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Abstract. In this paper, we perform statistical analysis for the decisional problem which is 
fundamental for the security of the key exchange protocol based on matrix power function. We 
have proven previously that the considered decisional problem is NP-complete and hence our 
proposal could potentially be quantum-safe. However, we did not explore the dependence of the 
complexity of the considered problem on the security parameters. Here we show that for small 
matrices certain information could be gained from the distribution of the entries of the public key 
matrices. On the other hand, we show that as the size of the matrices grows, the public key matrices 
are indistinguishable from truly random matrices.  
Keywords: non-commuting cryptography, statistical cryptanalysis, uniform distribution. 

1. Introduction 

A novel idea presented by W. Diffie and M. Hellman in [1] of using a pair of keys to agree on 
a shared secret gave birth to the branch of public-key cryptography. Since then, much research 
has been performed in this field and widely known cryptosystems such as RSA and many others 
were proposed. However, these cryptosystems mostly relied on the security of the discrete 
logarithm problem (DLP) defined in some multiplicative group (a version of DLP for additive 
groups e.g. elliptic curves can also be defined) or integer factorization problem [2]. While these 
problems do provide a decent challenge, due to the findings published by P. Shorr in [3] these 
problems could be solved by quantum computers. 

For some time, quantum computers were viewed as a mostly theoretical threat. However, due 
to the rapid development of quantum technologies, by the mid-2010s quantum cryptanalysis could 
no longer be viewed as purely theoretic. In 2016 the National Institute of Standards and 
Technology (NIST) announced a call for post-quantum algorithms for standardization [4]. As of 
now the finalists of round 3 have been announced [5]. Furthermore, the development of quantum-
safe cryptographic schemes continues due to the increasing practical demand of such algorithms 
in the near future. 

The proposed cryptographic schemes rely on hard problems e.g. defined in lattices or using 
multivariate quadratic equations. Alternatively error correction codes, hash-based cryptography 
or elliptic curves isogenies could be used to construct quantum-safe algorithms [6,7]. The security 
of such algorithms relies on NP-hard computational problems, i.e. they are in the hardest class of 
problems which cannot be solved by a deterministic Turing machine in polynomial time. 
Moreover, decisional versions of some of these problems are known to be NP-complete, e.g. 
closest vector problem used in lattice-based cryptography [8]. It is widely believed that such 
problems can withstand quantum cryptanalysis. 

In this paper, we consider one of such problems which is fundamental for the security of the 
cryptographic protocols presented in [9] and [10]. The objective of this problem is to recover the 
secret key of the legitimate user based on his public key [9]. Our goal is to show that the produced 
key is statistically indistinguishable from a truly random matrix if the public parameters of the 
protocol are appropriately chosen. We think that our results pose an interest from the practical 

https://crossmark.crossref.org/dialog/?doi=10.21595/mme.2024.24071&domain=pdf&date_stamp=2024-05-09


ON THE DECISIONAL PROBLEM BASED ON MATRIX POWER FUNCTION DEFINED OVER NON-COMMUTATIVE GROUP.  
ALEKSEJUS MIHALKOVICH, JOKUBAS ZITKEVICIUS 

2 ISSN PRINT 2351-5279, ISSN ONLINE 2424-4627  

implementation point of view, since the choice of the security parameters influences the memory 
requirements to store the private and public data and hence can be fundamental to determining if 
our proposal can be implemented in memory-restricted devices. 

The rest of this paper is organized as follows: in Section 2 we revise the mathematical 
background of our research; in Section 3 we define the considered problem in the form of the 
security game and present the main results of this paper. As usual, conclusions are presented at 
the end of the paper. 

