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Abstract. The YOLOv7-tiny algorithm does not achieve high detection accuracy for crested ibis 
in rainy environments. Therefore, we developed a rainy day crested ibis target detection algorithm 
based on YOLOv7-tiny. Firstly, the RainMix method is used to simulate the rainy day shooting 
data to synthesise a set of ibis dataset which is closer to the real environment. Then, the k-means 
algorithm is applied to re-cluster the predicted anchor frames to improve the approximation 
between the predicted and real frames in the output. Finally, an efficient hybrid attention 
mechanism (E-SEWSA) is developed and integrated into a lightweight efficient layer aggregation 
network, while a dense residual network reconstruction module is utilised to improve the detection 
accuracy of the model. In the PAN+FPN structure, the context information fusion capability of 
the feature aggregation part of the network is enhanced by integrating the CARAFE module 
instead of the up-sampling module, so as to improve the model detection accuracy. After 
experimental verification, the algorithm proposed in this paper has better results in rainy day ibis 
detection.  
Keywords: complex environment, detection of crested ibis, Yolov7-tiny, attention mechanism. 

1. Introduction 

The natural habitat of the crested ibis is frequently characterized by cloudy and rainy 
conditions. This poses challenges for detecting and protecting the crested ibis in the wild. 
Moreover, encountering torrential rain may also endanger the lives and safety of personnel 
involved in crested ibis protection [1]. With the advancement of computer vision technology, the 
utilization of detection equipment for detecting and safeguarding wild ibis conserves resources 
and minimizes the need for human intervention in protecting ibis. However, factors such as dense 
fog caused by humidity in the habitat under cloudy and rainy weather, and the interference of 
raindrops and rain lines, increase the difficulty of detecting wild ibis using computer vision. 

Facing the challenge of target detection in complex environments, researchers both 
domestically and internationally have initiated studies. Chen Fan et al. [2] proposed the use of a 
visual saliency algorithm based on graph theory to accurately intercept the face region in the image 
and improve the detection effect for the problem of unsatisfactory face detection due to factors 
such as interference from the target background. Kui Hanbing et al. [3] proposed a mesh classifier 
based on the fusion of history to address the low recognition rate of the intelligent car perception 
algorithm in urban complex environments, such as target occlusion and sudden changes in light. 
A trajectory-based multi-target detection and tracking algorithm is developed to achieve long-term 
tracking and detection of multiple targets in complex urban environments. In recent years, the 
target detection algorithm based on YOLO [4]-[5] has been widely adopted for its fast detection 
speed. Zhao Yan et al. [6] proposed a detection algorithm based on YOLOv3 [7] for the problem 
of infrared weak target detection in complex environments. This algorithm significantly improves 
upon traditional detection methods and demonstrates the effectiveness of deep learning algorithms 
for detecting infrared weak targets in complex environments. Zhao Hui et al. [8] introduced an 
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enhanced recognition method for YOLOv3, incorporating the CPSX module to prevent the reuse 
of gradient information. They also implemented the Soft NMS algorithm to reduce missed 
detections in scenarios with dense fruits and optimized the loss function to balance positive and 
negative samples. Yuan Lei et al. [9] presented the CTC-YOLO algorithm based on YOLOv5, 
which includes a context transform module to leverage contextual information effectively. In 
addition, the algorithm incorporates an attention model in the C3 module to identify the attention 
region in diverse complex scenes, thereby enhancing target detection in complex environments. 

All of the scholars mentioned above have studied target detection in complex environments to 
different extents. It has been proven that developing an ibis detection algorithm for complex 
environments during cloudy and rainy weather can greatly assist in monitoring and counting the 
number of ibises in the wild within this environment. The paper makes the following 
contributions: proposing an IBIS target detection algorithm based on YOLOv7-tiny, designing an 
attention mechanism based on Efficient-SE [10]-[11] to enhance the network's feature extraction 
capability, and reconfiguring the T-ELAN module to improve the model's focus on labeled 
information features during training and suppress interference information. Additionally, in the 
feature pyramid aggregation section, the CARAFE [12] model is utilized to replace the up-
sampling module of YOLOv7-tiny. This substitution allows for more specific feature extraction 
during up-sampling, and the effectiveness of the enhanced algorithm is validated through 
experiments. 

