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Abstract. This article delves into a pioneering methodology for optimizing the analysis of random 
walk data by implementing the arcsine distribution. The application of the arcsine distribution 
serves as an imperceptible yet potent solution, mitigating asymmetry and introducing bounds 
while effectively modeling the nuanced characteristics intrinsic to random walk patterns. Through 
a meticulous exploration of the mathematical foundations and practical applications of this 
distribution, this study discreetly advances statistical methodologies for handling random walk 
data. The article illuminates the theoretical underpinnings, subtle advantages, and pragmatic 
implications of arcsine distribution utilization, showcasing its imperceptible yet impactful role in 
capturing and reshaping random walk dynamics. Through a meticulous exploration of the 
mathematical foundations and practical applications of this distribution, this study discreetly 
advances statistical methodologies for handling random walk data, particularly in the context of 
financial modeling. 
Keywords: random walks, arcsine distribution, statistical transformation. 

1. Introduction 

A random walk is a stochastic process within mathematical space, delineating a trajectory 
formed by a series of successive random steps. Its inception dates back to Pearson in 1905 [1] the 
authors provide a comprehensive exploration of random walks, elucidating the mathematical 
principles underpinning them. This probabilistic concept proves instrumental in the analysis and 
simulation of randomness in various objects [2-4], facilitating the calculation of correlations 
among them. Its applicability extends to solving practical problems, positioning random walks as 
a valuable tool in diverse fields [5] such as computer science, physics, chemistry, biology [6], and 
economics [7]. 

In this article, we will delve into the statistical intricacies of transforming random walk data 
using the Arcsine distribution. Our goal is to improve modeling, facilitate insightful analyses, and 
cultivate a deeper understanding and appreciation for the versatility of probability distributions 
within the statistical toolkit. 

The Arcsine distribution serves as a comprehensive model for data analysis across various 
scenarios, holding significant importance in probability applications [8]. Symmetrically 
distributed over the interval (–1, 1), this distribution finds applicability in diverse fields. It serves 
as a behavioral model for random variables, particularly those constrained within specific periods 
in genetics [9, 10], offering a statistical description of allele frequencies. In the theory of statistical 
communication, it acts as a model for amplitude periodic signals in thermal noise, demonstrating 
a unique spectrum. 

Beyond these applications, the arcsine distribution plays a crucial role in economic modeling 
[11]. It aids in describing the density function of functions related to time allocation in project 
management and control systems. Furthermore, it finds utility in mathematics for modeling ratios, 
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rates, fractions, and various metrics, including but not limited to unemployment rates and poverty 
rates [12]. 

The arcsine distribution is acknowledged as a continuous probability distribution defined by 
the following Probability Density Function (PDF): 𝑓(𝑥) = 1𝜋√1 − 𝑥 ,    − 1 < 𝑥 < 1. (1)

It is characterized by the Cumulative Distribution Function (CDF): 𝐹(𝑥) = 12𝜋 (𝜋 + 2arcsin𝑥) ,    − 1 < 𝑥 < 1. (2)

Noteworthy statistical properties include an arithmetic mean, median, and skewness 
coefficient all equating to zero. Additionally, the variance is set at 0.5, while the kurtosis 
coefficient stands at –1.5. The Moment Generating Function (MGF) is expressed as: 

𝑀𝐺𝐹 = 𝑡 (2𝑛 − 1)!!(2𝑛)!! , (3)

where, (2𝑛 − 1)!! = 1 ⋅ 3 ⋅ … ⋅ (2𝑛 − 1) and (2𝑛)!! = 2 ⋅ 4 ⋅ … ⋅ (2𝑛). 
In recent years, there has been a surge of interest among statisticians in exploring distributions 

that not only attract new families but also offer enhanced flexibility for modeling real-world data. 
Researchers have been motivated to develop novel models by introducing additional shape 
parameters into fundamental distributions. For instance, in 2013 [13], the authors introduced the 
transmuted Log-Logistic distribution, while in 2016 [14], others proposed the extended arcsine 
distribution, a continuous model characterized by two parameters, achieved through the method 
of exponentiated generalized. The distribution of the quadratic formula (L), accompanied by a 
comprehensive study of distribution characteristics was presented in [15]. 