2. Mathematical background 

Our approach is related to multivariate cryptography. Specifically, we focus on a certain 
mapping called the matrix power function (MPF) first introduced in [11]. The idea of this mapping 
is somewhat similar to the classical matrix multiplication. However, since MPF is defined for 
matrices with entries chosen from multiplicative (semi)group 𝕊, we use multiplication as the 
operation in 𝕊 and exponentiation as the scalar multiplication. Hence, we obtain the following 
expressions defining the one-sided MPFs [11]: 

𝐖 𝐗 = 𝐀, 𝑎௜௝ = ෑ൫𝑤௞௝൯௫೔ೖ௠
௞ୀଵ , (1)

𝐖𝐘 = 𝐁, 𝑏௜௝ = ෑሺ𝑤௜௞ሻ௫ೖೕ௠
௞ୀଵ . (2)

The matrix 𝐖 in Eq. (1) and Eq. (2) is called the base matrix with its entries chosen from the 
multiplicative (semi)group 𝕊. We refer to 𝕊 as the platform (semi)group. The matrices 𝐗 and 𝐘 in 
Eq. (1) and Eq. (2) respectively are referred to as power matrices. Their entries are chosen from a 
ring of scalars ℤ௢௥ௗሺ𝕊ሻ, where 𝑜𝑟𝑑(𝕊) denotes the multiplicative order of 𝕊, i.e. the smallest 
natural number satisfying the relation 𝑤௢௥ௗ(𝕊) = 𝑒 for any 𝑤 ∈ 𝕊, and 𝑒 is the identity of 𝕊. 

In our early research related to MPF we considered various commuting platform groups  
[12–14]. It was shown in [12] that is this case MPF is associative, i.e. the following identity holds: ( 𝐖 𝐗 )𝐘 = (𝐖𝐘) = 𝐖 𝐗 𝐘 𝐗 . (3)

Hence, we obtain the definition of the two-sided MPF. Unfortunately, our early proposals 
presented in [12] and [14] were attacked in [15] using tools of linear algebra together with discrete 
logarithm mapping. Though we fixed the flaw in our paper [16], and investigated this enhanced 
version in [17], partly due to the presented attack, our attention turned to non-commuting platform 
groups, where Eq. (3) does not hold in general, and hence the order of actions must be taken into 
consideration. In [9] and [18] we have shown that we can define hard decisional problems based 
on MPF defined over non-commuting platform groups thus demonstrating that MPF is a possible 
candidate for the so-called one-way function – easy to calculate, hard to invert.  

In this paper, we consider a family of the so-called modular-maximal cyclic groups generally 
denoted by 𝕄ଶ೟ and defined as follows [19-21]: 𝕄ଶ೟ = 〈𝑎, 𝑏|𝑎ଶ೟షభ = 𝑒, 𝑏ଶ = 𝑒, 𝑏𝑎𝑏ିଵ = 𝑎ଶ೟షమାଵ〉, (4)

where 𝑎 and 𝑏 are two non-commuting generators of the group and e is the identity of the group. 
Note that the parameter t defines the size of 𝕄ଶ೟, i.e. |𝕄ଶ೟| = 2௧, and hence we refer to it as the 
group-defining parameter. All the elements of 𝕄ଶ೟ can be represented in two ways: either 𝑎ఈ𝑏ఉ 
or 𝑏ఉ𝑎ఈ, where 𝛼 ∈ ℤଶ೟షభ and 𝛽 ∈  ℤଶ. Since both these representations are equivalent, in this 
paper, we use the representation 𝑎ఈ𝑏ఉ for the elements of 𝕄ଶ೟. 
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Basic operations in this group are presented below [9]. 
Multiplication of two elements: 

൫𝑎ఈభ𝑏ఉభ൯ ⋅ ൫𝑎ఈమ𝑏ఉమ൯ = ቐ𝑎ఈభାఈమ𝑏ఉమ ,     𝛽ଵ = 0,𝑎ఈభାఈమ𝑏ଵାఉమ ,     𝛽ଵ = 1,    𝛼ଶ is even,𝑎ఈభାఈమାଶ೟షమ𝑏ଵାఉమ ,    𝛽ଵ = 1,    𝛼ଶ is odd. (5)

Exponentiation to the power 𝑘: 

