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Abstract. The fault data for Planetary Roller Screw Mechanisms (PRSM) is challenging to collect 
in real industrial settings due to the complex nature of practical operations and the lengthy 
accumulation period. Consequently, there has been little research on PRSM fault diagnosis. 
Additionally, the high processing cost of PRSM means that institutions are reluctant to make their 
fault data publicly available, creating a data barrier and further hindering research of the study on 
fault diagnosis of PRSM. To address these issues, Federated Learning (FL) is applied for PRSM 
fault diagnosis. In the FL framework, data remains in local storage, preserving data privacy. To 
reduce transmission costs, a lightweight model called SResNet18 is proposed. SResNet18 reduces 
parameters by 95.07 % and 61.93 % compared to ResNet18 and DSResNet18, respectively, which 
decreases the time needed for parameter uploading, model aggregation, and parameter returning. 
Additionally, SResNet18 has lower computational complexity, with 92.09 % and 36.66 % fewer 
FLOPs than ResNet18 and DSResNet18, respectively. Healthy and fault data of PRSM are 
collected on the PRSM testing rig, and the proposed method is evaluated. Results show that our 
method achieves the highest accuracy of 99.17 %, improving model performance while 
maintaining data privacy. The proposed SResNet18 also alleviates overfitting and reduces training 
time in the FL framework.  
Keywords: planetary roller screw mechanism, fault diagnosis, federated learning, data privacy, 
lightweight model. 

1. Introduction 

The Planetary Roller Screw Mechanism (PRSM) has become a preferred choice for 
electromechanical actuators due to its strong bearing capacity [1], high precision [2], and high 
limiting velocity [3]. The structure of the PRSM, illustrated in Fig. 1, primarily consists of carriers, 
a screw, rollers, a nut, and ring gears. Both the screw and nut have multi-start threads, while the 
roller has a single-start thread. Carriers at both ends support multiple rollers arranged uniformly 
around the circumference. The ends of the rollers are machined with spur gears that mesh with the 
ring gears fixed inside the nut. 

 
Fig. 1. Structure of PRSM  

https://crossmark.crossref.org/dialog/?doi=10.21595/jme.2024.24149&domain=pdf&date_stamp=2024-09-08
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Currently, studies on PRSM primarily focus on load distribution [4]-[5], meshing principle 
and contact characteristic analysis [6]-[7] and dynamic characteristic analysis [8]-[9]. In recent 
years, the application of PRSM in aviation, aerospace, navigation and fields requiring precision 
servo transmission has gradually increased. However, PRSM typically operates with single 
redundancy, meaning its reliability directly impacts the reliability of the entire system. Therefore, 
there is an urgent need to develop effective fault diagnosis methods for PRSM. 

However, most current fault diagnosis studies focus on gears, bearings and hydraulic pumps. 
For example, Huang et al. [10] and Sohaib et al. [11] proposed different fault diagnosis models to 
realize the fault diagnosis of gearboxes. Gu et al. [12] used modulation signal bispectrum and 
vibration measurements to diagnose gradual deterioration of gear. Zhao et al. [13] employed 
spatial decoupling method and the residual network for bearing fault diagnosis. Tao et al. [14] 
used the 18-layer residual neural network for bearing fault diagnosis, and compared it with SVM 
and LeNet. The results showed that the 18-layer residual neural network was better than SVM and 
LeNet. Zhao [15] utilized Depthwise Separable Convolution (DSC) for motor bearing fault 
diagnosis, showing shorter training times compared to VGG16, ResNet50, and MobileNetV3 
without sacrificing accuracy. To reduce noise interference, Zhen et al. [16] used variational mode 
decomposition and degree of cyclostationarity demodulation to extract features of bearings. To 
solve class imbalance problems, Wu et al. [17] presented a deep adversarial transfer learning 
model. Cheng et al. [18] proposed a fault diagnosis model based on improved empirical wavelet 
transform-support vector machine for rolling bearing fault characteristics extraction and diagnosis. 
Mao et al. [19] developed a cross-domain feature extraction model and a bearing cross domain 
fault diagnosis model based on multi-layer perception mechanism to improve the accuracy of 
bearing cross domain fault diagnosis. Chao et al. [20] utilized a physical flow loss model and 
support vector data description model to assess the health status of hydraulic axial piston pumps. 
Yong et al. [21] applied Bayesian algorithm and improved CNN based on the S transform of 
multiple source signals for fault diagnosis of hydraulic axial piston pump. Tang et al. [22] used 
continuous wavelet transform, a lightweight model based on convolution and Bayesian algorithm 
for hydraulic axial piston pump failure recognition. The scarcity of fault diagnosis studies on 
PRSM is due to the complex and expensive processing technology compared to more mature 
technologies for gears and bearings. The price of a set of PRSM may be hundreds or thousands of 
times more than a set of gears. Additionally, there are numerous public datasets for bearing and 
gear faults, such as CWRU [23], XJTU-SY [24] and Gearbox Datasets [25]. For PRSM, Niu et al. 
[26] used a bird swarm algorithm and SVM to realize the fault diagnosis of PRSM, while Niu et 
al. [27] proposed a one-class model called deep Support Vector Data Description (deep SVDD) 
to determine whether PRSM is normal or not. However, these studies only consider a single type 
of PRSM failure. All the aforementioned methods require data to be aggregated in local storage, 
excluding data from other sources, which limits model training. In practice, data is often private, 
and collecting fault data is challenging with long accumulation periods. Consequently, few 
institutions make their data openly accessible, creating data barriers and leading to insufficient 
data for model training. Moreover, the model trained by data from one institution often perform 
poorly when applied to other institutions within the same field. 

