can be expressed as Eq. (15): 

𝑡̂(𝑡̂(𝑡,𝜔),𝜔) = −𝜑ᇱ(𝜔) + ቆ 𝜑ᇱᇱ(𝜔)ଶ𝜎ଶ + 𝜑ᇱᇱ(𝜔)ଶቇଶ ൫𝑡 + 𝜑ᇱ(𝜔)൯. (15)

As can be seen from Eq. (15), the fixed-point iteration algorithm effectively constructs a new 
2D GD estimation 𝑡̂(𝑡̂(𝑡,𝜔),𝜔). Then, we can derive (16): 𝑡̂(𝑡̂(𝑡,𝜔),𝜔) + 𝜑ᇱ(𝜔) < 𝑡̂(𝑡,𝜔) + 𝜑ᇱ(𝜔). (16)

Eq. (16) implies that after one iteration, the new 2D GD estimation 𝑡̂(𝑡̂(𝑡,𝜔),𝜔) is already 
closer to −𝜑′(𝜔) than 𝑡̂(𝑡,𝜔). By performing a second iteration, we can further obtain Eq. (17): 

𝑡̂(𝑡̂(𝑡̂(𝑡,𝜔),𝜔),𝜔) = −𝜑ᇱ(𝜔) + ቆ 𝜑ᇱᇱ(𝜔)ଶ𝜎ଶ + 𝜑ᇱᇱ(𝜔)ଶቇଷ ൫𝑡 + 𝜑ᇱ(𝜔)൯. (17)

From Eq. (17), we can obtain Eq. (18): 𝑡̂(𝑡̂(𝑡̂(𝑡,𝜔),𝜔),𝜔) + 𝜑ᇱ(𝜔) < 𝑡̂(𝑡̂(𝑡,𝜔),𝜔) + 𝜑ᇱ(𝜔). (18)

Comparing Eq. (18) with Eq. (16), the results indicate that with each iteration, the newly 
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constructed 2D GD estimation becomes closer to the true −𝜑′(𝜔). Denoting 𝑡̂[ே](𝑡,𝜔) as the 
newly constructed 2D GD estimation after the 𝑁th iteration, we obtain Eq. (19): 

𝑡̂[ே](𝑡,𝜔) = −𝜑ᇱ(𝜔) + ቆ 𝜑ᇱᇱ(𝜔)ଶ𝜎ଶ + 𝜑ᇱᇱ(𝜔)ଶቇே ൫𝑡 + 𝜑ᇱ(𝜔)൯. (19)

Eq. (19) indicates that when the number of iterations is sufficiently large, 𝑡̂[ே](𝑡,𝜔) will 
approach −𝜑′(𝜔) indefinitely, i.e., as show in Eq. (20): limே→ஶ𝑡̂[ே](𝑡,𝜔) = −𝜑ᇱ(𝜔). (20)

Replacing 𝑡̂[ே](𝑡,𝜔) with 𝑡̂(𝑡,𝜔) in Eq. (8), we obtain: 

𝑇𝑠[ே](𝑢,𝜔) = න 𝐺ାஶ
ିஶ (𝑡,𝜔)𝛿 ቀ𝑢 − 𝑡̂[ே](𝑡,𝜔)ቁ 𝑑𝑡. (21)

After sufficient iterations, we can obtain Eq. (22): limே→ஶ𝑇𝑠(𝑢,𝜔) = 𝑠̂(𝜔)𝑔ො(0)𝛿൫𝑢 + 𝜑ᇱ(𝜔)൯. (22)

Eq. (22) demonstrates that after sufficient iterations, the time-frequency energy of Eq. (21) can 
be effectively compressed onto the GD trajectory, even for signals with strong frequency 
variations. 

3. Convolutional neural network structure 

CNN, as quintessential exemplars of feedforward neural networks, are renowned for their 
distinctive features in image analysis, including local receptive fields, weight sharing, and spatial 
subsampling. A canonical CNN architecture is composed of three principal layers: the 
Convolutional Layer (CL), the Subsampling Layer (SL), and the Fully Connected Layer (FL). In 
the subsequent sections, we will explore the foundational principles and operational functions of 
these layers within the context of CNNs, elucidating their individual contributions to the network's 
overall performance. 

