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Abstract. Rolling bearings are an important part of the system with rotating parts. In the past, the 
rolling bearing fault diagnosis was based on the envelope of the bearing vibration waveform and 
FFT analysis to identify the fault and classify the fault type by the feature frequency. In addition, 
they proposed a method to perform signal processing by decomposing the envelope EMD to 
improve the diagnostic accuracy. However, this method is computationally intensive due to the 
iterative computation based on the reduced averaging method, and the convergence rate is 
different depending on the signal characteristics, which makes it difficult to perform real-time 
functions and consume a lot of memory space for data communication. In this paper, a method for 
diagnosing faults in rolling bearings based on compressive sensing (CS) and local 
characteristic-scale decomposition (LCD) is proposed and the effectiveness of bearing fault 
diagnosis method is verified by numerical experiments. In this paper, we propose a method to 
improve the diagnostic accuracy and shorten the computational time by identifying characteristic 
frequencies of the bearing fault from the Hilbert envelope spectrum of the components 
decomposed by the LCD after preprocessing and signal filtering of vibration signals based on CS.  
Keywords: compressive sensing, matching pursuit, special frequency, sparsity decomposition, 
bearing vibration waveform. 

1. Introduction 

Bearings are mechanical components that are the spindle point, and once bearing failure 
occurs, the machine cannot operate safely and the efficiency of the machine will also be reduced. 
The bearing of an operating machine is usually vibratory and its vibration signal contains a lot of 
state information. Therefore, the measurement and analysis of vibration signals generated by 
bearings can be used to identify and classify the fault state. 

Fault diagnosis by vibration signal analysis is generally performed in the time domain, 
frequency domain or time-frequency domain. Statistical parameters have been often used to detect 
bearing faults in the time domain [1]-[2]. This type of method is relatively simple but it cannot 
identify the fault types with high precision. Especially, the roller bearing vibration signal has 
nonlinear and nonstationary characteristics so that it is insensitivity to diagnosis the roller bearing 
fault [3]. Frequency domain methods describe signals more clearly and it can reflect more details 
of fault degradation degree. Therefore, in recent years, the time-frequency analysis methods have 
been widely used [4]-[5]. These methods can provide the local characteristics of signals in both 
time domain and frequency domain. The time-frequency decomposition methods include 
empirical mode decomposition (EMD), local mean decomposition (LMD), and local 
characteristic-scale decomposition (LCD) and so on. 

The EMD method proposed by Huang et al is an adaptive decomposition method [6]. This 
method can effectively decompose the local feature of the signal into several components, and has 
the ability to process 

complex nonlinear and nonstationary signal. So it is widely used in fault diagnosis [7]-[8]. The 
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envelope analysis method and EMD method are combined and applied to the fault diagnosis of 
roller bearings, and better analytic results are obtained [9]. However, owing to the EMD problems 
such as the over envelope, the owing envelope, mode mixing, and the end effect [10], the 
application effect of this method in practical engineering is affected to some degree. 

The LMD method proposed by Smith [11] in 2005 is similar to the EMD method, and is also 
based on the inherent characteristic of vibration signal to decompose complex signals. Because of 
the use of the division operation to obtain the product function (PF) component, it can reduce the 
number of iterations and then reduce the end effect. At the same time, the effect of the LMD 
method overcoming the over envelope and the owing envelope is better than the EMD method 
[12]. This method can decompose the PF components which can be closely related to fault. In 
literature [13], by analyzing the spectrum of PF components, the characteristic information of fault 
frequency is extracted accurately. However, because the traditional LMD method has defects such 
as a poor ability to extract weak high frequency components, a large amount of iterative 
calculation, and the frequency confusion [14], it needs to be further optimized. 

The LCD method is a new adaptive time-frequency analysis method based on intrinsic 
time-scale decomposition proposed by Yang et al. [15]. This method utilizes piecewise linear 
transformation to obtain the baseline signal, which can avoid the EMD problems such as over 
envelope and owing envelope etc. It can also reduce computation complexity of EMD and LMD. 
The iteration number is relatively small and the speed is fast, so it is more suitable for online 
real-time monitoring and processing of signals [16]. This new time-frequency analysis method 
has been mainly employed in vibration signal processing and fault diagnosis and has made some 
achievements in the past few years. 