2. Rainy day ibis detection algorithm based on YOLOv7-tiny  

2.1. RainMix-based Ibis dataset generation 

During field inspections, due to the scarcity of ibis, it is even more difficult to collect sufficient 
datasets of ibis under rainy weather. To address this challenge, the RainMix [13] data enhancement 
method was utilized to bridge the gap between synthetic rainy images and real data. Garg et al. 
[14] conducted a comprehensive study on rainfall appearance under different lighting and viewing 
conditions, resulting in a relatively realistic rain pattern dataset. Building on this work, the 
RainMix method accounts for natural factors like wind, light reflection, and refraction to generate 
more authentic rain addition images. Firstly, the rainfall map stripes are randomly sampled from 
the actual rainfall dataset. Then, the rain map undergoes geometric and morphological 
transformations through random sampling and combining operations. Finally, the transformed rain 
map is aggregated using the weights of the Dirichlet distribution [15] and further integrated with 
the original sampled rain map using the weights of the Beta distribution [16]. The implementation 
process is illustrated in Fig. 1. 
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Fig. 1. RainMix synthetic band rain image 
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2.2. Improvement of the YOLOv7-tiny network 

The YOLOv7-Tiny network has shown significant advancements in real-time detection and 
exhibits good detection performance. However, when the network model is directly applied to test 
the Crested Ibis dataset, the detection accuracy is unsatisfactory, and it struggles to distinguish the 
Crested Ibis. Therefore, it is crucial to redesign and train a network model that suits the ibis dataset. 
The real-time performance of the YOLOv7-Tiny network is one of the reasons why it was selected 
as the base model. To enhance the detection accuracy of its algorithm while preserving its 
real-time performance, a series of improvement measures were implemented in this study. 
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Fig. 2. Improved YOLOv7-tiny network framework diagram 

In complex detection environments, the interference of various noises significantly affects the 
detection performance of models trained using the YOLOv7-tiny network framework, leading to 
challenges in accurately capturing the desired visual features. Therefore, a proposal to enhance 
the YOLOv7-tiny network framework is suggested to improve the detection performance of the 
trained model. To enhance the feature extraction capability of the YOLOv7-tiny algorithm, the 
T-ELAN-ATT module is incorporated into the framework's backbone. This module integrates an 
attention mechanism into the basic unit of feature extraction. Additionally, to address the scale 
and aspect ratio imbalances in the detected objects within the homemade Crested Ibis dataset, an 
up-sampling module is introduced. This module predicts content-awareness weights and 
dynamically reorganizes awareness features in real-time (Content-Aware ReAssembly of 
Features, CARAFE) to refine fusion features. Furthermore, to overcome the lack of spatial 
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attention in the SE attention mechanism integrated into the backbone feature extraction structure 
of the YOLOv7-tiny algorithm, the SE attention mechanism is redesigned. This redesign aims to 
achieve attention in both channel and spatial aspects. Attention can be achieved. The overall 
structure is shown in the figures. In the network, the “CBL” module remains the fundamental unit, 
with various colors indicating different sizes of convolution kernels and step sizes. The “T-ELAN” 
module, “SPPCBL” module, and “T-ELAN” module are equivalent to the YOLAN module. The 
“T-ELAN” module and the “SPPCBL” module follow the structure of YOLOv7-tiny. The entire 
network structure is divided into three parts: the “Backbone”, the “PAN+FPN”, and the “Output”. 
The entire network structure is divided into “Backbone”, “PAN+FPN”, and “Output”. The 
backbone structure consists of two 3×3 convolutional kernels with a stride of 2 and three max 
pooling layers to achieve five downsamplings. This process continuously enhances feature 
extraction. Additionally, two T-ELAN-ATT modules are interspersed to focus more on extracting 
features from the annotated objects. The structure of the feature aggregation part and the output 
part remains unchanged. The modules mentioned in the figure are presented in this section 
sequentially. 