Based on the above analysis, breaking the data barrier between various institutions and making 
full use of multi-client data for model training is key to improving the performance of fault 
diagnosis models. To address these challenges, McMahan et al. [28] proposed Federated Learning 
(FL) in 2017. Currently, there are few studies on research of fault diagnosis based on FL. For 
instance, Chen et al. [29] used discrepancy-based weighted federated averaging to train the 
diagnosis model. Wang et al. [30] proposed an efficient asynchronous Federated Learning method 
to increase the efficiency of synchronization optimization. Zhang et al. [31] explored a Federated 
Learning model based on similarity collaboration to alleviate data heterogeneity for different 
conditions and fault diagnosis tasks. Liu et al. [32] addressed the domain shift issue with a 
federated transfer model based on broad learning. Yu et al. [33] introduced a new federated 
framework, FedCAE, for fault diagnosis to avoid potential conflicts arising from sharing data. 
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Xue et al. [34] proposed a federated transfer learning method with consensus knowledge 
distillation and mutual information regularization to bridge the gap between source clients with 
labeled data and target clients without labeled data. However, these studies do not consider 
reducing transmission costs in the FL framework. 

To address the lack of PRSM fault diagnosis data held by individual institutions and the 
absence of public PRSM datasets, FL is applied to train the model. The model is trained locally at 
each client without data communication, breaking the data barrier and improving the model 
performance. The vibration data in the 𝑋, 𝑌 and 𝑍 direction of PRSM are not completely 
independent, indicating a relationship among three directions. However, as a time sequence signal, 
the signal at each time point differs significantly. Based on these vibration data characteristics and 
inspired by literature [35], a novel model with few parameters called SResNet18 is proposed to 
reduce the cost of parameter transmission. Experiments on the PRSM dataset is implemented, and 
the results show that the proposed method achieves the best effect. The main contributions and 
innovations of this paper are as follows: 

1) Healthy and fault data of PRSM are collected on a PRSM testing rig, addressing the problem 
of insufficient PRSM fault data. 

2) FL is applied for fault diagnosis of PRSM, solving the issue of limited studies on fault 
diagnosis of PRSM and there is no data communication among different institutions. In the FL 
framework, data barrier between different clients is broke. Combining data from various 
institutions enhances the performance of the fault diagnosis model. 

3) To reduce the cost of parameter transmission in the FL framework, a lightweight model 
with few parameters, called SResNet18, is proposed. 

The remainder of this paper is organized as follows. Section 2 details our method, including 
Federated Learning and lightweight model. Section 3 presents the experiments, results and 
discussion. Finally, conclusions are drawn in Section 4. 