On the other hand, the complex and nonstationary vibration data with a large amount of noise 
make the failure detection very challenging, especially at the early stage. By means of appropriate 
vibration signal processing, it is feasible to detect the failure to evaluate the operational conditions 
qualitatively and quantitatively. 

The measured vibration signals often contain noises, which may arise due to sensor 
imperfection, poor surrounding environment, or communication errors. Useful features 
information is therefore usually too weak to be distinguished. Removing such noises is of great 
benefit in successive applications.  

There are many denoising methods include singular value decomposition [17], wavelet 
analysis [18], etc. For the SVD method, in order to discriminate against noise, it decomposes the 
column space of observation matrix into a dominant and a subordinate part, revealing which of its 
subspaces can be attributed to the noise-free signal and which can be attributed to the noise. It is 
often assumed that these two subspaces are orthogonal to each other, which implies that signal 
and noise are independent. For image de-noising, the basic idea is to retain the energy in the signal 
subspace and discard the energy in the noise subspace. Denoising by wavelet methods has received 
much interest [19]-[20]. With wavelet transform, one can decompose the original signal into a 
smooth part (subband in terms of signal processing) and a detail part. For most signals, energy 
mainly distributes in the smooth subband, and energy in the detail subband is clustered on a few 
large wavelet coefficients, corresponding to the edge structure of original signal. In contrast, noise 
energy spreads over both the smooth subband and the detail subband. With orthonormal wavelet, 
white noise is also white in the transform domain. 

These methods are based on the sampling theory that the sample frequency must be twice the 
maximum frequency to be analysed. This basic principle underlies the majority of digital signal 
processing applications such as audio, video, radio receivers, radar applications, medical devices 
and more. The theory indicates that a large amount of data must then be collected, creating an 
exceptional challenge for signal acquisition, transmission and processing. Compression of 
large-scale monitoring data to detect fault features directly from sparse samples is one way to 
address the challenges.  

Compressive sensing (CS) that emerged in 2005-2006 [21-23] breeds a new method to extract 
impulse signal from heavy noises. The core theory of the CS model is the sparse 
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representations/approximation. CS lies on the assumption that it is possible to reconstruct a sparse 
signal exactly from only a few samples, namely solving an underdetermined linear system of 
equations [24]. The application of CS on image de-noising [25] and speech enhancement [26]-[27] 
etc. had been studied since the CS theory appeared. 

With the advancement of wireless sensors and communication technologies, it is now possible 
to monitor machines remotely. In this application, the use of compressive sensing is very useful 
because of its high accuracy and low computational cost due to de-noising during signal 
processing. 

2. CS and LCD 

2.1. CS 

CS theory was newly presented in 2006 in the field of signal processing and has been used in 
various fields such as image de-noising and speech enhancement. 

CS can be divided into two steps [11]. First, combining the sampling with compressing, 𝑥 
original signal with the compressed signal by using an appropriate recovery algorithm. 

The original signal 𝑥 ∈ 𝑅  can be sampled as a compressed signal with reduced order  𝑦 ∈ 𝑅  by following: 𝑦 = Φ𝑥, (1)

where Φ ∈ R ×  (𝑀 < 𝑁) is a compressive matrix. 
According to linear algebra theory, Eq. (1) has infinite number of solutions and when 𝑀 < 𝑁, 

we cannot recover the original signal 𝑥 uniquely from the compressed signal 𝑦. However, if the 
signal 𝑥 is sparse, i.e., there only has a few nonzero coefficients in 𝑥, it is possible to recover 𝑥 
from 𝑦. Generally, the vibration signals should not be sparse, while they can be represented 
sparsely by some appropriate ways (e.g., orthogonal transformation). 

Using some orthogonal basis 𝜓  (𝑖 = 1,𝑁), we can expand 𝑥 ∈ 𝑅  as: 

𝑥 = 𝜃 𝜓 , (2)

where the coefficient 𝜃 = 〈𝑥,𝜓 〉 = 𝜓 𝑥 and 𝜓  is an 𝑁-dimensional column vector. 
Expressing Eq. (2) in matrix form, we can get: 𝑥 = ΨΘ, (3)

where Ψ = [𝜓 ,𝜓 ,⋯ ,𝜓 ] ∈ 𝑅 ×  is called a dictionary matrix and Θ = {𝜃 ,𝜃 ,⋯ ,𝜃 }  is a 
coefficient vector. Substituting Eq. (3) into Eq. (1), and denoting 𝐴 = ΦΨ: 𝑦 = ΦΨΘ = 𝐴Θ, (4)

where 𝐴 is called the measurement matrix. 
Suppose that the coefficient vector Θ is 𝑘-sparse on the basis Ψ, i.e. there are 𝑘 nonzero 

elements in Θ. That is, unknowns in the above equation will be greatly reduced so that it is possible 
to recover Θ from 𝑦. 