2.2.1. E-SEWSA efficient mixed attention module design 

The attention mechanism can enhance the feature extraction performance of the network. To 
introduce the attention mechanism in the lightweight YOLOv7-tiny network without increasing 
the burden on the network, the Efficient Squeeze-and-Excitation (E-SE) module is added to the 
trunk part of the network. This enhances the trunk's ability to focus on the information of the 
labeled images during down sampling. Focusing. However, the E-SE module only focuses on the 
channel level and lacks attention at the spatial level. Therefore, the E-SE module is enhanced by 
incorporating a spatial attention mechanism, known as Efficient Squeeze-and-Excitation with 
Spatial Attention (E-SEWSA), and the specific operation is illustrated in the Fig. 3, where ℎ is the 
height of the input feature, 𝑤 is the width of the input feature, 𝑐 is the number of channels in the 
input feature, and 𝑑 is the depth of the input feature. The width, and 𝑐 represents the number of 
channels of the input feature. The upper input features are connected to the spatial attention in 
series after E-SE. Firstly, the input feature map undergoes global average pooling 
(GlobalAvg-pooling) along the channel direction. The channel attention is obtained after a full 
connection and sigmoid activation [17]. Subsequently, the output feature map is obtained by 
globally weighting with the input feature map along the channel direction. The output feature map 
is then obtained by applying global weighting on the channel attention. Next, the output feature 
map is weighted globally with the input feature map along the channel direction to obtain the final 
output feature map. Max-pooling and Avg-pooling are then performed along the spatial direction 
to obtain the channel attention. The output feature map is downscaled to a single channel by 1×1 
convolution after stitching the obtained feature maps. Finally, the spatial attention is obtained 
through sigmoid activation. Spatial attention redistributes weights at the spatial level to the feature 
maps obtained after channel attention. The number of input channels and the size of the output 
feature maps obtained after the E-SEWSA module remain unchanged. Therefore, the addition of 
this module to the backbone network does not affect the overall structure of the Feature Pyramid 
Networks (FPN [18]) and Pixel Aggregation Network (PAN [19]). It also does not introduce an 
excessive number of parameters or computations. 

As a concatenated channel and spatial attention mechanism, the calculation can be divided into 
two steps. For the channel part, refer to Eq. (1): 𝐹ᇱ = 𝐹 ⋅ 𝜎൫𝑓𝑐ሺ𝐺𝑝ሾ𝐹ሺ𝐻,𝑊ሻሿሻ൯, (1)

where 𝐹′ represents the output features, 𝐹 is the input features, 𝐺𝑝[𝐹(𝐻,𝑊)] represents global 
average pooling of spatial features, 𝑓𝑐( ) represents full connectivity, 𝜎( ) represents the use of a 
sigmoid activation function, and the dot product represents the multiplication of the weights 
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generated by the activation with the spatial features of the corresponding channel. 
In the second step, the features of channel attention output are taken as the input features for 

spatial attention. The formula is shown in Eq. (2): 𝐹ᇱᇱ = 𝐹ᇱ ⋅ 𝜎൫𝐶𝑜𝑛([𝐴𝑝(𝐹ᇱ[𝑐]),𝑀𝑝(𝐹ᇱ[𝑐])])൯, (2)

where, 𝐹′′ is the output feature, 𝐹′ is the input feature, 𝐴𝑝(𝐹′[𝑐]) represents the average pooling 
of features along the channel direction, 𝑀𝑝(𝐹′[𝑐]) represents the maximum pooling of features 
along the channel direction, [,] represents the channel splicing operation, 𝐶𝑜𝑛( ) represents the 
1×1 convolution operation, 𝜎( ) represents the use of sigmoid activation function, and dot 
multiplication represents the multiplication of the weight generated after activation with the 
corresponding spatial channel feature. 

InPut-Feature

GlobalAvg- 
pooling

1×1×c
FC

Sigmoid

Feature

Avg- 
pooling

Max- 
pooling

Concat

Conv

Sigmoid

OutPut-Feature

h×w×c

h×w×c

h×w×1 h×w×1

h×w×1

h×w×2

Feature 
weighting

 
Fig. 3. E-SEWSA attention mechanisms 

2.2.2. T-ELAN-ATT module design based on the T-ELAN module 

The structural principle of the T-ELAN module in the YOLOv7-tiny network utilizes a highly 
stacked 3×3 convolution. While this design ensures the network's learning capability, it has a wide 
learning scope and lacks the ability to concentrate on specific learning tasks. Consequently, the 
network may learn irrelevant features that should be disregarded. When the importance of the 
image features in the labeled box is not sufficiently differentiated from the image features in the 
background, the detection accuracy of the model will decrease, thereby affecting the overall 
detection performance of the model. Therefore, this study incorporates the attention mechanism 
into the structure of the T-ELAN module, as shown in Fig. 4. 