3.1. Convolutional Layer 

The CL executes a sliding convolution operation on the input data using its set of kernels, 
adhering to a predefined stride. This process effectively captures features from localized regions 
of the input. The output of the convolution is subsequently subjected to an activation function, 
yielding the resultant feature maps. In contemporary practice, the ReLU has emerged as the 
activation function of choice, favored for its merits such as minimal computational overhead and 
accelerated training kinetics. To encapsulate the essence of the convolutional layer's mathematical 
framework, its model is articulated in Eq. (23): 

𝑥௝௟ = 𝑓 ቆ෍ 𝑥௜௟ିଵ௜∈ெೕ ∗ 𝑘௜௝௟ + 𝑏௝௟ቇ, (23)

where, * denotes the convolution operation; 𝑀௝ represents the selected input mapping; 𝑙 is the 𝑙th 
layer in the network; 𝑘 is the kernel matrix with a size of 𝑆×𝑆; and 𝑓 is the nonlinear activation 
function. 
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3.2. Subsampling layer 

After each convolutional layer, a single subsampling layer is applied. The purpose of this layer 
is to reduce the size of the input features and the number of network parameters. The mathematical 
model can be described as Eq. (24): 𝑥௝௟ = 𝑓 ቀ𝛽௝௟down൫2𝑥௝௟ିଵ + 𝑏௝௟൯ቁ, (24)

where, down(·) represents the subsampling function. Typically, this function sums up each distinct 𝑛×𝑛 block in the input image, resulting in an output image that is smaller by a factor of 𝑛 in both 
spatial dimensions. Each output mapping has its own multiplicative bias 𝛽 and additive bias 𝑏. 
The subsampling function chosen in this paper is max pooling. Its main principle is to divide the 
input image into a set of non-overlapping rectangles, and for each such subregion, the maximum 
value is output. 

3.3. Subsampling layer 

The fully connected layer is a traditional feedforward neural network where all neurons are 
connected to all activations of the previous layer. Its purpose is to collect and classify all features. 
The output layer uses the Softmax function as the activation function. The Softmax function takes 
an arbitrary real-valued vector and compresses it to values between 0 and 1. The Softmax function 
is defined as follows Eq. (25): 

𝜎(𝑧)௝ = 𝑒௘ೕ∑ 𝑒௭ೖ௄௞ୀଵ ,     𝑗 = 1, . . . ,𝐾. (25)

The ADAM optimization algorithm is employed to train the CNN, thereby optimizing the 
network parameters, specifically the weights and biases. ADAM's prowess lies in its ability to 
dynamically adjust the learning rate for each parameter by leveraging the first-order moment 
estimate (mean) and the second-order moment estimate (variance) of the gradient. This adaptive 
approach has been instrumental in enhancing the optimization process of CNN. Within the scope 
of this study, ADAM is utilized as both the feature extractor and classifier for the diagnosis of 
rolling bearing faults. To mitigate the risk of model overfitting, dropout operations are 
strategically incorporated into the FCL. The detailed architecture of the network is delineated in 
Table 1 and illustrated in Fig. 1.  

 
Fig. 1. The Structure of CNN 

In Fig. 1, the input is a two-dimensional image. Firstly, four layers of convolution operations 
are performed to extract the features of the frequency domain image of the fault vibration signal. 
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Then, the dimension is reduced through the pooling layer. After undergoing the above-mentioned 
convolution and pooling processes, all features are combined through the fully connected layer, 
and softmax is used to classify different features, thereby obtaining different bearing fault 
categories. 

Table 1. CNN structure parameters 
 Net layer Conv kernel Number of layers 

C1 Conv layer 1 7×7 4 
P1 Pooling layer 1 2×2 4 
C2 Conv layer 2 7×7 6 
P2 Pooling layer 2 2×2 6 
F1 Fully connected layer 1×1 256 

3.4. Reverse parameter update 

For a specific classification task, the training objective of a CNN is to minimize the loss 
function of the network, thus it is crucial to select an appropriate loss function. Common loss 
functions include mean squared error, cross-entropy, and negative log-likelihood. In this paper, 
we choose the cross-entropy loss function, which has proven to be effective, and its expression is 
as follows Eq. (26): 𝐸ଶ = − 1𝑛෍ [𝛾௞lnଶ𝑡௞ + (1 − 𝑦௞)ln (1 − 𝑡௞)ଶ]௡௞ୀଵ , (26)

where, 𝑛 represents the number of samples for a specific fault category; 𝑡 is the predicted value; 
and 𝑦 is the true value. During the training process, the method used to minimize the loss function 
is gradient descent. By taking the first-order partial derivative of Eq. (26), the learnable parameters 
(𝑤 and 𝑏) of the CNN can be updated layer by layer, as show in Eq. (27) and Eq. (28): 