We will choose the Orthogonal Matching Pursuit-OMP algorithm for signal recovery. Since Θ has 𝑘 nonzero components, the vector 𝑦 = 𝐴Θ is a linear combination of 𝑘 columns from 𝐴. In 
the language of sparse approximation, we say that 𝑦 has an 𝑘-term reperesnetation over the 
dictionary 𝐴. 

Therefore, sparse approximation algorithm can be used for recovering sparse signals. To 
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identify the ideal signal Θ, we need to determine which columns of 𝐴 participate in the vector 𝑦. 
At each iteration, we choose the column of 𝐴 that is most strongly correlated with the remaining 
part of 𝑦. Then we subtract off its contribution to 𝑦 and iterate on the residual. After 𝑘 iterations, 
the algorithm will have identified the correct set of columns. The steps of OMP algorithm are as 
follows: 

Input: measurement matrix 𝐴 ∈ 𝑅 × , compressed signal 𝑦 ∈ 𝑅  (be obtained by Eq. (1)), 
the sparsity level of the signal 𝑘. 

Initialization: the residual 𝑟 = 𝑦, the index set Λ = ∅, the matrix 𝐵 = ∅. 
FOR 𝑡 = 1; 𝑡 = 𝑡 1; 𝑡 𝑘 
Step 1: Find the index that solves the easy optimization problem 𝜆 = max |〈𝑟 ,𝐴 〉|, where 𝐴  is 𝑗-th column of 𝐴. 
If the maximum occurs for multiple indices, break the tie deterministically. 
Step 2: Update the index set and matrix: Λ = Λ ∪ {𝜆 }, 𝐵 = 𝐵 ∪ {𝐴 } 
Step 3: Solve a least squares problem to obtain a new signal estimate: 𝑥 = min‖𝑦 − 𝐵 𝑥‖ . 
Step 4: Calculate the residual: 𝑟 = 𝑦 − 𝐵 𝑥 . 
END FOR 
Output: An estimate 𝑥 . 
The flowchart of OMP algorithm for signal recovery is shown in Fig. 1. 

 
Fig. 1. The flowchart of OMP algorithm 

2.2. LCD 

Local Characteristic-Scale Decomposition (LCD) is a new adaptive time-frequency analysis 
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method based on time-scale decomposition.  
Theoretically, this method is of great interest in the field of vibration signal processing recently 

because it decomposes the signal into a space of orthogonal frequency basis, has the unique 
character of signal decomposition, has the excellent localization properties in both time and 
frequency domains simultaneously, and has a much superior signal decomposition rate and 
self-signal adaptation characteristics compared with existing signal decomposition methods, 
including empirical mode decomposition and local mean decomposition. 

Once the signal decomposition is complete, the signal reconstruction can be done according to 
the requirements of the detailed problem. We give an iterative formula for the ignition of the 
intrinsic scale component (ISC) based on the principle of the LCD method. By decomposing any 
signal into a signal of different frequency, it is possible to extract information from the signal of 
sine or cosine exponential decay. 

First of all, we define the ISC and consider the factors that affect the procedure and accuracy 
of the LCD method to obtain it.  

2.2.1. ISC 

To use the LCD method, we define the intrinsic scale component (ISC). The intrinsic scale 
component is a single-component signal expressed as instantaneous frequency that is physically 
meaningful based on local characteristic parameters of the extrema. The ISC must satisfy the 
following two conditions to have physical meaning. 

1. For the data set, the marks of any two adjacent extrema are mutually different. 
2. For the data set, the extrema are 𝐿 , 𝑘 = 1, 2,⋯ ,𝑀 with their respective corresponding 

moment 𝜏 , 𝑘 = 1, 2,⋯ ,𝑀. The section of line formed by connected any two maximum 
(minimum) extrema (𝜏 , 𝑋 ), (𝜏 , 𝑋 ) is between them. Therefore, we can obtain the 
corresponding moment 𝜏  of the maximum (minimum) extrema, and the function value is set 
to: 𝐻 = 𝐿 + 𝜏 − 𝜏𝜏 − 𝜏 (𝐿 − 𝐿 ), (5)

of which the ratio to the relative maximum(minimum) extrema 𝐿  remains unchanged. 
These two conditions ensure that there is a single mode between any two adjacent extrema of 

ISC, and the local curve (curve between extrema and adjacent zero point) approximate to the 
standard sine curve, so the instantaneous frequency has physical significance. 