൫𝑎ఈ𝑏ఉ൯௞ = ൞𝑎௞ఈ ,     𝛽 = 0,𝑎௞ఈ𝑏௞,    𝛽 = 1,    𝛼ଶ is even,𝑎௞ఈାଶ೟షమቔ௞ଶቕ𝑏ଵାఉమ ,    𝛽 = 1,    𝛼ଶ is odd. (6)

An important corollary of these expressions is the fact that there are two cyclic subgroups of 𝕄ଶ೟ of size 2௧ିଵ. These subgroups are generated by elements 𝑎 and 𝑎𝑏. We denote them by 〈𝑎〉 
and 〈𝑎𝑏〉 respectively. Their explicit presentations are given below: 〈𝑎〉 = ൛𝑒,𝑎,𝑎ଶ, … ,𝑎ଶ೟షభିଵൟ, (7)〈𝑎𝑏〉 = ൛𝑒,𝑎𝑏,𝑎ଶ,𝑎ଷ𝑏, … ,𝑎ଶ೟షభିଵ𝑏ൟ. (8)

It is important to note that in general elements from 〈𝑎〉 and 〈𝑎𝑏〉 do not commute. This fact 
plays a major role in the application of 𝕄ଶ೟ in our research. Specifically, we defined the form of 
the base matrix 𝐖 as well as the forms of the secret key matrices. 

Template 1. The base matrix 𝐖 is chosen randomly to fit the following form [9]: 

𝐖 = ൮𝑎ଶ௞భభାଵ𝑏 𝑎௞భమ … 𝑎ଶ௞೎భା௟೎భ𝑏௟೎భ … 𝑎௞భ(೘షభ) 𝑎ଶ௞భ೘ାଵ𝑏𝑎ଶ௞మభ 𝑎௞మమ … 𝑎ଶ௞೎మା௟೎మ𝑏௟೎మ … 𝑎௞మ(೘షభ) 𝑎ଶ௞మ೘… … … … … … …𝑎ଶ௞೘భାଵ𝑏 𝑎௞೘మ … 𝑎ଶ௞೎೘ା௟೎೘𝑏௟೎೘ … 𝑎௞೘(೘షభ) 𝑎ଶ௞೘೘ାଵ𝑏൲. (9)

The main idea behind this template is to choose the entries of the columns in such a way that 
in each of the individual column entries are in the same cyclic subgroup either 〈𝑎〉 or 〈𝑎𝑏〉. This 
way we ensure that each individual column contains commuting entries. However, we still have 
to make sure that the exponentiation from the right is also performed with commuting entries. To 
achieve this goal, we define the following templates for power matrices [9]:  

Template 2. The left power matrix 𝐗 is chosen at random to satisfy the following condition: 𝑥௜ଵ + 𝑥௜௠ ≡ 0 mod 2. (10)

Template 3. The right power matrix 𝐘 is chosen at random to satisfy the following condition: 𝑦௖௝ ≡ 0 mod 2. (11)

Previously in [9] we proposed a key exchange protocol where we used 𝕄ଶ೟ as a platform group 
for the MPF with similar templates for matrices. Also, using the ideas presented in that paper we 
proposed a sigma identification protocol in [10]. Here we focus on these ideas presented in a more 
general way, i.e. we consider the MPF with additional constraints given by the Templates 1, 2 and 
3 defined above to keep the results obtained here applicable for future research in this area. 
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3. Decisional problem based on MPF 

In this section we consider the following security game aimed at distinguishing an MPF value 
from a truly random matrix: 

Security Game. Let 𝐖 be a matrix satisfying Template 1. For a given adversary 𝒜 and its 
challenger 𝒞 we define the following game: 

1) 𝒞 chooses at random two matrices 𝐗 and 𝐘 satisfying Templates 2 and 3 respectively and 
computes 𝐊଴ = ( 𝐖 𝐗 )𝐘. 