 
Fig. 4. T-ELAN-ATT structure schematic diagram 
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The module, after incorporating the attention mechanism, still considers the channel coherence 
of the entire YOLOv7-tiny network to ensure consistency in the number of input and output 
channels, thus preventing model distortion and deformation. First, the input feature channels are 
split into equal parts. Part of the features are retained in their original form to prevent gradient 
disappearance caused by excessive attention. The other part of the features is constructed using 
the concept of a dense residual network. These features are then transmitted to the E-SEWSA 
module, the 3×3 CBL module, and the channel shuffling module, respectively. The features 
outputted by the E-SEWSA module are also sent to the channel mixing module. Subsequently, the 
features undergo channel mixing followed by channel compression. Finally, the compressed 
features are combined with another portion of the original features and integrated into the 
backbone network. The channel mixing and merging module is shown in Fig. 5. 
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Fig. 5. Example of channel mixing and merging: a) is the feature extraction channel in the normal case,  
and there is no intersection between each channel; b) is the channel mixing process;  

c) is the feature extraction process after channel mixing and merging,  
and the dashed box represents the channel mixing and merging sample 

2.2.3. CARAFE content-aware reorganisation module 

YOLOv7-tiny utilizes Bilinear Interpolation [20] for up-sampling to extract high-resolution 
feature maps. This method determines the up-sampling kernel solely based on the spatial position 
of the pixel points, without utilizing the semantic information of the feature maps. As a result, the 
perceptual domain is limited. On the other hand, the content-aware reorganization module 
(CARAFE) offers a larger perceptual domain and the ability to aggregate contextual information 
within that domain. CARAFE consists mainly of a kernel prediction module and a content-aware 
feature restructuring module. The feature map can more accurately represent the object’s shape 
after up-sampling by CARAFE, enhancing its recognition ability. The content-aware prediction 
model is illustrated in Fig. 6. 

The CARAFE module achieves a weighted combination of features by reassembling features 
in a predefined region with multiple sets of weights generated using a context-aware approach at 
each spatial location. This results in up-sampled weights that are weighted. The up-sampling of 
features is completed by rearranging the generated features into a spatial block. It is important to 
note that the spatially adaptive weights are not learned as network parameters but are predicted in 
real-time by a lightweight fully convolutional module and Softmax activation function. The kernel 
prediction module of CARAFE comprises three parts: a channel compression module, a content 
encoder, and a kernel normalization module. The channel compression module utilizes 1×1 
convolutional compression to decrease the channels of the input feature maps. The content encoder 
processes the compressed feature maps to encode the content and produce the recombination 
kernels. The kernel normalization module employs the Softmax function on each recombination 
kernel for activation. The content-aware restructuring module then weights each target 
restructured region with the weights obtained by the kernel prediction module, and then stitches 
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together all the restructured target regions 𝑁(𝑋௟ ,𝑘), where 𝑋௟ represents the location of the centre 
of the target region of the feature map, and 𝑘 represents the edge length of the target region on the 
feature map. 

 
Fig. 6. Content-aware reassembly of features module. The light blue region represents the kernel prediction 

module, where 𝜎 and 𝑘௨௣ denote the upsampling rate and the size of the recombination kernel, with 
manually set parameters of 2 and 5, respectively. The light purple region represents the content 

recombination module, which utilizes the recombination kernel to weigh the corresponding input features 

When the input is a feature map 𝐹 = 𝐶 × 𝑊 × 𝐻, the output after CARAFE module is  𝐹′ = 𝐶 × 𝜎𝐻 × 𝜎𝑊, where 𝜎 is the customized upsampling ratio. Firstly, when the input passes 
through the kernel prediction module, the specific formula is shown in Eq. (3): 𝑊௟ᇱ = 𝜑൫𝑁(𝑋௟ ,𝑘௘௡௖௢ௗ௘௥)൯, (3)

where 𝑊௟ᇱ is the predicted kernel, 𝜑 is the nuclear forecasting module, 𝑁(𝑋௟ ,𝑘௘௡௖௢ௗ௘௥) represents 
the subregion of 𝑘௘௡௖௢ௗ௘௥×𝑘௘௡௖௢ௗ௘௥ centred on 𝑋௟. where 𝑘௘௡௖௢ௗ௘௥ = 𝑘௨௣ − 2 (𝑘௨௣ is a custom 
parameter representing the size of the reorganisation kernel). 