 
Fig. 2. An example of ISC: 𝑐 (𝑡) = 𝑒 sin 100𝜋𝑡, 𝑐 (𝑡) = 0.5 sin 100𝜋𝑡 + 0.5 sin 105𝜋𝑡 

The two end points of the envelope (starting and ending points) are obtained by spline 
interpolation. 
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Note that the ISC of the difference is the one that should be passed over, but the modal analysis 
theory only includes a modal signal of some order (not necessarily difference). 

The latter include vibration mode amplitude, natural frequency and damping of some order. 
The angular mode order signals are independent of each other and decompose the signal into 

frequency orthogonal basis space. That is, the decomposition of the signal has uniqueness. 
Fig. 2 shows an example of two functions that fit the conditions of the ISC. As you can see, 

the ISCs are functions of local symmetry up and down with respect to the zero axis. 

2.2.2. Ignition-iteration formula for ISC calculations 

The algorithm for decomposing the signal 𝑥(𝑡) using the LCD method is as follows. 
Step 1: Calculate extreme points 𝐿  (𝑘 = 1,2,⋯ , 𝑗) of the signal 𝑥(𝑡), and then calculate the 

fitting points: 𝑔 = 𝐿 + 𝐻2 . (6)

Step 2. On the basis of extending the endpoints in time series, use cubic spline function for 
fitting all 𝑔 , and at last get the mean curve 𝐵 (𝑡). 

Step 3: Eliminate the mean curve 𝐵 (𝑡) from the original signal: 𝑃 (𝑡) = 𝑥(𝑡) − 𝐵 (𝑡). (7)

Eq. (7) is called the “decreasing average” process. 
Step 4: Judge whether 𝑃 (𝑡) meets the ISC conditions or not. If it is satisfying, take 𝑃 (𝑡) as 

the first ISC, signed as ISC (𝑡). If not, take 𝑃 (𝑡) as the original signal and repeat steps (1)-(3): 𝑃 (𝑡) = 𝑃 (𝑡) − 𝐵 (𝑡), (8)𝑃 (𝑡) = 𝑃 (𝑡) − 𝐵 (𝑡), (9)⋮ 𝑃 (𝑡) = 𝑃 (𝑡) − 𝐵 (𝑡). (10)

And then cycle 𝑘  times until 𝑃  meets the ISC contitions, thus 𝑃  is the first component ISC (𝑡) of signal 𝑥(𝑡): 

ISC (𝑡) = 𝑥(𝑡) − 𝑃 (𝑡), (11)

where 𝑘  is the number of “decreasing average” processes of the signal 𝑃 (𝑡). 
Step 5: Eliminate ISC (𝑡) from signal 𝑥(𝑡), we can get a new signal 𝑥 . Take 𝑥  as the original 

signal and repeat steps 1~4, thus we can get the second component ISC (𝑡): 

ISC (𝑡) = 𝑥 (𝑡) − 𝐵 (𝑡), (12)𝑃 (𝑡) = 𝑃 (𝑡) − 𝐵 (𝑡), (13)𝑃 (𝑡) = 𝑥(𝑡) − ISC (𝑡), (14)

Repeat the cycle n times until 𝑟  is a monotonic function, then we can get all ISCs of the signal 𝑥(𝑡): 
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ISC (𝑡) = 𝑥 (𝑡) − 𝑃 (𝑡), (15)𝑃 (𝑡) = 𝑃 (𝑡) − 𝐵 (𝑡), (16)

where: 

𝑥 (𝑡) = 𝑥(𝑡), 𝑗 = 1,𝑥(𝑡) − ISC (𝑡) , 𝑗 ≠ 1. (17)

From the above ignition iteration algorithm, any signal 𝑥(𝑡) is decomposed into 𝑛 ISCs and 
one residual term. 