2) 𝒞 generates a random matrix 𝐊ଵ with entries (𝑘ଵ)௜௝ ∈ ℤଶ೟షభ.  
3) 𝒞 gives the pair ൫𝐖,𝐊ఉ൯, where 𝛽 ∈ {0,1} to 𝒜. 
4) 𝒜 outputs 𝛽መ . 
The adversary 𝒜 wins the game if 𝛽መ = 𝛽.  
To put it simpler, the aim of the game is to answer YES/NO to the following question: is there 

a pair of matrices (𝐗,𝐘) satisfying Templates 2 and 3 respectively, such that 𝐊ఉ =  ( 𝐖 𝐗 )𝐘. 
Hence, we obtain a decisional problem based on MPF defined over a non-commutative platform 
group. Here we refer to this problem as MPF decisional problem. 

Previously in [9] we used Schaefer’s dichotomy theorem to show that a special case of this 
problem when matrices 𝐗 and 𝐘 are generated as polynomials of pre-fixed matrices 𝐋 and 𝐑 with 
coefficients from ℤଶ೟షభ is NP-complete. However, we did not explore the dependence of the 
complexity of this problem on the order of the matrices or the size of the platform group 𝕄ଶ೟. 
Here we focus on these dependencies, i.e. we are interested in determining how difficult it is to 
solve the considered decisional problem for distinct values of the group size-defining parameter 𝑡 
and the matrix order 𝑚. 

Our results are based on the statistical analysis of the distribution of the entries of the MPF 
value matrix 𝐊଴. Our goal is to show that the entries of 𝐊𝟎 are distributed uniformly in ℤଶ೟షభ as a 
truly random matrix 𝐊ଵ has uniformly distributed entries. 

The statistical analysis was performed as follows: 
1) We generate a matrix 𝐖 that satisfies Template 1.  
2) We select a natural number k that defines the total number of iterations executed.  
3) Within the 𝑙-th iteration, where 1 ≤ 𝑙 ≤ 𝑘, a new pair of matrices (𝐗௟ ,𝐘௟) is generated such 

that the matrix 𝐗௟ satisfies Template 2 and the matrix 𝐘௟ satisfies Template 3. For each pair we 
calculate the matrix exponent 𝐕௟ = ( 𝐖 𝐗೗ )𝐘೗.  

4) We store the frequencies of powers of the generator 𝑎 two different ways: an array 𝐪 stores 
the overall frequencies of powers, and a tensor 𝐐 keeps track of frequencies in each individual 
position in the matrix exponent, i.e. we obtain 𝑚ଶ separate samples, where 𝑚 is the size of the 
matrices. Denote by 𝑓(𝑧,𝐕௟) the frequency of the element 𝑎௭ in the matrix exponent 𝐕௟ and denote 
by 𝑓௜௝(𝑧,𝐕௟) the frequency of the element 𝑎௭ in the (𝑖, 𝑗)-th position of matrix exponent 𝐕௟. Then 
we have: 

𝐪 = ൭෍𝑓(0,𝐕௟)௞
௟ୀଵ ෍𝑓(1,𝐕௟)௞

௟ୀଵ … ෍𝑓(2௧ିଵ − 1,𝐕௟)௞
௟ୀଵ ൱, (12)

𝐐 = ൭𝐪ଵଵ … 𝐪ଵ௠… ⋱ …𝐪௠ଵ … 𝐪௠௠൱ , 𝐪௜௝ = ൭෍𝑓௜௝(0,𝐕௟)௞
௟ୀଵ … ෍𝑓௜௝(2௧ିଵ − 1,𝐕௟)௞

௟ୀଵ ൱. (13)

5) After all 𝑘 iterations have been executed, we perform Pierson chi-squared test for uniform 
distribution for 𝐪 and each sample 𝐪௜௝ ∈ 𝐐 separately at a 0.05 significance level and calculate 𝑝-value for all of the obtained values of the chi-squared statistics. 

If the null hypothesis is rejected for the sample 𝐪, then there may exist patterns in the structure 
of the key matrix 𝐊଴ distinguishing it from a truly random matrix, i.e. some values of 𝐊଴ might 
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be more likely than others. Hence an adversary has a non-negligible chance of winning the security 
game defined above. Moreover, if the null hypothesis is rejected for multiple samples 𝐪௜௝ of the 
tensor 𝐐 then there is a potential threat of pattens for some individual positions and the adversary 
may use this partial information leak to win the considered security game with non-negligible 
probability, if these patterns are stable under repeats of the experiment.  