This paper follows suit in this exploratory trend, utilizing the Quantile Residual 
Transformation (QRT) method [16]. The focus is on identifying a new model, an extension of the 
Arcsine distribution termed the transmuted Arcsine distribution, denoted as TAS distribution. 
Leveraging the QRT method, we derive the CDF through a specific relationship, unveiling the 
unique characteristics of this newly introduced distribution. 

2. Understanding random walks 

Random walks, fundamental to diverse disciplines, represent a mathematical model where a 
system undergoes a sequence of discrete, often stochastic, steps. These processes are encountered 
in physics, biology, finance, and more, capturing the essence of unpredictable movements 
observed in real-world phenomena. 

Random walks exhibit distinctive characteristics:  
– Stochastic Nature. The randomness inherent in each step reflects the unpredictable nature of 

the underlying process. Mathematically, this can be expressed as: 𝑋 = 𝑋 + 𝜖 , (4)

where 𝑋  is the position at step 𝑛 and 𝜖  is a random variable representing the step size. 
– Memorylessness. Future steps are independent of past movements, a property known as the 

Markov property. It can be expressed as: 𝑃(𝑋 |𝑋 ,𝑋 , … ,𝑋 ) = 𝑃(𝑋 |𝑋 ). (5)
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– Diffusive Behavior. Over time, random walks tend to spread out, demonstrating diffusive 
behavior. The mean square displacement after 𝑛 steps is given by: 〈𝑋 〉 = 𝑛𝜎 , (6)

where 𝜎  is the variance of the step size.  
The versatility of random walks is evident across a spectrum of disciplines, as expressed by 

fundamental equations that capture their dynamics. In finance, random walks provide a 
foundational model for understanding stock prices and financial markets. The incremental changes 
in price at each time step (𝑡) contribute to the overall trajectory, succinctly represented by the 
equation 𝑆 = 𝑆 + 𝜖 , where 𝜖  denotes a random shock or increment. 

In the realm of physics, random walks serve as a valuable tool for describing particle 
movements and diffusion phenomena. The equation 𝑋 = 𝑋 + 𝜖  succinctly encapsulates the 
position of a particle at a given time 𝑡, revealing the cumulative effects of successive random steps 
on the particle’s trajectory. 

Moreover, in biology, random walks find application in simulating molecular motions and 
capturing genetic drift [17]. The modeling of genetic changes within populations over time is aptly 
represented by the principles of random walks, contributing to a deeper understanding of 
evolutionary dynamics. This broad applicability is underscored by the inherent power and 
flexibility of random walks as a conceptual framework that transcends disciplinary boundaries. 

2.1. Challenges in analyzing random walks 

As we delve deeper into the realm of random walks, it becomes evident that their unique 
characteristics pose substantial challenges for traditional statistical analyses. Understanding and 
addressing these challenges are crucial for accurate modeling and interpretation.  

– Non-Normality. Random walk data often deviates from the assumptions of normality, a 
cornerstone in many statistical methods. The distribution of step increments in a random walk 
does not necessarily follow a Gaussian distribution. Mathematically, the increment 𝜖  at each step 
may not be normally distributed: 

𝑃(𝜖 ) ≠ 1√2𝜋𝜎 exp − (𝜖 − 𝜇)2𝜎 . (7)

This non-normally distributed nature challenges traditional statistical tests that assume 
Gaussianity [18]. 

– Boundedness. Random walk data is inherently bounded within specific limits. 
Mathematically, the position 𝑋  at each step is constrained: 𝑎 ≤ 𝑋 ≤ 𝑏. (8)

This bounded nature introduces complexities when applying standard statistical methods 
designed for unbounded data. Traditional statistical tools may fail to capture the nuanced behavior 
of random walks within their confined intervals. 

– Volatility and Diffusion. Random walks exhibit volatility, and their diffusive behavior 
implies a variance that grows linearly with time. Mathematically, the mean square displacement 
after 𝑛 steps is given by: 〈𝑋 〉 = 𝑛𝜎 . (9)

Modeling and predicting this volatility present challenges, especially when traditional 
statistical models assume constant variance or do not account for the peculiar diffusion patterns 
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inherent in random walks. 
– Limited Memory. The memorylessness property of random walks, while simplifying certain 

aspects, can hinder the incorporation of historical information into predictive models. 
Mathematically, the Markov property is expressed as: 𝑃(𝑋 |𝑋 ,𝑋 , … ,𝑋 ) = 𝑃(𝑋 |𝑋 ). (10)

This lack of temporal dependencies challenges traditional time series models that rely on 
historical information [19]. 