𝑤ᇱ = 𝑤 − 𝜂 𝜕𝐸𝜕𝑤, (27)𝑏ᇱ = 𝑏 − 𝜂 𝜕𝐸𝜕𝑏 , (28)

where, 𝑤′ and 𝑏′ represent the updated weights and biases, respectively; 𝑤 and 𝑏 are the current 
weights and biases; 𝜂 is the learning rate parameter, which controls the step size of weight updates. 
If 𝜂 is too large, it can cause the network to converge to a local optimum; if 𝜂 is too small, it will 
increase the training time of the network. 

3.5. Reverse parameter update 

The fault diagnosis method based on CNN can integrate signal preprocessing, fault feature 
extraction, and fault pattern classification to achieve the specific process of adaptive extraction of 
fault features and intelligent diagnosis, as shown in Fig. 2. The collected vibration signals are 
divided into training and testing sets after TMSST. Firstly, the training set is input into the CNN 
for parameter learning, and the weights (𝑤) and biases (𝑏) are continuously updated using the 
gradient descent method. Then, the trained parameters are applied to the testing set to obtain the 
fault diagnosis results. 

4. Experimental validation 

This section aims to validate the feasibility and effectiveness of the proposed method using the 
measured vibration signals from rolling bearings. Furthermore, the robustness of the method under 
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various fault conditions will be discussed. 

 
Fig. 2. Fault diagnosis flowchart based on TMSST-CNN 

4.1. Dataset description 

Fig. 3 shows the experimental platform, The testbed comprises a motor, torque sensor, power 
meter, and electronic controller. The bearing vibration signals are measured by sensors, and the 
amplitudes of these signals are represented by acceleration 
(https://engineering.case.edu/bearingdatacenter/apparatus-and-procedures). 

To evaluate the performance of the proposed method, real bearing data were employed, which 
originated from the Bearing Fault Database of Case Western Reserve University [25]. This bearing 
fault database is a widely used resource that contains bearing vibration data under different 
operating conditions and fault modes, and is extensively employed in research on fault diagnosis 
and prediction. The testbed comprises a motor, torque sensor, power meter, and electronic 
controller. The bearing vibration signals are measured by sensors, and the amplitudes of these 
signals are represented by acceleration. The database includes both normal data and data from 
various fault modes, such as inner race faults, outer race faults, and rolling element faults. Each 
fault mode has multiple samples under different operating conditions, including varying 
parameters like rotational speed, load, and operating time. SKF's 6205-2RS deep groove ball 
bearing was taken as an example, and the drive-end bearing data were selected for verification. 
Single-point faults were arranged on the inner ring, outer ring, and rolling elements of the rolling 
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bearing using electrical discharge machining techniques. Three fault diameters of 0.18, 0.36, and 
0.54 mm were considered, with all faults having a depth of 0.28 mm. In total, nine fault types were 
examined. In this experiment, the length of each segment was determined to be 300 samples. 
400 samples were constructed for each type of signal feature, and One-hot encoding was adopted 
to label ten different bearing operating conditions. The dataset was then divided into a training set 
and a test set in a 7:3 ratio. The construction of rolling bearing samples is summarized in Table 2. 
It includes ten different operating conditions, including normal state and nine different fault states, 
and the same proportion of data sets is taken. 

 
Fig. 3. Fault bearing vibration signal acquisition platform  

Table 2. Sample structure of rolling bearing 

Diameter (mm)  0.17 0.36 0.54 0 
Load Rolling Inner Outer Rolling Inner Outer Rolling Inner Outer Normal 

Label 1 2 3 4 5 6 7 8 9 10 
Train 280 280 280 280 280 280 280 280 280 280 0.746 kW Test 120 120 120 120 120 120 120 120 120 120 

 