Then, the prediction kernel is fed into the content reorganisation module to obtain the up-
sampling output module operation equation shown in Eq. (4): 𝑋′௟ᇱ = 𝜙൫𝑁൫𝑋௟ ,𝑘௨௣൯,𝑊௟ᇲ൯, (4)

where 𝑋′௟ᇱ is the output feature after completing the up-sampling, 𝜙 represents the content-aware 
restructuring module, and 𝑁(𝑋௟ ,𝑘௨௣) represents the subregion of 𝑘௨௣×𝑘௨௣ centred on 𝑋௟ 
corresponding to the predictive restructuring kernel. 

3. Experiment and analysis 

3.1. Experimental training environment and training methods 

The experimental training and test environment uses the Ubuntu 18.04 LTS operating system, 
NVIDIA GeForce RTX3080Ti, i7-6700, 64GB of memory, and PyTorch 2.0.0 deep learning 
framework. The training optimizer utilizes Stochastic Gradient Descent (SGD [21]), which helps 
prevent the issue of local optimization in the model, leading to lower final accuracy. The initial 
learning rate of the training network is set to 0.01. The learning rate momentum factor is set to 
0.937, the weight attenuation coefficient is set to 0.0005, the batch size is set to 16, and the training 
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number is set to 300 rounds. The input strategy involves maintaining the Mosaic data enhancement 
processing of YOLOv7-tiny. It includes random scaling, random cropping, random arrangement, 
and splicing of input images before feeding them into the network for training. 

3.2. Performance evaluation index 

In this paper, general performance evaluation indices for target detection are utilized, including 
model parameters, computational load, Precision (P), Recall (R), and mean Average Precision 
(mAP) of test samples. It has two test standards: the average accuracy obtained when the threshold 
value of Intersection Over Union (IOU) is 0.5 to detect whether the target is correct, denoted as 
mAP@0.5; and the accuracy obtained when the threshold value of IOU is 0.5~0.95 by averaging 
10 accuracy scores at regular intervals. Written as mAP@0.5:0.95, the former provides an intuitive 
view of the potential impact in practical applications, while the latter offers a more in-depth 
evaluation of network performance. Using Recall as the horizontal axis and Precision as the 
vertical axis, a Precision-Recall (P-R) curve is plotted, and the area under the curve is calculated 
as AP (average precision) by integrating it. The expression is as follows: 

Precision: 𝑃 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃. (5)

Recall: 𝑅 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁. (6)

Mean accuracy: 

𝐴𝑃 = න 𝑃(௥)ଵ
଴ 𝑑𝑟. (7)

Among them, when TP is the actual positive sample and the computer predicts it correctly 
during training; when FP is the actual negative sample and the computer incorrectly predicts it as 
positive; FN is the actual positive sample but the computer predicts it as negative; TN is the actual 
negative sample and the computer predicts it correctly. 

3.3. Ablation contrast experiments and visual contrast performance 

In order to evaluate the benefits and limitations of the improvement strategy proposed in this 
paper compared to the current mainstream algorithms, side-by-side comparison experiments were 
designed. These experiments were conducted using the self-constructed Crested Ibis dataset, 
without utilizing any official pre-training models. Firstly, it is compared and analyzed with the 
baseline algorithm YOLOv7-tiny. Secondly, it is compared and analyzed with algorithms of the 
same scale, such as YOLOv5s, YOLOv8s, etc. Finally, it is compared and analyzed with the same 
large-scale model of YOLOv7 with convolutional stacking. The experimental results are shown 
in Table 1. 