2. Fault diagnosis with a lightweight model based on Federated Learning 

2.1. Framework of proposed method 

Fig. 2 shows the general implementation of the proposed method. In this study, two clients 
participate in training the model. To validate the effectiveness of FL, both clients process the data 
in the same way. In the FL framework, the training task is initiated by Guest and the model is built 
by Guest. Therefore, the models of Host and Guest are identical. At each round, Host and Guest 
upload parameters of the model, and then the model is aggregated. Finally, parameters of the 
global model are returned to each client. Through multiple training rounds, an optimized global 
model can be built. 

 
Fig. 2. Flow chart of the proposed method 
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2.2. Federated learning  

Traditional machine learning can only use data stored locally to train models, and the quantity 
and quality of data significantly impact model performance. Often, the data available in an 
institution’s local storage is insufficient to meet these requirements. Models with excellent 
performance typically require the aggregation of data from multiple clients. However, due to data 
privacy concerns, many institutions are reluctant to make their data publicly accessible. 

To address this issue, FL is used for fault diagnosis. In the FL framework, data distributed 
across various institutions is utilized to train the model. Each client trains a model on its local data, 
and then uploads the model parameters. These parameters are exchanged among clients to 
aggregate the models, ultimately the global model is obtained. The implementation of FL is shown 
in Fig. 3. This approach allows each client to benefit from the data of other clients for model 
training while ensuring that the data remains within local storage. 

 
Fig. 3. Federated learning 

The data of Host is 𝑋ு ൌ ሼ𝑥ଵு,  𝑥ଶு, … ,  𝑥ேுሽ, and the data of Guest is 𝑋ீ ൌ ሼ𝑥ଵீ ,  𝑥ଶீ , … ,  𝑥ேீሽ. 
These datasets do not overlap. A model with the same structure is built for both Host and Guest. 
The parameters of the models for Host and Guest are denoted as 𝑃ு and 𝑃ீ, respectively. The 
outputs of the model for Host and Guest are calculated as follows: 

ቊ𝑂௜ு ൌ 𝑋௜ு ∙ 𝑃௜ு,𝑂௜ீ ൌ 𝑋௜ீ ∙ 𝑃௜ீ ,  (1)

where • represents computation involving the inputs and weights. In the FL framework, there are 
multiple Host clients, so the parameter 𝑖 represents the 𝑖-th Host client. 

The parameters of the global model are denoted 𝑃஼, and the aggregation is implemented as 
follows: 

𝑃஼ ൌ 𝑃ଵு ൅ 𝑃ଶு ൅⋯൅ 𝑃௡ିଵு ൅ 𝑃ீ𝑛 , (2)
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where 𝑛 is the number of clients. In this way, parameters of Host and Guest are both 𝑃஼. 
The core idea of FL is that the data does not move, but the model does. Data remains local and 

is available but not visible to other clients. With this core idea, every client cooperates to build the 
model. This method preserves data privacy while making full use of multi-client data to 
collaboratively train the model. 

2.3. Lightweight model 

In the FL framework, parameters need to be continuously uploaded, aggregated and returned. 
Therefore, a model with a small number of parameters is necessary to reduce training time. The 
vibration data in the 𝑋, 𝑌 and 𝑍 directions of PRSM is not completely independent, and there is a 
relationship among these directions. However, as a time sequence signal, the signal at each time 
point differs significantly. Based on the above characteristics of vibration data and inspired by 
literature [35], kernels with different weights should be used at different spatial positions, while 
kernels with same weights should be used across different channels. To achieve this, a novel layer 
called Symmetric Convolution (SConv) is proposed. and a new lightweight model with SConv as 
the main structure is built. 

When extracting features on same channel, the kernels at different spatial positions are 
different. This allows for more accurate adaptive extraction of information at various spatial 
positions. All channels share one group of kernels, which significantly reduces number of 
parameters of the model. This design ensures efficient use of resources while maintaining the 
capability to capture important features. SConv can effectively extract features by applying 
large-size kernels to capture long-distance dependencies in the data. 