     

 
a) Normal 

 
b) Fault 1 

 
c) Fault 2 

 
d) Fault 3 

 
e) Fault 4 

     

 
f) Fault 5 

 
g) Fault 6 

 
h) Fault 7 

 
i) Fault 8 

 
j) Fault 9 

Fig. 4. TMSST time-frequency diagrams for different types of faults: a) Normal; b) 0.17 mm rolling fault; 
c) 0.17 mm inner fault; d) 0.17 mm outer fault; e) 0.36 mm rolling fault; f) 0.36 mm inner fault;  
g) 0.36 mm outer fault; h) 0.54 mm rolling fault; i) 0.54 mm inner fault; j) 0.54 mm outer fault 
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Traditional time-domain analysis has difficulties in accurately representing the damage 
severity and fault type characteristics of rolling bearings. Therefore, by leveraging the uniqueness 
of TMSST encoding in mapping time series, the original vibration signals are encoded to generate 
distinct fault patterns, as shown in Fig. 4. Subsequently, these patterns are classified using CNN 
for the identification of 10 types of rolling bearing features. 

Fig. 4 presents the TMMST diagrams for ten distinct fault types. It is evident that traditional 
time-domain analysis of fault signals struggles to precisely articulate the extent of deterioration 
and the distinctive characteristics of various fault types in rolling bearings. Consequently, 
employing the time reassignment multi-synchronous compression transformation to convert the 
time-domain signals of rolling bearings into 2D time-frequency images can significantly amplify 
the discernible features of different fault types. As depicted in Fig. 4, signals characterized by 
dissimilar damage features and fault types are challenging to discern in the time domain, whereas 
2D images are adept at effectively extracting their fault characteristics. Furthermore, this study 
conducts a comparative analysis of TMMST with several other signal processing techniques, 
including the STFT, HHT, WVD, Synchronous Compression Transform (SCT), Multiscale 
Synchronous Compression Transform (MS-SCT), Time-Reassigned Multisynchronous 
Compression Transform (TR-MS-SCT), and Time-Reassigned Synchronous Compression 
Transform (TR-SCT). For instance, in fault type 2, the corresponding 2D image is displayed in 
Fig. 5. Post these transformations, the CNN is integrated to classify the feature maps 
corresponding to the 10 types of faults. 

 
a) STFT 

 
b) HHT 

 
c) WVD 

 
d) SST 

 
e) MSST 

Fig. 5. Result chart of frequency domain variation methods for 0.17 mm inner fault at different times  

4.2. Experimental result 

To further verify the reliability of the proposed method, TMSST-CNN was used to identify 
ten types of faults in rolling bearings. There are a total of 4000 samples in the training and testing 
sets, divided into ten types of faults. In this section, the dataset was shuffled and the fault diagnosis 
model of TMMST-CNN was used to verify the model with different proportions of training and 
testing sets. The verification results are shown in Fig. 6. 

From the confusion matrices presented in Figs. 5-6, it is evident that when the proportion of 
the training set is set to 70 %, a higher accuracy is achieved compared to when it is set to 60 %. 
Additionally, it can be effectively observed that the majority of misclassifications occur primarily 
in the categorization of Fault 6 and Fault 9. Examination of Fig. 4 reveals that the faults prone to 
misclassification exhibit insufficiently distinct characteristics in terms of energy distribution and 
varying fluctuation durations. However, upon undergoing the TMSST transformation, these 
differences become more prominent, resulting in a richer set of characteristics. To further validate 
the superiority of the method proposed in this study, a comparison was conducted between 
TMMST and other methods. 

4.3. Experimental comparison 

To verify the superiority of the proposed method, in this section, TMMST was compared with 
Short Time Fourier Transform, Hilbert Huang Transform, Wigner Ville Distribution, Synchronous 
Compression Transform, and Multiscale Synchronous Compression Transform. To highlight the 
superiority of TMSST-CNN, the accuracy, precision, and recall in the confusion matrix were used 



ENHANCED DIAGNOSTIC METHOD FOR ROLLING BEARINGS USING TIME-REASSIGNED MULTI-SYNCHRO SQUEEZING TRANSFORM.  
YUNXIU ZHANG, BINGXIAN LI, ZHIYIN HAN 