 
Fig. 3. LCD result of 𝑥 (𝑡) = sin(100𝜋𝑡) + 3exp (−10𝜋𝑡)sin (60𝜋𝑡)  

 
Fig. 4. LCD result of 𝑥 (𝑡) = sin(100𝜋𝑡) + 0.5 sin(50𝜋𝑡) + 0.5𝑡 + 1 

Figs. 3-4 show the LCD results for different signals. Fig. 3 is a graph of 𝑥 (𝑡) = sin(100𝜋𝑡) +
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3exp (−10𝜋𝑡)sin (60𝜋𝑡) and the ISCs decomposed by using LCD. Fig. 4 is a graph of  𝑥 (𝑡) = sin(100𝜋𝑡) + 0.5 sin(50𝜋𝑡) + 0.5𝑡 + 1, the ISCs and residual decomposed by using 
LCD. 

2.2.3. Comparisons between EMD and LCD 

We consider the signal shown in Eq. (18): 𝑥(𝑡) = 𝑥 (𝑡) + 𝑥 (𝑡), 𝑥 (𝑡) = [1 + 0.5 sin(10𝜋𝑡)]cos(100𝜋𝑡 + 30𝜋𝑡 ), 𝑥 (𝑡) = 4 sin(40𝜋𝑡). (18)

In order to compare LCD with EMD, we now decompose the signal 𝑥(𝑡) using EMD and 
LCD, respectively. 

The waveforms of the signals are shown in Fig. 5. The sampling frequency is 1000 Hz. 

 
Fig. 5. Time waveform of the simulated signal represented by Eq. (18) 

The decomposition results of the simulated vibration signals obtained by EMD and LCD are 
shown in Figs. 6-7. 

 
Fig. 6. EMD results of simulated signals 

From Figs. 6 and 7 we could find that the two IMFs derived from EMD have the phenomenon 
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of mode mixing, while the LCD method derives a well result matching the true components 
extremely. 

 
Fig. 7. LCD results of simulated signals 

In order to compare them detailed, consuming time and iteration times for getting each IMF 
and each ISC are considered as evaluation parameters. Besides, since the first two components 
obtained by EMD and LCD are in accordance with 𝑥 (𝑡) and 𝑥 (𝑡), the correlations of the first 
IMF and ISC with 𝑥 (𝑡) and the second IMF and ISC with 𝑥 (𝑡) are considered, respectively. The 
three evaluation parameters are given in Table 1. 

Table 1. The comparison parameters of IMF and ISC components 
 Time (ms) Iteration times Correlation 

IMF1 26 8 0.674 5 
IMF2 3.6 2 0.958 1 
ISC1 1.5 14 0.991 6 
ISC2 2 1 0.999 1 

From Table 1, it can be found that the consuming time of the two components obtained by 
EMD are both more than that obtained by LCD. Besides, the correlations of the two ISC 
components with the true components are higher than that of IMF components’, which means the 
LCD decomposition results are more close to the true values. Therefore, through this simulation 
signal, LCD is superior to EMD in certain aspects at least for certain signals. 

In EMD, the baseline is defined based on the connection of the whole maxima and minima 
with cubic spline. The fitting errors generate easily in the boundary for the cubic spline fitting in 
EMD. In LCD, however, firstly the adjacent maxima (or minima) are connected by straight lines 
and then the two values at every extrema are averaged respectively. And the baseline is constructed 
by connecting the obtained values with cubic spline. Hence, in theory LCD has a smaller fitting 
error and a faster running-time than EMD. 

From Eqs. (5)-(6), 𝑔  can be rewritten as: 𝑔 = 𝑎 𝐿 + 𝑎 𝐿 − 𝑎 𝐿 , (19)

where: 𝑎 = 12 1 − 𝑡 − 𝑡𝑡 − 𝑡 ,    𝑎 = 12,     𝑎 = 𝑡 − 𝑡2(𝑡 − 𝑡 ). 
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In fact, 𝐿  is an ensemble average of three adjacent extrema, meanwhile, the base line is 
connecting all the 𝐿  with the cubic spline. Hence, LCD has a well local characteristics and a 
simple geometrical definition, compared with EMD. Therefore, compared with EMD, LCD at 
least has certain advantages in running time, reducing fitting errors and restraining end effect and 
mode mixing. 

As can be seen from the flowchart, frequency analysis methods based on sparse 
decomposition, LCD, Hilbert transform and FFT transform are used for the diagnosis of bearing 
and gear states of the gearbox. We consider the detailed procedure of bearing fault diagnosis. 