Let us consider an example of the performed experiment consisting of 𝑘 = 1000 iterations. 
Assume the parameter values 𝑡 = 4 and 𝑚 = 8. The following base matrix 𝐖 was generated: 

𝐖 =
⎝⎜
⎜⎜⎜
⎛𝑎ଷ𝑏 𝑎ଷ 𝑎ସ 𝑎 𝑒 𝑎଻ 𝑎ହ 𝑎ହ𝑏𝑎ସ 𝑎ସ 𝑎଺ 𝑎ହ 𝑎଻𝑏 𝑎ହ 𝑎଻ 𝑎଺𝑎ଶ 𝑎 𝑎 𝑎ହ 𝑒 𝑎ଶ 𝑎 𝑎ଶ𝑎ସ 𝑎ଶ 𝑎ଶ 𝑎ହ 𝑒 𝑒 𝑎ସ 𝑎ଶ𝑎ସ 𝑒 𝑎଺ 𝑎଻ 𝑎𝑏 𝑎ସ 𝑎଺ 𝑎଺𝑎଺ 𝑒 𝑎଻ 𝑎ହ 𝑒 𝑎଻ 𝑎ହ 𝑎ଶ𝑎଺ 𝑎଻ 𝑒 𝑎 𝑎଺ 𝑎ଶ 𝑎଻ 𝑎଺𝑎ଷ𝑏 𝑎ହ 𝑎 𝑎ଷ 𝑎𝑏 𝑎ଶ 𝑎ଷ 𝑎ହ𝑏⎠⎟

⎟⎟⎟
⎞. (14)

Note that for this choice of 𝐖 we have 𝑐 = 5 in Eq. (11). 
Since there are a total of 1000 pairs (𝐗௜ ,𝐘௜) generated and matrix exponents 𝐕௜ calculated, 

here we present only the matrices obtained during the first iteration as the example: 

𝐗𝟏 =
⎝⎜
⎜⎜⎜
⎛1 0 2 3 6 1 2 74 0 2 4 3 4 4 66 3 4 6 3 1 1 20 4 7 5 7 1 3 47 1 6 6 5 2 4 55 0 6 6 1 3 2 10 3 3 6 4 2 7 41 4 4 5 4 2 6 1⎠⎟

⎟⎟⎟
⎞ ,    𝐘𝟏 =

⎝⎜
⎜⎜⎜
⎛3 5 4 4 1 2 1 47 3 4 7 1 2 2 11 2 7 2 5 1 0 04 7 1 4 2 1 0 74 6 4 2 2 2 2 01 0 7 2 5 0 0 00 1 7 1 0 0 0 00 1 0 3 0 3 6 5⎠⎟

⎟⎟⎟
⎞, 

𝐕𝟏 =
⎝⎜
⎜⎜⎜
⎛ 𝑒 𝑎଻ 𝑎ଷ 𝑎 𝑎଺ 𝑎ସ 𝑒 𝑒𝑒 𝑎ହ 𝑎 𝑎ସ 𝑎ସ 𝑎ହ 𝑒 𝑎ଷ𝑎ସ 𝑎଺ 𝑎ଶ 𝑎ଶ 𝑎଺ 𝑎ଷ 𝑎ଶ 𝑎଻𝑎ହ 𝑎ଶ 𝑎 𝑎଻ 𝑎 𝑎଻ 𝑒 𝑎଻𝑎ଷ 𝑎଻ 𝑎଺ 𝑎ଷ 𝑎 𝑎଻ 𝑎ଶ 𝑎ସ𝑒 𝑎ଷ 𝑎଻ 𝑎ଷ 𝑎ସ 𝑒 𝑎ସ 𝑎ଶ𝑒 𝑒 𝑎଺ 𝑎଻ 𝑎ସ 𝑎ସ 𝑎ଶ 𝑎𝑎ଶ 𝑎 𝑎ହ 𝑎ଶ 𝑎଺ 𝑎ସ 𝑎ସ 𝑎଻⎠⎟

⎟⎟⎟
⎞. 