For SConv, all channels of the input 𝑋 are treated as a group. SConv kernels are expressed as 𝐼 ∈ 𝑅ு×ௐ×ଵ×௄×௄, where 𝐻 × 𝑊 represents the size of the input, and 𝐾 × 𝐾 represents the size of 
Sconv kernels. All channels share a group of SConv kernels with the same weights. The output of 
every channel is as follows: 𝑌௜,௝,஼೔ = ෍ 𝐼௜,௝,௨ା⌊௄/ଶ⌋,௩ା⌊௄/ଶ⌋𝑋௜ା௨,௝ା௩,஼೔(௨,௩)∈∆௞ , (3)

where 𝑢 and 𝑣 refer to the input and kernel of the neighborhood on the center pixel. 𝐶௜ represents 
the 𝑖-th channel. 

The implementation flow of SConv is shown in Fig. 4. 

 
Fig. 4. Implementation flow of SConv 

As shown in Fig. 4, the number of channels for both the input and output is 𝐶଴. Therefore, a 
convolution layer with a kernel size of 1×1 and stride of 1 is usually needed to change the number 
of channels. 

H × W × Co

 (H/s × K) × (W/s × K) × 1

…
…

…
…

……

……

H1 × W1 × Co

Input OutputSCon kernels
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Since multiple SConv kernels with different weights are required at different spatial positions, 
it is necessary to dynamically generate different SConv kernels for these positions. In this paper, 
SConv kernels are generated through a bottleneck layer, as illustrated in Fig. 5. 

 
Fig. 5. The implementation of SConv kernels generation 

As shown in Fig. 5, the parameter 𝑟 determines the size of the bottleneck layer. When the stride 
is not equal to 1, the height and width of the input will change. Consequently, the size of the 
SConv kernels generated through a single bottleneck layer may not match the input size. To 
address this, a pooling layer is used to reduce the height and width of the input. After the pooling 
layer, the height and width of the input become 𝐻ଵ = 𝐻଴ 𝑠⁄  and 𝑊ଵ = 𝑊଴ 𝑠⁄ , respectively. When 
the stride is equal to 1, the size of the kernels generated through the bottleneck layer matches the 
input size input, within the dotted line in Fig. 5 is not required. 

2.4. The architecture of SResNet18 

When training the model in the FL framework, the training time of the fault diagnosis model 
is mainly composed of two parts. The first part is the time spent training the model locally, and 
the second part is the time taken to upload the model parameters, aggregate the models from all 
clients, and return the global model parameters to all clients. Therefore, reducing the complexity 
of the model can not only decrease the computational cost but also reduce local training time. It is 
also crucial to reduce the number of model parameters. Fewer parameters lower transmission 
costs, thus reducing the overall training time. To achieve this, the convolution layers in ResNet18 
[36] are replaced with SConv layers. In this way, SResNet18 is built for fault diagnosis of PRSM. 
The overall structure is shown in Fig. 6. SRes1 and SRes2 are shown in Fig. 7. 

 
Fig. 6. The structure of SResNet18 

As shown in Fig. 6, In addition to the traditional ResNet18 structure, there are four additional 
convolution layers with the kernel size of 1×1 and the stride of 1. These four convolution layers 
are designed to change the number of output channels. 
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a) SRes1 

 
b) SRes2 

Fig. 7. The structure of SRes 

3. Experiments, results and discussion 

3.1. The description of datasets 

3.1.1. Data collection 

The PRSM testing rig is shown in Fig. 8, which includes servo motor, coupling, tested PRSM, 
accelerometer and hydraulic loading system. 

 
Fig. 8. PRSM testing rig 

Fig. 9 shows the healthy (H), failure of lubrication (F-L) and failure of the teeth on one side of 
the roller (F-T). 

The nominal diameter of the tested screw is 24 millimeters. The pitch is 2 millimeters and the 
number of rollers is 10. Due to the limited effective travel, the screw cannot continuously rotate 
in the same direction. Therefore, the screw operates in a forward and reverse motion, and the nut 
reciprocates linearly. Except for the reversing stage, the linear velocity of the nut remains constant. 
The load differs when the nut extends and retracts, resulting in load fluctuations within a certain 
range. The given load is the maximum load of the actual load. In this paper, rotating speed of 
104 r/min is implemented, and the load is 9 kN. An accelerometer is installed on the nut to collect 
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the vibration signals in the 𝑋, 𝑌 and 𝑍 direction with a sampling frequency of 20 kHz. 

 
a) H 

 
b) F-L 

 
c) F-T 

Fig. 9. The different states of PRSM 

3.1.2. Data process 

In this paper, there are two clients training the model: Host and Guest. The raw data is 
randomly divided between Host and Guest to simulate the real industrial scenario, where each 
client’s training set is non-overlapping and the data is unevenly distributed. 

