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Abstract. To address the decline or failure in the autonomous learning capability of traditional 
transfer learning methods when training and test samples come from different machines, resulting 
in low cross-machine fault diagnosis rates, we propose a cross-domain manifold structure 
preservation (CDMSP) method for diagnosing rolling bearing faults across machines. The 
CDMSP method can induce the manifold space projection matrices of the source and target 
domains more effectively. This method maps high-dimensional features into a low-dimensional 
manifold, preserving non-linear relationships and aligning distribution differences while 
maintaining cross-domain manifold structure consistency. Additionally, highly confidently 
labeled target domain samples are selected from each mapping result and added to the training 
dataset to enhance subspace learning in subsequent iterations. The CDMSP method is both simple 
and effective at capturing the underlying structures and patterns in the data. The CWRU dataset 
and our self-built test platform dataset were used to validate this method. Experimental results 
show that CDMSP, as a non-deep domain adaptation method of transfer learning, outperforms 
similar methods in cross-machine fault identification, achieving a maximum fault identification 
accuracy of 100 % with excellent convergence performance. Furthermore, simulated diagnostic 
experiments under noise interference indicate that CDMSP maintains high fault identification 
accuracy, even in noisy environments. Overall, CDMSP is an efficient and reliable new method 
for diagnosing cross-machine bearing faults. 
Keywords: bearing fault diagnosis, transferable, structure preservation, cross-machine. 

1. Introduction 

In modern industrial production systems, rolling bearings are crucial and often operate in 
demanding and complex environments. Unintended bearing failures can lead to significant 
economic losses and pose safety risks to personnel. Therefore, developing an effective bearing 
fault diagnosis mechanism is crucial and has become a key area of academic research [1-2]. 

Before the introduction of deep learning technology, machine condition monitoring and fault 
diagnosis were mainly based on traditional machine learning methods that were used to diagnose 
faults by extracting representative fault features [3-5]. Recently, convolutional neural networks 
and adversarial neural networks have been widely used in fault diagnosis due to their excellent 
performance in feature extraction and fault description [6-8]. The identification of faults using 
these models has been extensively studied and has produced remarkable results. However, the 
effectiveness of data-driven fault diagnosis models relies on two key assumptions: first, the 
training and test data must follow the principle of independent and identical distribution; second, 
there must be sufficient training samples [9]. Acquiring vibration signals under uniform 
environmental conditions is necessary to meet the standard requirements of the same data 
distribution. The challenge of collecting monitoring signals increases due to the constant 
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diversification of mechanical equipment environments and the increasing complexity of operating 
states. Traditional fault diagnosis algorithms often perform poorly due to significant temporal and 
spatial differences between labeled training samples and future fault samples [10-12]. With the 
rapid development of the Internet of Things and big data, it is now possible to perform fault 
monitoring at potential fault sites of machine equipment [13], train multiple fault diagnosis 
models, or train deep learning models based on massive data. Although this method can overcome 
the limitations of traditional machine learning, it is expensive. 

Therefore, transfer learning strategies are widely used to reduce differences between failure 
data [14]. To reduce the training cost of diagnostic models and, due to similar fault characteristics 
in bearing monitoring data under different operating conditions, cross-conditional fault diagnosis 
often uses a known labeled operating condition as the source domain. A typical unsupervised 
domain adaptive transfer learning model is created by using a different operating condition 
without labeling information as the target domain. Transfer learning is currently performing well 
in the cross-condition domain [15-20]. Traditional machine learning methods cannot be used 
directly for diagnosis because the new machine may not have enough bearing fault data for 
training in some cases. Collecting sufficient samples with fault information from operating 
equipment in industrial practice is extremely difficult and sometimes impractical due to safety 
reasons [21]. Bearing fault diagnosis can be performed on various machines by using training data 
from existing machines, which overcomes data scarcity, reduces training costs, and improves 
diagnostic accuracy. Additionally, machines can only obtain a few fault samples during normal 
working conditions, which may be insufficient to train a high-precision diagnostic model. The 
diagnostic accuracy of bearing faults can be improved quickly and effectively by transferring 
existing and easily accessible fault information to a new machine. Transfer learning is a way to 
use existing knowledge to adapt new machines to new data characteristics and failure modes. 
Therefore, finding new methods to apply equipment training diagnosis models based on easily 
obtainable data samples to real equipment has become a research trend. Moreover, it remains a 
significant challenge to use labeled data collected from a single machine to perform intelligent 
fault diagnosis on other machines. Traditional transfer learning is able to adapt domains to 
different working conditions due to the fact that the distribution of cross-condition domains from 
a unified machine is not significantly different. The autonomous learning ability of this method is 
significantly reduced and may fail when training and test samples come from different machines. 