3. Bearing fault diagnosis algorithm with CS and LCD 

Fig. 8 shows the flowchart of the bearing fault diagnosis algorithm based on CS and LCD. 
The calculation and processing procedures of this algorithm are as follows. 
Step 1: Measure the vibration from the equipment with the bearing to be tested using a 

vibration measuring device. 
Step 2: Decompose the measured vibration signal into CS and reconstruct it to perform the 

denoising process. 
Step 3: Calculate the RMS value of the denoised vibration signal and calculate the risk 

determined by the ratio of this value to the allowable vibration RMS value. If the risk is less than 
the threshold, the bearing is considered normal and finished. If not normal, go to step 4. 

Step 4: Decompose the denoised vibration signal obtained in step 2 into LCD to obtain the 
ISCs. 

Step 5: Calculate the instantaneous amplitude by performing a Hilbert transform for the first 
ISC with lots of fault information. 

Step 6: Perform FFT for instantaneous amplitude data. 
Step 7: Check whether there is a peak value corresponding to the fault characteristic frequency 

of the bearing in the power spectrum. If not, it shall be considered normal and finished. If there is 
a peak value, go to step 8. 

 
Fig. 8. The flowchart of the bearing fault diagnosis algorithm 

Step 8: Ring the alarm, save the fault history, and finished. 
As you can see from the flowchart, we use CS, LCD, Hilbert transform and frequency analysis 

methods based on FFT transform for the diagnosis of bearing fault. In this section, we consider 
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the detailed procedure of bearing fault diagnosis. 

3.1. Reconstruction and de-noising of vibration signals using CS theory 

In general, the capacity of the vibration data obtained for a certain period of time is very large. 
Therefore, data compression methods that can reduce the dimensionality of the collected vibration 
data while preserving the most useful information are necessary. Sparsity decomposition theory 
is a new kind of data sampling technique, and using this theory, it is possible to reconstruct the 
original signal with only a few samples less than the Nyquist sampling rate. 

 
Fig. 9. Compression process of vibration signal 

Let us show through the simulation signal that the vibration signal is sparsely represented by 
the fast Fourier transform matrix. In Fig. 10, the simulated vibration signal, represented by 
Eq. (20), is shown by a waveform sampled at 1024 Hz: 𝑥(𝑡) = cos(2𝜋 × 80𝑡) + 0.05𝑡 cos(2𝜋 × 30𝑡 + 2). (20)

 
Fig. 10. Simulated vibration signal 

When performing FFT with 5-5.5 s of data, it can be seen that only a few data points are 
nonzero, and most of the transform coefficients are zero, as shown in Fig. 11(b). 

However, FFT of the noise does not result in zero coefficients at almost all data points. That 
is, the noise is not sparsely represented by the FFT (Fig. 11(d)). 

To validate the de-noising of the vibration signal using CS, the simulated vibration signal, 
denoted by Eq. (20), was used Fig. 12(a) shows the data of 0-0.1 s in the simulated signal 
represented by Eq. (20), and the simulated signal added 1dB noise (Fig. 12(b)) to the data is shown 
in Fig. 12(c). The results of de-noising using compressive sensing are shown in Fig. 13. Fig. 13(a) 
shows uncontaminated signal and Fig. 13(b) shows contaminated signal (See the Fig. 12(a) and 
Fig. 12(c)). Fig. 13(c) shows the result of de-noising using CS. 
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a) The waveform of the vibration signal 

 
b) FFT coefficients of the vibration signal 

 
c) The waveform of the noise 

 
d) FFT coefficients of the noise 

Fig. 11. Waveforms of vibration signal and noise and its FFT coefficients  

 
a) Ideal signal 

 
b) Noise 

 
c) Noise-contaminated signal 

Fig. 12. Simulated signal 

To quantitatively evaluate the de-noising result, let us calculate the signal-to-noise ratio (SNR) 
of the de-noising signal. The SN ratio of the de-noising signal can be calculated as follows: 

SNR = 20 log ‖𝑥‖‖𝑥 − 𝑥‖ , (21)

where 𝑥 is the de-noising signal. 
Calculated using Eq. (21), the SN ratio of the de-noising signal was 5.96 dB. It can be seen 

that the CS theory can reduce the traffic and memory capacity by compressing the signal, and, in 
addition, the reconstruction process can be further de-noising to extract the signal features more 
accurately. 
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a) Ideal signal 

 
b) Noisy signal 

 
c) De-noising by CS 

Fig. 13. Original signal and recovered signal 

 
a) The original signal 

 
b) The signal recovered by CS 

Fig. 14. Bearing vibration signal 

Let us verify the effectiveness of de-noising by compressive sensing theory with field 
measurement signals. Fig. 14(a) shows the time waveform of bearing vibration signal of the raw 
material reduction gearbox of the Cement Factory. The de-noising of the signal using the CS 
theory is shown in Fig. 14(b). 