3. Main results 

These challenges pave the way for exploring alternative statistical approaches, such as the 
Arcsine distribution. The Arcsine distribution’s ability to handle bounded data and adapt to the 
specific characteristics of random walks positions it as a promising solution. In the subsequent 
sections, we will unravel the theoretical foundations and practical applications of using the 
Arcsine distribution to transform and analyze random walk data, offering a nuanced perspective 
on statistical modeling in the presence of inherent complexities. 

3.1. Introduction to the arcsine distribution 

As we transition from understanding the intricacies of random walks, we embark on an 
exploration of the Arcsine distribution a powerful tool in the statistical toolkit, particularly 
well-suited for transforming data with bounded characteristics. The Arcsine distribution, denoted 
by Arcsine(𝑎, 𝑏), is defined on the interval [𝑎, 𝑏] and is characterized by its probability density 
function (PDF) and cumulative distribution function (CDF). 

The PDF of the Arcsine distribution is given by: 𝑓(𝑥;𝑎, 𝑏) = 1𝜋 (𝑥 − 𝑎)(𝑏 − 𝑥) ,    𝑎 ≤ 𝑥 ≤ 𝑏, (11)

where 𝑎 and 𝑏 define the bounds of the distribution. This formulation reflects the distribution’s 
symmetric and bell-shaped nature within the specified interval. 

The CDF of the Arcsine distribution is: 𝐹(𝑥;𝑎, 𝑏) = 2𝜋 arcsin 𝑥 − 𝑎𝑏 − 𝑎 ,    𝑎 ≤ 𝑥 ≤ 𝑏. (12)

The Arcsine distribution is particularly valuable for handling data that is naturally constrained 
between two limits, making it an ideal choice for scenarios where random walk data exhibits 
bounded behavior. The Arcsine distribution is characterized by its symmetry around the midpoint, 
emphasizing a balanced nature. It is defined within specific bounds, making it suitable for 
modeling data constrained within predetermined intervals. Widely utilized in probability 
applications, the Arcsine distribution plays a crucial role in modeling phenomena where values 
are confined within a given range. 

Understanding the mathematical properties of the Arcsine distribution sets the stage for its 
application in transforming random walk data. In the subsequent sections, we explore the 
theoretical basis for leveraging the Arcsine distribution to address challenges posed by random 
walks, paving the way for enhanced statistical analyses and insightful modeling. 

3.2. Theoretical basis for transformation 

As we venture into the heart of this exploration, understanding the theoretical underpinnings 
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of using the Arcsine distribution for transforming random walk data is essential. The Arcsine 
distribution, with its well-defined mathematical properties, provides a robust framework for 
addressing the challenges posed by the inherent characteristics of random walks. 

  
Fig. 1. Comparative analysis of random walk data transformation highlighting  

the advantages of Arcsine distribution transformation 

The Arcsine distribution is particularly adept at handling data constrained within specific 
bounds, making it an ideal choice for transforming random walk data. Mathematically, the 
transformation involves mapping the original bounded data to a new distribution defined over the 
entire real line. The Arcsine distribution accomplishes this by providing a smooth transition from 
the bounded interval [𝑎, 𝑏] to the entire real line. 

The transformation process involves applying the inverse Arcsine function to the original 
random walk data. If 𝑋 follows a random walk, the transformed variable 𝑌 follows an Arcsine 
distribution: 𝑌 = arcsin 𝑋 − 𝑎𝑏 − 𝑎 . (13)

This transformation ensures that 𝑌 now follows the Arcsine distribution, offering advantages 
in terms of symmetry and well-defined statistical properties. 

The Arcsine distribution, being inherently symmetric, provides a powerful tool for mitigating 
the effects of non-normality in random walk data. The symmetry of the Arcsine distribution 
around its midpoint accommodates the deviations from normality, allowing for more robust 
statistical analyses. 

The transformation preserves key statistical characteristics such as mean, variance, and higher 
moments, ensuring that important features of the original random walk data are retained in the 
transformed distribution. This preservation is crucial for maintaining the integrity of the 
underlying information during the transformation process. 

In the realm of time series modeling, where random walk data is prevalent, the theoretical basis 
for using the Arcsine distribution lies in its ability to reconcile the bounded nature of the data with 
the assumptions and requirements of various statistical methods. The transformation enables the 
application of traditional statistical tools, originally designed for unbounded data, to random walk 
series with bounded intervals. 