The data is normalized according to Eq. (4) to reduce the data span. Since acceleration data 
has directionality, the collected data includes both positive and negative values. To preserve this 
directionality, the data is normalized to the range [–1, 1]: 

𝑥∗ = 𝑥௜ െ 𝑚𝑖𝑛 (𝑥)𝑚𝑎𝑥(𝑥) െ𝑚𝑖𝑛 (𝑥) × (𝑀 െ𝑚) ൅𝑚, (4)

where 𝑥௜ represents the input. 𝑀 and 𝑚 represent the maximum and minimum value of 
normalized data 𝑥∗ and they are set to 1 and –1 respectively. Then the normalized data is enhanced 
by window clipping and is processed using wavelet packet transform. 

The final datasets are described Table 1. 

Table 1. Description of datasets 
Datasets Client Class Samples Label One-hot 

Training 

Host 
N 252 0 [0 0 1] 

F-L 252 1 [0 1 0] 
F-T 252 2 [1 0 0] 

Guest 
N 349 0 [0 0 1] 

F-L 349 1 [0 1 0] 
F-T 349 2 [1 0 0] 

Testing Host and guest 
N 80 0 [0 0 1] 

F-L 80 1 [0 1 0] 
F-T 80 2 [1 0 0] 

For each state, there are 252 and 349 samples for Host and Guest, respectively, with label 
values of 0, 1, and 2. The testing set contains 80 samples for each state. To compare the 
performance of the FL model and single-point (SP) model, which is trained using the local data 
of a single client, the testing set is shared. 

3.2. Comparison models and experimental setup 

As previously mentioned, the fault diagnosis performance of the 18-layer convolution residual 
neural network (ResNet18) proposed by Tao et al. [14] is superior to that of SVM and LeNet. The 
performance of the model based on DSC proposed by Zhao [15] outperforms VGG16, ResNet50 
and MobileNetV3. Therefore, this paper compares the proposed model with ResNet18 and 18 
layer depth wise separable convolution (DSResNet18). 

In this paper, kubefate-docker-compose-v1.6.0 is chosen as the FL framework. which only 
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supports CPU. The model is trained using an Intel (R) Core (TM) i5-5200U CPU for the Host and 
an Intel (R) Core (TM) i5-10200H CPU for the Guest. Adam is used as the optimizer. The batch 
size, number of training epochs and learning rate are set to 64, 100 and 0.01 respectively. 

3.3. Results and discussions 

To evaluate the performance of FL model as well as the impact of the number of parameters 
and model complexity on the federated training speed, this section will assess the performance of 
each model during the model training and testing respectively. 

3.3.1. Parameters, FLOPs and training time 

Parameters, FLOPs and training time of SP model and FL model are shown in Table 2. 

Table 2. Parameters, FLOPs and training time 
Model Parameters / M FLOPs / G Training time (SP) / s Training time (FL) / s 

ResNet18 11.2 0.297 977 9039 
DSResNet18 1.45 0.0371 284 1836 
SResNet18 0.552 0.0235 650 3551 

In this paper, SP models are trained three times. The training time shown in Table 2 for SP 
models refers to the model with the highest accuracy. Due to the longer training time and higher 
cost for FL models, they are only trained once. As shown in Table 2, the number of parameters 
and FLOPs of DSResNet18 and SResNet18 are significantly fewer than those of ResNet18. with 
SResNet18 being the least. However, despite the number of parameters and FLOPs are the least, 
training time for both SP model and FL model are not the shortest. One possible reason is that 
SResNet18 includes four additional convolution layers with a kernel size of 1×1 and stride of 1. 
Additionally, the implementation of SConv requires to generate kernels through the bottleneck 
layer, followed by multiplication and addition with the input, making the computation process 
more complex than DSC. The sequential nature of kernel generation and subsequent multiplication 
and addition prevents parallel implementation. Another reason is that existing hardware devices 
are more optimized for mature neural networks like CNN and DSC. Thus, when the difference in 
number of parameters and FLOPs is slight, the training speed of mature neural networks tends to 
be faster than that of the newly proposed one. Training time for SP model is shorter than that for 
FL model, with a significant difference between the two. In the FL framework, training time 
includes parameters uploading, model aggregation, and parameters returning, which constitute a 
large proportion of the total time. Additionally, when multiple clients participate in training the 
model, the overall training speed is often limited by the performance of the least powerful 
computer. 