To validate de-noising results, the FFT is shown in Fig. 15. Fig. 15(a) and Fig. 15(b) are FFT 
of the signal shown in Fig. 14(a) and Fig. 14(b), respectively. As you can see, the CS gives good 
results for the in field measurement signals. 

3.2. Instantaneous amplitude and instantaneous frequency analysis based on LCD and 
Hilbert transform 

When a fault occurs in a rotating machine element such as a gear or rolling bearing, the 
corresponding vibration signals exhibit amplitude modulation and frequency modulation. To 
extract the fault feature of the modulated signal, demodulation analysis is widely used, among 
which the Hilbert transform is one of the most popular demodulation methods because it can 
effectively extract the envelope of the faulty vibration signal. 
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a) Fourier transform result of the original signal 

 
b) Fourier transform result of the signal recovered by CS 

Fig. 15. Fourier transform result 

According to the Hilbert transform and analytic signal theory, if for a signal, has relatively low 
frequency, and has a relatively high frequency, and uncoupled spectrum, then the analytic signal 
can be expressed in terms of instantaneous amplitude and instantaneous phase as follows: 𝐹(𝑡) = 𝑓(𝑡) + j𝑓̅(𝑡) = 𝐴(𝑡)𝑒 ( ). (22)

Here, and is the Hilbert transform of: 

𝑓̅(𝑡) = 1𝜋 𝑓(𝜏)𝑡 − 𝜏 𝑑𝜏. (23)

The instantaneous frequency is given by the derivative of the time of the instantaneous phase, 
that is: 

𝑓(𝑡) = 12𝜋 𝑑𝜑(𝑡)𝑑𝑡 . (24)

The condition for and is a kind of narrowband signal condition that the signal must satisfy, 
and, therefore, according to the analytic signal theory, the envelope and phase of the narrowband 
signal are the absolute value and phase of the analytic signal, i.e., the instantaneous amplitude and 
the instantaneous phase. 

Generally, the rotary machine fault vibration signal is a multi-component amplitude 
modulation-frequency modulation signal, which does not satisfy the above conditions. 

To solve this problem, a LCD is used to decompose the multi-component signal into 
single-component ISCs and the fault feature is extracted by applying the Hilbert envelope 
spectrum to the first few ISCs containing the major fault component. 

3.3. Bearing fault diagnosis algorithm 

In this paper, using CS theory, LCD and Hilbert transform for fault diagnosis of super-large 
moderator for mill, the following vibration diagnosis algorithm is proposed. 

First, the measured signal is compressed using CS theory. The compressed data is essential for 
data transmission and data storage, and reconstructing the compressed data results in a de-noising 
signal. 
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Then, the channel-by-channel oscillation value is used to estimate the risk and, if not normal, 
the signal features are extracted using the LCD and the Hilbert transform. 

Then, the bearing failure components are compared with the values of the component. 
When a local fault occurs in a rolling bearing, the vibration signal contains a periodic impulse 

component that is referred to as the fault feature frequency. This impulse component, although 
present periodically, also has the characteristics of an unsteady signal. Compared with the energy 
of vibration caused by other factors generated during the operation of a rotating machine, e.g. by 
gear tooth engagement, the energy of vibration caused by bearing defects is small, and it is 
generally difficult to distinguish early when the fault is not severe. Therefore, in many cases, the 
fault spectrum components are clearly separated using various signal decomposition methods and 
envelope processing to estimate bearing failure states. 

Local defects that exists in the parts of the bearing causes a periodically generated impact 
force. The frequencies generated from these periodic pulses can be calculated theoretically. 
According to the bearing fault type, the feature frequencies are as follows: 

𝑓 = 12 𝑧𝑓 1 − 𝑑𝐸 cos𝛼 , (25)𝑓 = 12 𝑧𝑓 1 + 𝑑𝐸 cos𝛼 , (26)𝑓 = 𝐸𝑧𝑓2𝑑 1 − 𝑑𝐸 cos𝛼 , (27)𝑓 = 𝑓2 1 − 𝑑𝐸 cos𝛼 , (28)

where 𝑓  is the rotational frequency of the shaft, 𝛼 is the contact angle, 𝐸 is the pitch circle 
diameter, 𝑑 is the ball diameter, 𝑧 is the number of bearing balls, and 𝑓 , 𝑓 , 𝑓 , 𝑓  are the 
frequency of outer race fault, inner race fault and rolling element fault, respectively.  