In the subsequent sections, we will delve into practical applications, showcasing how the 
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theoretical foundations translate into actionable insights for data analysts and researchers seeking 
to extract meaningful information from random walk data. 

3.3. Application in engineering 

The application of the arcsine transformation in optics has been well-established for nearly a 
century. In optical engineering, when dealing with harmonically oscillating structures, the optical 
representation often involves describing the structure as a convolution of the static image and the 
point spread function. Remarkably, in the context of harmonic oscillations, the point spread 
function corresponds to the arcsine distribution. 

This association arises due to the unique characteristics of the arcsine distribution, particularly 
its relevance in describing the diffraction patterns produced by optical systems in response to 
harmonic oscillations. As light interacts with oscillating structures, such as diffraction gratings or 
vibrating surfaces, it undergoes modulation and dispersion, resulting in a spread of intensity across 
the optical image. This spread, or blurring effect, is mathematically described by the arcsine 
distribution, which accounts for the probability distribution of light intensity across the image 
plane. 

By understanding the optical system’s response in terms of the convolution of the static image 
and the arcsine distribution, engineers can effectively model and analyze the optical phenomena 
associated with harmonically oscillating structures. This knowledge is invaluable in various 
optical engineering applications, including image processing, microscopy, lithography, and sensor 
design, where precise control and understanding of light propagation and diffraction are essential 
for achieving desired performance and functionality. 

The Arcsine Distribution Equation defines the probability density function (PDF) of the 
arcsine distribution is given by Eq. (1). 

The Point Spread Function (PSF) in Optics describes the system’s response to light, 
represented as a convolution of the static image 𝐼(𝑥,𝑦) and the arcsine distribution 𝐴(𝑥): 𝑃𝑆𝐹(𝑥,𝑦) = 𝐼(𝑥,𝑦) ∗ 𝐴(𝑥). (14)

The Diffraction Pattern Intensity is derived from the Fourier transform of the PSF, providing 
insight into the intensity distribution of diffraction patterns: 𝐼 (𝑥) = |ℱ 𝑃𝑆𝐹(𝑥,𝑦) | . (15)

Additionally, the Modulation Function for Harmonic Oscillations characterizes the spatial 
variation of oscillating structures using a sinusoidal function: 𝑀(𝑥) = cos(𝑘𝑥), (16)

where 𝑘 is the wavevector associated with the oscillations. 
Finally, the Optical Response Incorporating Modulation combines the modulation function 

with the PSF to yield the system’s response to harmonic oscillations: 𝑂(𝑥) = 𝑃𝑆𝐹(𝑥) ⋅ 𝑀(𝑥). (17)

These equations provide a mathematical framework for understanding the optical behavior of 
harmonically oscillating structures and their representation using the arcsine transformation. By 
applying these equations, engineers can analyze diffraction phenomena, design optical systems, 
and optimize performance in various applications in optics and photonics. 
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3.4. Application in financial modeling 

3.4.1. Introduction 

The application of the Arcsine distribution in financial modeling proves to be particularly 
illuminating, especially when grappling with the inherent complexities of random walk data 
prevalent in stock prices and financial markets. This section unravels the intricacies of employing 
the Arcsine distribution as a transformative tool in the context of financial time series modeling. 

Financial markets often exhibit behavior akin to random walks, with stock prices undergoing 
stochastic movements. The Arcsine distribution provides an elegant solution for modeling these 
price changes, offering a statistical foundation that aligns with the bounded nature of stock prices. 

The transformation process involves mapping the original stock prices to the Arcsine 
distribution: 𝑌 = arcsin 𝑋 − 𝑎𝑏 − 𝑎 , (18)

where 𝑋  represents the stock price at time 𝑡 and 𝑌  is the transformed variable following the 
Arcsine distribution. This transformation accommodates the upper and lower bounds, enhancing 
the applicability of traditional statistical models designed for unbounded distributions. 

One of the critical aspects of financial modeling is the accurate representation of volatility. 
Random walks, inherent in financial time series, demonstrate diffusive behavior, leading to 
increasing variance over time. The Arcsine distribution facilitates a nuanced approach to capturing 
and modeling this volatility. 

The variance in the transformed domain is given by: Var(𝑌 ) = 12. (19)

This constant variance aligns with the evolving nature of financial markets, making the Arcsine 
distribution a valuable tool for capturing the time-varying nature of volatility. 