The stronger feature representation ability of deep models can cope with the challenge of 
cross-machine domain adaptation. Luo et al. [22] proposed an improved SAE cross-model fault 
diagnosis method using a convolution shortcut and domain fusion strategy. This method replaces 
the Kullback-Leibler (KL) divergence in the original SAE with the convolution truncation 
technique, effectively avoiding the gradient disappearance problem and improving feature 
extraction ability. Wan et al. [23] designed a multi-level domain adaptive network combining 
hierarchical decoding and an attention mechanism to implement fault diagnosis for bearing 
cross-model migration. Xia et al. [24] proposed an enhanced discriminative meta-learning method 
to address cross-machine small sample domain offset, increasing meta-task diversity with 
multi-scale features for feature embedding with stronger self-learning ability. He et al. [25] 
constructed an optimized deep autoencoder combined with a parameter transfer learning strategy, 
effectively solving the challenge of aero-engine cross-domain fault diagnosis. Jia et al. [26] 
designed a multi-feature fusion migration network based on joint distribution adaptation to address 
the fault diagnosis migration problem between different models. This approach reduces 
distribution differences by increasing the joint mean difference to promote inter-domain 
adaptation. Xiang et al. [27] developed a domain separation and reconstruction opposition network 
for transfer learning. Although these deep learning strategies have achieved good results in 
cross-model fault diagnosis, there is still room for improving the diagnostic accuracy, and the 
diagnostic rate will be lower when there is noise interference in the actual working conditions. 

Vibration monitoring is one of the most effective methods for bearing fault diagnosis. The 
sparse regularization method has received considerable attention because it can accurately extract 



CROSS-DOMAIN MANIFOLD STRUCTURE PRESERVATION FOR TRANSFERABLE AND CROSS-MACHINE FAULT DIAGNOSIS.  
CAN LI, GUANGBIN WANG, SHUBIAO ZHAO, ZHIXIAN ZHONG, YING LV 

 JOURNAL OF VIBROENGINEERING. SEPTEMBER 2024, VOLUME 26, ISSUE 6 1369 

repetitive transient signals from noisy vibration signals. In order to fill the gaps in the systematic 
review or comprehensive investigation of sparse regularization, including the basic principles, the 
latest methods and the application in fault diagnosis, Li et al. [28] conducted an in-depth review 
of the latest technology of sparse regularization, and summarized the research and development 
of sparse regularization applied to fault diagnosis. To address the issue of weak transient fault 
signals being masked by strong noise and irrelevant components in rotating machinery fault 
diagnosis, Li et al. [29] proposed the smooth sparse low-rank matrix (SSLRM) method, which 
combines asymmetric and singular value decomposition (SVD) penalty regularization terms. To 
overcome the limitations of common sparse representation methods, such as low reconstruction 
accuracy or amplitude underestimation, Zhang et al. [30] proposed the generalized logarithmic 
(G-log) penalty method, enhancing sparsity and effectively reducing noise interference. 
Addressing the limitation of traditional regularization methods that cannot simultaneously 
maintain strong sparsity and high fitting accuracy, Yu et al. [31] proposed the stepwise sparse 
regularization (SSR) method for adaptive sparse dictionaries. Sun et al. [32] proposed a new 
framework, the local-global neighborhood graph and sparse graph embedding deep regularized 
autoencoder method (LGSDLRAE), for fault diagnosis under variable conditions. This framework 
addresses the challenge of traditional deep models being insufficient for effective fault 
identification due to the sparsity of fault information. 

Although these sparse regularization methods have shown good results in diagnosing faults 
with noise, there is still room for improvement in diagnostic accuracy. Under actual working 
conditions with high-intensity noise interference, the diagnostic effect remains suboptimal. 
Pancaldi et al. [33] proposed a framework for fair, quantitative and objective comparison of 
different rolling bearing fault detection algorithms, and evaluated the influence of noise models 
on the performance of these algorithms. Aiming at the problem that the strong noise in the 
engineering environment interferes with the rolling bearing signal, which leads to the decrease of 
the diagnosis accuracy of the intelligent diagnosis model, Zhang et al. [34] proposed a new hybrid 
model (Convolutional Denoising Autoencoder (CDAE)-BLCNN) for rolling bearing fault 
diagnosis. In order to solve the influence of noise and variable load conditions on the performance 
of intelligent fault diagnosis algorithms for rolling bearings in practical industrial applications, 
Wang et al. [35] proposed an adaptive denoising convolutional neural network, which integrates 
an adaptive denoising unit to remove noise while retaining sensitive fault features. A strong noise 
intelligent fault diagnosis method based on multi-scale deep convolutional neural network 
(MSD-CNN) model and data enhancement is proposed by Shao et al. [36], which solves the 
problem that the fault diagnosis performance will decrease sharply by using single-scale 
convolution kernel to extract fault features under strong noise conditions. Lyu et al. [37] proposed 
a deep learning method based on residual learning unit, soft threshold and global context, called 
RSG, to deal with the complex mapping relationship between vibration signals and different types 
of bearing faults in high-noise industrial environments. Although these methods have achieved 
good results in noisy environments, they rely on complex network structures to optimize targets 
and reduce noise, resulting in high computational and time costs. Additionally, these models are 
frequently regarded as 'black boxes', making their output results difficult to explain and generally 
limited in application [38]. Although traditional non-deep transfer learning technology has shown 
high performance in bearing fault diagnosis under changing working conditions, its accuracy in 
cross-device fault detection tasks is greatly reduced. 