Table 1 demonstrates that the enhanced algorithm proposed in this paper can achieve a 
detection accuracy of 91.8 % when the bounding box overlap requirement is not high. The 
detection accuracy gradually decreases as the bounding box overlap requirement increases. The 
mAP@0.5:0.95 decreases to 71.1 %. This study emphasizes category accuracy identification. It is 
predicted that detection results are not significantly affected when the bounding box slightly 
overlaps the real box. Compared to the YOLO series lightweight algorithm, the model parameters 
and algorithm computation do not overflow excessively. In comparison to YOLOv5s and 
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YOLOv8s, there is a certain advantage in lightweight. Simultaneously, the improved model’s 
detection performance is significantly enhanced, with the mAP@0.5:0.95 being 16.5 % higher 
than YOLOv5n, 9.5 % higher than YOLOv5s, and 7 % higher than YOLOv8s. The detection 
accuracy of the improved algorithm is higher than that of YOLOv8n by 3.2 % and higher than 
YOLOv8s. In comparison to the larger models YOLOv7 and YOLOv7x, the improved algorithm 
achieves better detection performance while reducing the number of model parameters by 
approximately 30.9M and 64.5M, respectively. This reduction significantly decreases the 
computational requirements on the device, ensuring smooth operation of the improved model on 
mobile devices, making it more suitable for practical detection needs. At the same time, the recall 
of the enhanced model has increased by 12.7 % compared to Yolov7-tiny. This suggests that the 
refined algorithm enhances the prediction accuracy of positive samples in real-world scenarios. 
Moreover, the mAP@0.5 has increased by 10.2 % and mAP@0.5:0.95 has increased by 19.2 %, 
demonstrating the effectiveness of the enhanced method. 

Table 1. Results of the cross-comparison experiment 
Models Parameters GFLOPs P% R% mAP@0.5% mAP@0.5：0.95% 

YOLOv7-tiny 6.010M 12.70 90.9 73.0 81.6 51.9 
YOLOv5n 1.765M 4.20 90.1 71.6 83.1 54.6 
YOLOv5s 7.022M 15.90 88.3 79.3 86.0 61.6 
YOLOv8n 3.011M 8.20 92.8 74.2 85.1 64.1 
YOLOv8s 11.13M 28.60 90.3 77.5 86.2 67.9 
YOLOv7 37.19M 105.10 91.0 81.1 87.7 65.6 
YOLOv7x 70.81M 188.90 89.9 76.4 82.6 58.4 

Ours 6.225M 13.72 92.5 85.7 91.8 71.1 

In order to further validate the robustness and generalization of the algorithms in this chapter, 
the network model proposed in this paper is experimented on the public dataset MSCOCO [22], 
while leveraging the official pre-training weights to expedite the training process. This paper 
utilizes the COCO2017 version, a comprehensive dataset comprising 80 categories. It includes 
118,287 training images, 5,000 validation images, and 40,670 test images. The dataset consists of 
approximately 41 % small targets, 34 % medium targets, and 24 % large targets. Therefore, 
employing the COCO dataset for testing the algorithm's robustness and generalization in this paper 
adds credibility. has some credibility. Table 2 presents the test results of the algorithms discussed 
in this chapter alongside the current mainstream algorithms on the public dataset COCO. The 
training parameters of the network model in this paper are configured in a similar manner to those 
in the previous paper. The “default” entry indicates that the corresponding data is not available in 
the public dataset. 

Table 2. Cross-sectional comparison experiments on the MS COCO dataset 
Models Input Parameters FLOPs mAP@0.5% mAP@0.5：0.95% 

YOLOv7-tiny-SiLU [23]  640×640 6.2M 13.8G 56.7 41.7 
YOLOv7 [23] 640×640 36.9M 104.7G 69.7 51.4 

EfficientDet-D1 [24]  640×640 6.6M 6.1B 59.1 – 
DETR [25] 640×640 41M 86G 62.4 44.2 

CenterNet [26] 511×511 – – 64.5 50.7 
Retina Net [27] 640×640 – – 61.1 44.1 

Mask R-CNN [28] – – – 62.3 43.4 
Ours 640×640 6.225M 13.72G 64.5 49.7 

Table 2 presents the experimental results indicating that the enhanced algorithm performs 
competitively in average detection accuracy at an IOU threshold of 0.5 when compared to the 
contemporary network model. Text: ### Compared with the YOLOv7-tiny model using the SiLU 
activation function, the model in this paper shows a 7.8 % increase in mAP@0.5 and an 8 % 



A STUDY OF RAINY IBIS DETECTION BASED ON YOLOV7-TINY.  
JUN LIN HUANG, PENG CHAO ZHANG, JIA JUN ZHANG, KAI YUE, ZHI MIAO GUO 