3.3.2. Convergence speed on training set 

In the FL framework, the training task is initiated by Guest. To compare the convergence speed 
and accuracy of SP model and FL model on training set, Fig. 10 presents accuracy on training set 
of ResNet18, DSResNet18, SResNet18 SP model and FL model. SP models shown in Fig. 11 refer 
to the model with the highest accuracy. 

The conclusions drawn from Fig. 10 are as follows: 
1) SP model converges faster than FL model for each client. This is because FL model not 

only needs to extract the features from one client’s data, but also from the other client's unseen 
data. When extracting features from another client’s unseen data, the model parameters are not 
directly obtained from the data but are averaged from the parameters of both models. This 
averaging process can sometimes misalign with the feature distribution of each client. Adjusting 
the model parameters can also disrupt the locally extracted features or diverge from the intended 



FAULT DIAGNOSIS OF PLANETARY ROLLER SCREW MECHANISM WITH A LIGHTWEIGHT MODEL BASED ON FEDERATED LEARNING.  
MAODONG NIU, SHANGJUN MA, QIANGQIANG HUANG, PAN DENG 

10 ISSN PRINT 2335-2124, ISSN ONLINE 2424-4635  

convergence direction. 
2) The accuracy on the training set for Guest is higher than that of Host. The possible reason 

is that Guest holds more data, enabling the model trained by Guest to extract more features. After 
model aggregation, the global model achieves better fit on the data of Guest. 

 
a) ResNet18 

 
b) DSResNet18 

 
c) SResNet18 

Fig. 10. Accuracy on training set of different models 

3.3.3. Accuracy on training set and testing set 

Accuracy on training set of SP model and FL model in the stable stage, as well as accuracy on 
testing set, are shown in Table 3. 

Table 3. Accuracy of SP model and FL model 

Model Accuracy of SP model Accuracy of FL model 
Training Testing Training (Host) Training (Guest) Testing 

ResNet18 99.92 %±0.09 66.97 %±0.46 33.33 % 37.06 % 36.25 % 
DSResNet18 99.78 %±0.20 96.11 %±1.58 100.00 % 100.00 % 97.92 % 
SResNet18 99.75 %±0.29 98.19 %±0.64 84.92 % 99.43 % 99.17 % 

As mentioned above, SP models are trained three times, and the mean and standard deviation 
of the accuracy on training set and testing set are provided in Table 3, while the FL models are 
only trained once due to its high training cost and time. In the FL framework, accuracy on testing 
set for the models may be higher than accuracy on training set of Host, but it is lower than accuracy 
on training set of Guest. The possible reason is that Host holds less data, resulting in weaker 
feature extraction by the model. Therefore, the global model aligns more closely with Guest's 
feature distribution than with Host’s. For SP model, accuracy on testing set is lower than accuracy 
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on training set, indicating that there are different degrees of overfitting among the models, with 
ResNet18 showing the most significant overfitting. This is likely due to an insufficient number of 
samples for single-point training, which doesn’t match the model's large number of parameters. 
The standard deviation provided in Table 3 reflects the uncertainty in model accuracy. For 
instance, the ResNet18 SP model has a higher uncertainty (standard deviation of ±0.46) compared 
to SResNet18 (±0.64), indicating greater variability in its performance. Moreover, ResNet18 SP 
model achieves the highest accuracy on training set but the lowest accuracy on testing set. This 
indicates that ResNet18 SP model has poor generalization ability on new datasets and exhibits the 
highest uncertainty. In the FL framework, except for ResNet18, overfitting has been significantly 
alleviated for each model. This may be because the large number of parameters for ResNet18 
means the number of training epochs does not meet the convergence requirements for the global 
model in the FL framework. However, increasing the number of epochs would raise the training 
time and computational cost, leading to unnecessary waste. As shown in Table 3, compared to SP 
model, FL model shows a slighter difference between accuracy on testing set and accuracy on 
Guest’s training set, indicating that FL can alleviate overfitting caused by insufficient data. 