Risk management and option pricing heavily rely on understanding the distribution of potential 
outcomes. The Arcsine distribution, with its symmetric and bounded characteristics, proves 
beneficial in these domains. By transforming random walk data with the Arcsine distribution, 
analysts gain a more accurate representation of the risk associated with different market scenarios. 

In the context of option pricing, where the underlying assumptions about the distribution of 
asset prices are crucial, the Arcsine distribution offers a flexible and robust framework. The 
transformed data aligns with the assumptions of certain option pricing models, enhancing the 
accuracy of pricing predictions. 

The application of the arcsine distribution in financial modeling brings several benefits when 
analyzing random walk data. Firstly, it addresses the issue of asymmetry commonly found in such 
data, ensuring a more accurate representation of price movements and asset returns by achieving 
symmetry around its midpoint. Additionally, the distribution imposes bounds on the transformed 
data, confining it within a specified interval, which aligns well with the constraints often observed 
in financial markets. Furthermore, by utilizing the arcsine distribution, financial models can attain 
greater statistical robustness, leading to more reliable parameter estimation and improved 
predictive accuracy. Moreover, the distribution’s properties facilitate enhanced risk management 
by providing a clearer assessment of potential outcomes, enabling better decision-making and 
portfolio risk management. Lastly, the arcsine distribution aids in capturing volatility clustering 
phenomena inherent in random walk data, contributing to more precise volatility modeling and 
forecasting. In summary, leveraging the arcsine distribution in financial modeling offers 
significant advantages, including symmetry enhancement, boundedness, statistical robustness, 
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improved risk management, and enhanced volatility modeling, ultimately assisting stakeholders 
in making informed decisions and managing market risk effectively. 

3.4.2. Symmetry enhancement using the arcsine distribution 

Symmetry enhancement using the arcsine distribution can improve modeling of price 
movements and asset returns with an example: 

Consider a time series of daily returns for a stock, where negative returns are more frequent 
than positive returns, leading to a skewed distribution. This asymmetry in the data can make it 
challenging to accurately model the underlying dynamics of the stock’s price movements and 
forecast future returns. 

Now, let’s apply the arcsine distribution transformation to the daily returns data. The arcsine 
transformation maps the original returns data onto the range [–1, 1], achieving symmetry around 
its midpoint. This means that both positive and negative returns are transformed to lie within the 
interval [–1, 1], effectively balancing out the asymmetry in the data. 

For example, suppose we have the following daily returns data for a stock: −0.02,−0.01,−0.03,0.01,−0.02,0.02,0.03,−0.01,−0.02,0.01 . (20)

After applying the arcsine transformation, the transformed returns data might look like this: −0.45,−0.32,−0.55,0.32,−0.45,0.45,0.55,−0.32,−0.45,0.32 . (21)

Notice how the transformed data achieves symmetry around its midpoint (zero), with both 
positive and negative returns distributed more evenly across the range [–1, 1]. This symmetry 
enhancement can provide a more balanced and representative view of the stock’s price 
movements, enabling better modeling and analysis. 

By achieving symmetry in the data, the arcsine distribution transformation helps mitigate the 
effects of skewness and improves the accuracy of statistical models used for forecasting future 
returns. This enhanced symmetry facilitates better understanding and interpretation of the 
underlying dynamics driving the stock’s price movements, ultimately leading to more informed 
investment decisions and risk management strategies. 

3.4.3. Volatility modeling using the arcsine distribution 

In this section, we delve into the process of volatility modeling using the arcsine distribution, 
focusing on a time series of daily returns for a financial asset like a stock or an index. Our objective 
is to effectively model the volatility inherent in these returns. We begin by preparing the data, 
followed by parameter estimation and volatility forecasting utilizing the arcsine distribution. 
Subsequently, we conduct back transformation to revert the forecasted volatility to its original 
scale, and finally, we evaluate the model’s performance. This comprehensive overview 
encapsulates the key stages involved in leveraging the arcsine distribution for volatility modeling. 