4. Validation 

Bearing vibration data are obtained from Case Western Reserve University [28]. As shown in 
Fig. 16, the bearing experimental apparatus consists of a 2 hp three-phase motor (left), a torque 
transducer(middle), a dynamometer (right) and control electronics (not shown). Drive-end 
bearings of the motor used in the experiments are deep groove ball bearings of type 6205-2RS 
JEM SKF. 

 
Fig. 16. Experimental setup 

To validate the capability of the proposed method, experimental data analysis on rolling 
bearing with different categories and severities was conducted. The experimental data are bearing 
fault data which were derived from the Electrical Engineering Laboratory of Case Western 
Reserve University (CWRU) [25]. The bearing type is 6205-2RS JEM SKF deep groove ball 
bearings. 
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The vibration signals of bearing were collected under four conditions including the normal 
condition, inner race fault condition (IRF), the outer race fault condition (ORF) (at the 6 o’clock 
position) and the ball fault condition (BF). The fault bearings are using the electro-discharge 
machining with fault diameters of 0.1778 mm, 0.3556 mm, 0.5334 mm, and 0.7112 mm to 
simulate different fault severities. The associated rotating speed of driving motor is set to be 1730, 
1750, 1772 and 1797 rpm, respectively. The sampling rate of the data acquisition device is set to 
12,000 Hz and the sampling time is 1s. In this work, two different bearing datasets are provided. 
The details about these two bearing datasets are shown in Table2. 

Table 2. The bearing datasets which are used in this work 

Fault type Severity (mm) Rotation speed (rpm) Characteristic frequency  
(multiples of shaft speeds) 

Outer race fault 0.533 4 1 797 3.585 
Inner race fault 0.533 4 1 797 5.415 

The time domain waveforms of vibration signals under outer race fault are shown in Fig. 17, 
respectively. In order to account for field conditions, the Gaussian random noise was added.  

 
Fig. 17. The time domain waveforms of vibration signals under outer race fault 

When a fault occurs in a rolling bearing, the vibration signal is usually a multi-component 
signal containing noise. Thus, first of all, the CS theory is used to remove noise and compress the 
data, and the LCD is used to decompose the signal into ISCs. The first three ISCs are shown in 
Fig. 18. 

The corresponding Hilbert envelope spectrum obtained by Hilbert transform of the first ISC is 
shown in Fig. 19. In Fig. 19, we can see spectrum lines at the characteristic frequency of the outer 
race fault (107.31 Hz) and its harmonic frequency. 

 
Fig. 18. LCD result of bearing vibration signal shown in Fig. 17 
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Fig. 19. Hilbert envelope spectrum of the first ISC component 

 
Fig. 20. The time domain waveforms of vibration signals under inner race fault 

 
Fig. 21. LCD result of bearing vibration signal shown in Fig. 20 

 
Fig. 22. Hilbert envelope spectrum of the first ISC component 
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The same procedure was repeated for the bearing vibration signal with the inner race fault. The 
time domain waveforms of vibration signals under inner race fault and its first three ISCs are 
shown in Figs. 20-21. And the Hilbert envelope spectrum of the first ISC is shown in Fig. 22. 
From the spectrum, we can also realize spectrum lines at the characteristic frequency of the inner 
race fault (162.09 Hz) and its harmonic frequency. 

5. Conclusions 

In this paper, we proposed a method for detecting rolling bearing faults based on CS theory 
and LCD and verified its effectiveness. LCD is a new signal processing method, which uses 
simulated signals to decompose signals, resulting in a 17.9 % higher accuracy compared to the 
widely used EMD. We also applied CS theory to verify that the fault can be detected by only a 
few samples without completely reconstructing the vibration signal. Further research on the 
determination of sparsity 𝑘 and number of compressed samples 𝑀 and the computational time 
reduction of signal processing algorithms for signal reconstruction is needed to improve the 
efficiency of equipment fault diagnosis using CS theory. 
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