To observe the results on testing set for FL model more intuitively, visualizations and 
confusion matrices of each model are as follows. 

Based on the provided confusion matrices in Fig. 11, ResNet18 FL model performs the worst. 
There is no clear classification boundary among the samples of three states, and the samples are 
mixed together. While it achieves very high accuracy in predicting state H, it struggles 
significantly with predicting state F-L, resulting in higher uncertainty for state F-L. The sensitivity 
of the ResNet18 FL model is best for state H but varies significantly for state F-L and state F-H. 
Due to the large performance discrepancies across different states, the confidence interval for this 
model is likely wider, and its specificity is high for state H but lower for state F-L and F-H. In 
contrast, DSResNet18 FL model shows a more balanced performance across all states, with high 
prediction accuracy for state H, state F-L, and state F-H. This indicates lower uncertainty, high 
sensitivity and specificity, as well as a narrower confidence interval. SResNet18 FL model 
demonstrates the most stable performance, with high accuracy across all states. It can correctly 
classify the samples of each state, with a clear boundary among the samples of the three classes. 
Its uncertainty and confidence interval are both low, and it exhibits excellent specificity as it 
accurately identifies state H, state F-L and F-H. In summary, SResNet18 FL model performs the 
best overall, while ResNet18 FL model shows the most instability. 

3.3.4. Model comprehensive performance 

To clearly compare the performance of SP model and FL model, all the results are shown in 
Table 4. 

As indicated in Table 4, SResNet18 SP model achieves the highest accuracy of 99.17 %. 
Although training time of DSResNet18 is the shortest, the accuracy of model on testing set is most 
crucial indicator when training time is close. With the highest accuracy on testing set, training 
time of SResNet18 is relatively short. In summary, the proposed SResNet18 FL model 
demonstrates the best performance. 

Table 4. Comparison results of model comprehensive performance 

Model Parameters / M FLOPs / G Accuracy on testing set Training time / s 
SP model FL model SP model FL model 

ResNet18 11.2 0.297 66.97 %±0.46 36.25 % 977 9039 
DSResNet18 1.45 0.0371 96.11 %±1.58 97.92 % 284 1836 
SResNet18 0.552 0.0235 98.19 %±0.64 99.17 % 650 3551 

 



FAULT DIAGNOSIS OF PLANETARY ROLLER SCREW MECHANISM WITH A LIGHTWEIGHT MODEL BASED ON FEDERATED LEARNING.  
MAODONG NIU, SHANGJUN MA, QIANGQIANG HUANG, PAN DENG 

12 ISSN PRINT 2335-2124, ISSN ONLINE 2424-4635  

 
a) ResNet18 

 
b) DSResNet18 

 
c) SResNet18 

Fig. 11. The visualizations of the result and confusion matrix of different models 

4. Conclusions 

Given the challenges of collecting PRSM fault data in real industries, the long data 
accumulation period, data privacy concerns preventing communication between different 
institutions, and the scarcity of studies on PRSM fault diagnosis, this paper collects healthy and 
fault data of PRSM and applies FL to train the fault diagnosis model. To reduce transmission costs 
in the FL framework, a model called SResNet18 with fewer parameters and FLOPs is developed. 
Compared to ResNet18 and DSResNet18, SResNet18 has 95.1 % and 61.9 % fewer parameters, 
and 92.1 % and 36.7 % lower FLOPs, respectively. With healthy and fault data collected on the 
PRSM testing rig, the data is processed and the diagnosis experiment is conducted. The results 
show that the proposed SResNet18 FL model achieves the best performance, with faster 
convergence speed and the highest accuracy, reaching 99.2 %. Furthermore, FL enhances the 
model's performance and mitigates overfitting by learning from more samples while maintaining 
data privacy. For SResNet18, the FL model's accuracy increased by 8.0 % compared to the SP 
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model. However, this study has its limitations. The training time for SResNet18 is longer than that 
of DSResNet18, this is because the implementation of SConv needs to generate kernels through 
the bottleneck layer, and then multiplication and addition with the input is implemented. To further 
reduce training time, future improvements should focus on enhancing the kernel generation 
process. 
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