In the initial stage, historical daily returns data for the financial asset is gathered. Utilizing this 
data, daily log returns are calculated using the formula 𝑟 = ln , where 𝑟  represents the 
daily log return at time 𝑡, and 𝑃  signifies the asset price at time 𝑡. Subsequently, in the parameter 
estimation phase, the daily log returns are transformed into the range [–1, 1] via the arcsine 
transformation: 𝑥 = 2 × arcsin 𝑟 . Following this transformation, the mean and variance of 
the transformed data, 𝑥 , are estimated. Notably, the mean of the arcsine distribution is zero, with 
a known variance of 0.5 for the specified range. Moving to volatility forecasting, the estimated 
parameters of the arcsine distribution are leveraged to predict future volatility. One approach 
involves calculating the standard deviation of the transformed data (𝜎 = √0.5) as an estimate of 
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volatility. Alternatively, more sophisticated methods like GARCH models can be employed for 
volatility forecasting based on the arcsine-transformed data. In the subsequent stage of back 
transformation, forecasted volatility derived from the arcsine-transformed data is converted back 
to the original scale using the inverse arcsine function: 𝑟 = sin (𝑥 2⁄ ). Finally, the performance 
of the volatility model is evaluated using standard validation techniques such as out-of-sample 
testing and goodness-of-fit tests, and the forecasted volatility is compared with realized volatility 
to gauge the accuracy of the model. 

By applying the arcsine distribution to model volatility, we can capture the underlying 
characteristics of the data while ensuring symmetry and boundedness, leading to more accurate 
and robust volatility forecasts. This approach provides a valuable tool for risk management and 
decision-making in financial markets. 

3.4.4. Value-at-Risk (VaR) estimation using the arcsine distribution 

In this section, we outline the steps in a financial risk analysis, covering data preparation, 
parameter estimation, VaR computation, result interpretation, and validation. 

In the data preparation phase, historical daily returns data for a financial asset is collected. 
Utilizing this data, daily log returns are computed using the formula 𝑟 = ln , where 𝑟  
denotes the daily log return at time 𝑡, and 𝑃  represents the asset price at time 𝑡. Subsequently, in 
the parameter estimation step, the daily log returns are transformed into the range [–1, 1] through 
the arcsine transformation: 𝑥 = 2 × arcsin 𝑟 . Mean and variance estimation of the 
transformed data, 𝑥 , follows, noting that the mean of the arcsine distribution is zero, and the 
variance is 0.5 for the specified range. Proceeding to VaR calculation, once the parameters of the 
arcsine distribution are estimated, VaR is computed at a specified confidence level. For instance, 
to derive VaR at the 95 % confidence level, the critical value 𝑧 such that 𝑃(𝑋 ≤ 𝑧) = 0.95 is 
determined, where 𝑋 follows the arcsine distribution. Employing the inverse arcsine function, 𝑧 
is found, and subsequently back-transformed to obtain 𝑟 , representing the VaR threshold in the 
original scale. In the interpretation phase, VaR signifies the maximum potential loss of a portfolio 
at the specified confidence level over a given time horizon. For instance, a VaR of 5 % at the 95 % 
confidence level implies a 5 % chance of the portfolio incurring losses exceeding the VaR 
threshold within the designated time frame. Finally, the validity of VaR estimates is assessed 
through historical backtesting and stress testing techniques in the validation and sensitivity 
analysis stage, which evaluates the impact of variations in model parameters, such as confidence 
level and time horizon, on VaR estimates. 

By applying the arcsine distribution to estimate VaR, we can obtain robust and reliable risk 
measures that account for the underlying characteristics of the data, such as symmetry and 
boundedness. This approach provides a valuable tool for risk management and decision-making 
in financial markets, helping investors and financial institutions quantify and manage market risk 
effectively. 

4. Conclusions 

In the evolving landscape of statistical modeling, the Arcsine distribution stands as a testament 
to the importance of considering the specific characteristics of the data at hand. Its simplicity, 
adaptability, and theoretical soundness position it as a valuable asset for statisticians, researchers, 
and analysts seeking to unlock insights from a variety of datasets. 

As we continue to push the boundaries of statistical methodologies, the Arcsine distribution 
serves as a reminder of the rich and varied toolkit available to researchers. Its applications, both 
established and emerging, contribute to the broader landscape of probability distributions, offering 
a nuanced and effective approach to transforming and analyzing data. 

The novelty of our study lies in its interdisciplinary approach that bridges the gap between 
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statistical methodology and engineering applications, particularly in the analysis of random walk 
data. By leveraging the arcsine distribution, a statistical tool traditionally used in probability 
theory and mathematical statistics, the article introduces a novel framework for analyzing and 
interpreting random. 
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