 JOURNAL OF MECHATRONICS AND ARTIFICIAL INTELLIGENCE IN ENGINEERING. JUNE 2024, VOLUME 5, ISSUE 1 109 

increase in mAP@0.5:0.95 for similar size and arithmetic. In comparison with the YOLOv7 
network model, there is only a 1.7 % decrease in mAP@0.5:0.95 in terms of detection accuracy, 
indicating that the improved model closely matches the large model in detection ability. When 
compared with the lightweight network algorithm EfficientDet-D1, despite differences in model 
parameters and computation, the mAP@0.5 is 5.4 percentage points higher. In comparison with 
the two-stage detection algorithm Mask R-CNN during the same period, the improved algorithm, 
as a disadvantaged single-stage detection algorithm, still demonstrates an advantage in detection 
accuracy. Compared with the single-stage detection algorithms DETR and RetinaNet during the 
same period, the mAP@0.5:0.95 is improved by 5.5 % and 5.6 %. ### Respectively, when the 
input image is 511×511 pixels, the mAP@0.5:0.95 loss is only 1 percentage point compared to 
the CenterNet network, demonstrating the effectiveness of the enhanced method. 

After analyzing the impact of the enhanced network model compared to the current mainstream 
algorithmic model, longitudinal comparison experiments were conducted on a self-constructed 
Ibis dataset to explore the relationships between the improved methods discussed in this paper. 
YOLOv7-tiny is used as the baseline to test the effects of different modules on the overall 
algorithm. Considering the varying dataset sample sizes classified differently during the 
experiment, the prediction anchor frames were reclassified using the K-means clustering method 
on the self-built dataset in this paper. Therefore, the ablation experiment also took this aspect into 
consideration. By integrating different modules, the test compared the model parameters' 
indicators, including GFLOPs, accuracy, recall, and average detection precision. The specific 
results are shown in Table 3. 

Table 3. Longitudinal comparison test results 
Models Parameters GFLOPs P% R% mAP@0.5% mAP@0.5：0.95% 

YOLOv7-tiny 6.010M 12.70 90.9 73.0 81.6 51.9 
v7-tiny+k-means 6.010M 12.70 91.5 76.5 85.4 58.2 

v7-tiny+CARAFE 6.053M 13.30 90.0 77.1 83.6 54.5 
v7-tiny+T-ELAN-ATT 6.107M 13.12 88.4 79.1 83.5 56.0 

v7-tiny+k-means+CARAFE 6.053M 13.30 87.5 80.1 85.8 58.5 
v7-tiny+CARAFE+T-ELAN-ATT 6.225M 13.72 90.6 84.2 89.8 66.5 
v7-tiny+k-means+T-ELAN-ATT 6.107M 13.12 91.6 76.3 84.7 58.8 

v7-tiny+k-means+CARAFE+T-ELAN-ATT 6.225M 13.72 92.5 85.7 91.8 71.1 

Table 3 demonstrates that the detection results of the self-built dataset in this paper 
significantly improved by using k-means to re-cluster the predicted anchor frames during 
YOLOv7-tiny training. The parameters and computational volume remained unaffected, while the 
precision increased by 0.6 percentage points, the recall by 3.5 percentage points, the mAP@0.5 
by 3.8 %, and the mAP@0.5:0.95 by 6.3 %. This indicates that the predicted anchor frames align 
more closely with the labeled real frames in the self-built dataset after the k-means re-clustering. 
Clustering, the predicted anchor frames are closer to the labeled true frames of the self-constructed 
dataset. After introducing the CARAFE module, the model’s recall is increased by 4.1 percentage 
points, demonstrating an improvement in the model’s ability to detect positive samples in the real 
environment. Following the integration of the T-ELAN-ATT module, the model’s average 
detection precision is significantly enhanced, and the recall is increased by 6.1 percentage points. 
However, the accuracy is decreased by 2.5 percentage points, indicating that the introduction of 
the E-SEWSA attention mechanism in the backbone enhances the model's feature extraction 
capability but slightly impacts the prediction accuracy. The mAP@0.5:0.95 increases by 4.1 %, 
confirming the effectiveness of the module in enhancing the overall performance of the network 
model. Comparing the CARAFE module and the enhanced E-SE module after the integration of 
k-means, it is evident that the mAP@0.5:0.95 has increased to varying extents. This validates a 
beneficial correlation between the k-means re-clustering prediction anchor frames and the 
module's introduction. However, the recall rate diminishes when combined with the  
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T-ELAN-ATT module. Furthermore, due to experimental constraints, the combination with other 
attentional mechanisms has not been explored. Due to limitations in experimental conditions, we 
did not conduct experiments combining other attention mechanisms. We speculate that re-
predicting the anchor frame may cause the attention mechanism to focus on a broader sensory 
field. However, the feature fusion part may not be contextually connected, leading to incomplete 
filtering of the prediction frame. The recall rate of the CARAFE module combined with the 
T-ELAN-ATT module increased significantly. This demonstrates that the integration of these two 
enhanced methods refines the feature extraction capability of the T-ELAN-ATT module and the 
CARAFE module, allowing the network to effectively learn the target within the actual frame. 
The network can learn the personality characteristics of the target samples in the real frame and 
filter the accurate prediction frame by linking the context. Finally, by combining the three methods 
of improvement, the optimal network model is achieved, with only a 0.215M increase in 
parameters, a 10.2 % increase in mAP@0.5, and a 19.2 % increase in mAP@0.5:0.95. This 
demonstrates that the enhanced network framework enhances the extraction of features from the 
actual labeled data and improves the similarity between predicted frames and real frames, thereby 
enhancing the model's detection performance. 