(15)

The histogram after 1000 iterations is presented below. Also, for comparison we have 
generated 1000 random matrices with entries uniformly chosen from ℤ଼. 

Due to the low p-value of the obtained results the null hypothesis is rejected in case of Fig. 1(a) 
and hence the tensor 𝐐 was not considered. We could explain this result by inspecting the elements 
of the given 𝐖: since in the first and last columns even-degree powers must dominate due to 
Template 1 and we only have 8 columns in total, the impact of even powers is crucial when 
exponentiating to left and right power matrices in Eq. (1) and Eq. (2) respectively. Hence, we see 
that the even powers of the generator 𝑎 are more likely in this case. 

After performing a couple of extra experiments with the same parameters, the 𝑝-value did not 
increase, so we assume that repeating the experiment does not significantly change the 𝑝-value. 
Hence, relying on the obtained results we see that the MPF decisional problem is solvable for this 
case. In other words, due to the observed pattern of the even powers being more frequent, we see 
a significant difference between the MPF value 𝐊଴ and a truly random matrix 𝐊ଵ as presented in 
Fig. 1. Hence, the matrix order is too small to obtain a complex MPF decisional problem. 
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On the other hand, based on the presented results we make a conjecture that the observed parity 
effect becomes less noticeable or even disappears as the size of the matrix increases, since the 
matrix 𝐖 contains more free columns and the impact of the three specific columns reduces. 

 
a) Histogram for the experiment data:  𝑝-value for sample 𝐪: 3.5⋅10-15 

 
b) Histogram for truly random matrices:  𝑝-value for sample 𝐪: 0.60 

Fig. 1. Comparison of the results of the experiment to truly random data  
for security parameters 𝑡 = 4 and 𝑚 = 8 

Let us now present our findings for the parameter values: 𝑡 = 4 and 𝑚 = 12. The idea of the 
experiment stays the same and the total number of iterations is 𝑘 = 1000. We suppress the explicit 
presentation of the matrix 𝐖 to shorten the paper. For better comparison we repeat the experiment 
three times each time changing the matrix 𝐖. Also, we have generated 1000 truly random 12×12 
matrices. The results are presented in Fig. 2. 

Evidently, the 𝑝-values differ in all cases, but all of them are greater than the selected threshold 
of 0.05. Interestingly enough, the p-value of the truly random data was less than the 𝑝-value of the 
Experiment 3 and comparable to other obtained 𝑝-values. Moreover, we can see that even for truly 
random data the null hypothesis was rejected for several positions of the matrix. However, there 
are no recognizable patterns in the positions where the uniformness was rejected. Neither the 
number of such positions nor their locations in the matrices are stable. Hence the adversary cannot 
acquire any valuable information by studying these positions which could potentially increase the 
probability of winning the considered security game. Relying on these observations we claim that 
for these parameter values the MPF value 𝐊଴ is indistinguishable from a truly random matrix 𝐊ଵ. 

Additionally, we performed experiments with other values of the security parameters. Since 𝑝-values for the experiments greatly vary and sometimes become lower than the considered 
threshold. For this reason, for each platform group 𝕄ଵ଺, 𝕄ଷଶ, 𝕄଺ସ and 𝕄ଵଶ଼ we performed the 
search for the smallest 𝑚 such that the null hypothesis could not be rejected for all the 
experiments. We started at 8×8 matrices and increased 𝑚 by 1 until all 25 experiments produced 𝑝-values greater than 0.05. Based on the obtained results we make a conjecture that considered 
security game could not be won in the average case for the following parameter values shown in 
Table 1. 