12 ISSN PRINT 2335-2124, ISSN ONLINE 2424-4635  

as evaluation indicators. Accuracy is the overall evaluation of the identification effect of all types 
of load appliances in the test set. The values of these evaluative metrics are bounded within the 
interval [0,1], where a higher value indicates superior identification capabilities of the algorithmic 
model [21]. These metrics are computed using the formulas presented in Eq. (29-32): 𝑅஺௖௖ = 𝐺𝑁, (29)𝑅௉௥௘ = 𝑇௉𝑇௉ + 𝐹௉ , (30)𝑅ோ௘௖ = 𝑇௉𝑇௉ + 𝐹ே, (31)𝐹ଵି௦௖௢௥௘ = 2 ൈ 𝑅௉௥௘ ൈ 𝑅ோ௘௖𝑅௉௥௘ + 𝑅ோ௘௖ . (32)

 

 
a) 

 
b) 

Fig. 6. Performance of the method proposed in this article on different training sets:  
a) the accuracy of each type of fault when the training set is 60 %,  
b) the accuracy of each type of fault when the training set is 70 % 

In Table 3, 𝑅஺௖௖ represents the proportion of correctly predicted samples out of the total 
number of samples. In fault diagnosis, a high relative accuracy indicates that the model is able to 
reliably identify faulty and non-faulty states. 𝑅௉௥௘ is the proportion of actual positive samples 
(faulty state) among the predicted positive samples, reflecting the model’s ability to avoid 
misdiagnosing non-faulty states as faulty. 𝑅ோ௘௖, also known as recall, signifies the model's 
capability to capture the majority of faulty states, thereby reducing the risk of missed detections. 
The 𝐹ଵି௦௖௢௥௘, on the other hand, provides a balanced consideration of both precision and recall, 
making it highly useful for evaluating the overall performance of the model in specific 
applications. 

In the formula, 𝐺 represents the number of correctly classified fault types in the test set; 𝑁 
represents the total number of fault types in the test set; 𝑇௉ is a true positive, representing the 
number of faults in this article where the predicted label of the fault type in the test set matches 
the true label; 𝐹ே is a false negative, which represents the number of faults in the test set that were 
mistakenly identified as other types of faults for a certain type of fault; 𝐹௉ is false positive. In this 
article, it represents the number of faults in the test set that were incorrectly identified as a certain 
type of fault, while other types of faults were identified as such. 

Through the analysis of Table 3, it can be seen that compared to directly using time-domain 
signals for evaluation in CNN models, time-frequency transformation can effectively improve the 
diagnostic rate of fault types. Meanwhile, compared to traditional time-frequency transformation 
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methods, the method proposed in this paper has better performance. 𝑅஺௖௖, 𝑅௉௥௘, 𝑅ோ௘௖, and 𝐹 all 
have the best performance, with a global accuracy of 95.67 %. They have very high accuracy for 
10 types of faults in rolling bearings and have a certain degree of robustness. Therefore, TMSST's 
processing of time-domain signals can effectively enhance data features, and TMSST-CNN is a 
method with a good diagnostic success rate for bearings. 

Table 3. Comparison results of different methods 
 CNN STFT-CNN HHT-CNN WVD-CNN SST-CNN MSST-CNN TMSST-CNN 𝑅஺௖௖ 85.92 % 91.06 % 88.32 % 90.67 % 93.21 % 93.44 % 95.67 % 𝑅௉௥௘ 86.44 % 82.14 % 89.28 % 91.55 % 93.94 % 94.27 % 96.34 % 𝑅ோ௘௖ 86.06 % 91.42 % 89.10 % 91.39 % 93.88  94.02 % 95.88 % 

F -score 87.33 92.74 91.02 92.61 95.35 96.12 98.12 

5. Conclusions 

This paper introduces a novel TMSST-CNN model for the diagnosis of rolling bearing faults. 
The TMSST component of the model takes into account the comprehensive integration of 
correlations across various time intervals during the encoding of rolling bearing signals. 
Consequently, when employed in conjunction with a CNN for the adaptive extraction of signal 
features and fault classification, it facilitates a more nuanced analysis, culminating in an 
impressive diagnostic accuracy of 95.67 %. To ascertain the model’s generalization capability, 
training was conducted using different ratios of training to testing data sets. The outcomes 
demonstrate that the model's performance has been markedly enhanced through the application of 
reinforcement learning techniques, consistently sustaining high diagnostic precision. A 
comparative analysis was undertaken across various image encoding methodologies and network 
architectures. The findings reveal that the TMSST image transformation technique outperforms 
alternative approaches in diagnosing rolling bearing faults. The methodology presented in this 
paper is capable of deeper learning, thereby attaining superior accuracy in fault diagnosis.  
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