In order to clearly demonstrate the effectiveness of incorporating the Attention Mechanism 
module in this chapter, a visualization experiment of the E-SEWSA Attention Mechanism was 
conducted, and the results of the experiment are presented in Fig. 7. From the figure, it can be 
clearly seen that after adding the E-SEWSA attention mechanism, the attention dispersed on the 
whole picture is concentrated into the calibrated box, and the highlighted part represents giving 
more attention. There is still some distraction after using the attention mechanism, which is 
unavoidable and within acceptable limits, proving the effectiveness of the attention module 
proposed in this chapter. 

 
a) 

 
b) 

 
c) 

Fig. 7. Comparative effectiveness of attention mechanisms: a) represents the original image; b) represents 
the attention heat map generated without adding the E-SEWSA attention mechanism; and c) represents  

the attention heat map generated with the addition of the E-SEWSA attention mechanism 

The training test comparison graph between the improved algorithm proposed in this paper 
and different algorithms of YOLO series is shown in Figure 8. From the figure, we can visually 
compare the advantages of the improved algorithms in this paper in terms of detection accuracy 
as well as bounding box precision, especially comparing the YOLOv7-tiny model, the detection 
targets lost under the interference of stormy weather environments can be accurately framed, and 
at the same time, there are different degrees of improvement compared to the other algorithms of 
different versions of the YOLO series, such as the YOLOv5n model, YOLOv8n model and 
YOLOv8s model. In the rain line, raindrop and fog environment with slight occlusion, compared 
with the YOLOv7-tiny model, the prediction frames of the improved model in this paper are 
obviously more accurate, and compared with the relatively larger models YOLOv7 and 
YOLOv7X, the small difference in prediction frames is difficult to compare intuitively, which 
proves that the improved model is very close to or even exceeds the larger models in terms of 
detection accuracy. Also comparing the more advanced YOLOv8 series models of the same 
magnitude, the improved algorithms in this paper also show obvious advantages in cloudy and 
rainy weather environments. Compared with YOLOv5n and v5s, there are also different degrees 
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of improvement. Compared with other YOLO series algorithms, the improvement of this paper 
makes the algorithm detect the effect of intuitive observation and predict the anchor frames more 
accurately, and the detection accuracy is significantly improved compared with YOLOv7-tiny, 
and the detection results are similar compared with YOLOv7, which proves the validity of the 
improved method in this paper. 

Ours
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tiny

Yolov5n

Yolov5s

Yolov7
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Yolov8s

Yolov8n

Original 
figure
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Fig. 8. Test chart of different algorithm training 

4. Conclusions 

The improved algorithmic model in this paper solves the problem that the YOLOv7-tiny 
algorithm is unable to identify the ibis target effectively under rainy weather environment. By 
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adding the E-SEWSA attention mechanism and using the CARAFE up-sampling module, the 
network is able to extract the feature information obtained from the convolution more fully and 
accurately during the training process. After experiments, it is found that the improved algorithm 
model in this paper is better than the Yolov7-tiny algorithm in recognising ibis targets in complex 
environments such as rainy days and occlusion, reaching 91. 8% in mAP@0.5 and 71.1 % in 
mAP@0.5:0.95. However, the model still has a lot of compression space to further compress the 
improved algorithmic model to adapt to run efficiently on mobile devices. 
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