Table 1. Minimal matrix size dependence on the platform group 
Platform group 𝕄ଵ଺ 𝕄ଷଶ 𝕄଺ସ 𝕄ଵଶ଼ 𝑚 14 14 14 > 16 

We can see from the presented results that as the cardinality of the platform group increases, 
the impact of even degrees becomes more noticeable. Hence, for practical implementation of our 
KEP it may be reasonable to consider a balance between the cardinality of the platform group and 
the matrix size, since large matrices require more available memory space. For example, for the 
platform group 𝕄ଵ଺ and 14×14 matrices 490 bytes of memory are needed to store matrices 𝐖, 𝐋, 



ON THE DECISIONAL PROBLEM BASED ON MATRIX POWER FUNCTION DEFINED OVER NON-COMMUTATIVE GROUP.  
ALEKSEJUS MIHALKOVICH, JOKUBAS ZITKEVICIUS 

 MATHEMATICAL MODELS IN ENGINEERING 7 

𝐑, 𝐗, 𝐘 and 𝐀, whereas for the platform group 𝕄ଵଶ଼ and 16×16 matrices 1216 bytes of memory 
are required to store this data and the protocol is potentially less secure in the statistical sense. 
Also, memory is required to store a vector of coefficients. Moreover, it may be a good idea to 
store tables for mathematical operations in the platform group as well as powers of 𝐋 and 𝐑 to 
speed up the execution of the protocol in exchange for memory. 

 
a) Experiment 1: 𝑝-value for sample 𝑞: 0.15; 𝐻଴ 

rejected for the following positions of 𝑄: (2,9), (4,6), (5,7), (6,6), (6,10), (6,12), (7,12), (12,5)  

 
b) Experiment 2: 𝑝-value for sample 𝑞: 0.09; 𝐻଴ 
rejected for the following positions of 𝑄: (2,4), (3,9), (5,7), (7,9), (11,12) 

 
c) Experiment 3: 𝑝-value for sample 𝑞: 0.37; 𝐻଴ 

rejected for the following positions of 𝑄: (1,9), (4,8), (4,9), (4,10), (6,3), (8,1), (8,10), (10,9), (11,4), (11,6), (12,3), (12,10) 

 
d) Truly random matrices: 𝑝-value for sample 𝑞: 

0.16; 𝐻଴ rejected for the following positions of 𝑄: (1,11), (1,12), (2,1), (2,5), (6,11) 
 

Fig. 2. Comparison of the results of the experiment to truly random data  
for security parameters 𝑡 = 4 and 𝑚 = 12 

In conclusion we note that due to the sporadic changes of the p-value the obtained results 
should be viewed as recommendations based purely on statistical results. In other words, these 
result must be viewed as minimal recommendations for the values of public parameters. Algebraic 
analysis must also be taken into consideration. Such methods as the linearization technique, or the 
faithful matrix representation of the elements of the group 𝕄ଶ೟ were not considered in this work. 
Should these methods provide the adversary with some useful information about private keys, we 
must evaluate the dangers caused by them and hopefully avoid them by appropriately increasing 
the values the public parameters of the system. 

4. Conclusions 

In this paper, we have presented the results of the statistical analysis aimed at distinguishing 
the public key of the legit user from a truly random matrix. We have shown that for small matrices 
the adversary can gain a significant advantage in winning the security game defined in Section 3 
based on the distribution of the entries of the public key matrix. However, this advantage vanishes 
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as matrices become larger. Hence, based on the presented results we could recommend 
considering matrices of size 14 at the very least. Additional experiments are needed to find the 
optimal size of matrices for large groups, i.e. when the group-defining parameter 𝑡 ≥ 7.  

Notably, the security of our protocol relies on a hard decisional problem. However, the latter 
result means that to implement our protocol in practice, we need to find the balance between the 
choice of public parameter values and the required memory for data storage. Furthermore, 
unreasonably large values of the public parameters can also negatively affect the execution time 
of the protocol thus making it less attractive to the designers of cryptographic software. 

The obtained results will serve as a basis for our future research of other cryptographic 
primitives based on the MPF defined over modular-maximal cyclic groups. 
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