To this end, we propose a Cross-Domain Manifold Structure Preservation (CDMSP) method 
for fault diagnosis of rolling bearings across machines. This method extends the manifold 
information preservation of Locality Preserving Projections (LPP) to machine domains, aiming to 
efficiently align fault sample distributions across machines while maintaining good diagnostic 
results in noisy environments. Compared to previous studies, the key contributions of this research 
are as follows: 

(1) We propose a new cross-domain manifold structure-preserving fault diagnosis method, 
which extends the classical LPP and preserves manifold information on the cross-domain 
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projection. 
(2) CDMSP uses local neighborhood relationships between data samples to establish a 

low-dimensional representation of cross-domain samples. It employs a nonlinear transformation 
to map high-dimensional data into low-dimensional space, preserving the manifold relationships 
and better capturing the potential structure of the data. This method is simple and fast. 

(3) Multiple experiments on cross-machine domain fault diagnosis using the CWRU dataset 
and our self-built test rig dataset verify that CDMSP is superior to similar technologies. We also 
simulated diagnostic experiments in the presence of noise interference, and the results show that 
CDMSP maintains high fault recognition accuracy even in noisy environments. 

2. Cross-domain manifold structure preservation 

The difference in data collection environments between the source and target domains causes 
different sample distributions within the original space. Many machine learning methods employ 
Euclidean distance to evaluate sample comparability or to facilitate direct transfer between source 
and target domains within Euclidean space. The local manifold structures among samples across 
domains are often overlooked by these strategies, potentially leading to transfer outcomes that are 
sub-optimal. Learning sub-spaces only from feature spaces with small distribution differences is 
a limitation of LPP. To tackle this problem, we broaden the local manifold structure preservation 
of classical LPP to cross-machine domains, which enhances its favorable characteristics for cross-
domain common subspace learning. We propose a cross-domain manifold structure preserving 
method to quickly and accurately align sample data with large cross-domain distribution 
differences. 

2.1. Locality preserving projections 

The Locality Preserving Projection (LPP) method [39] is an unsupervised learning approach 
that doesn't necessitate labeled samples. This algorithm overcomes the limitations of conventional 
techniques like Principal Component Analysis (PCA), which struggle to effectively explore data 
manifolds, thus facilitating the easier acquisition of low-dimensional projections. For dataset  𝑋 = ൣ𝑥ଵ, 𝑥ଶ, … 𝑥௡ೞା௡೟൧ ∈ ℝௗ×ሺ௡ೞା௡೟ሻ in the original space, LPP assumes that  𝑍 = ൣ𝑧ଵ, 𝑧ଶ, … 𝑧௡ೞା௡೟൧ ∈ ℝ௣×ሺ௡ೞା௡೟ሻ represents the data mapped to a low-dimensional manifold. 
Constructing an adjacency graph 𝐺 ∈ ℝሺ௡ೞା௡೟ሻ×ሺ௡ೞା௡೟ሻ among sample points facilitates this 
process. The goal is to preserve the connectivity among points within the graph after mapping and 
minimize errors as the primary objective: 

𝑚𝑖𝑛௅௉௉ = ෍ 12 ฮ𝑧௜ − 𝑧௝ฮଶ𝐺௜௝௡ೞା௡೟
௜,௝ୀଵ . (1)

It is possible to derive a simplified objective function: 

𝑚𝑖𝑛௅௉௉ = ෍ 12 ฮ𝑧௜ − 𝑧௝ฮଶ𝐺௜௝௡ೞା௡೟
௜,௝ୀଵ = ෍ 12 ฮ𝑅்𝑥௜ − 𝑅்𝑥௝ฮଶ𝐺௜௝௡ೞା௡೟

௜,௝ୀଵ        = trሺ𝑅்𝑋ሺ𝐷 − 𝐺ሻ𝑋்𝑅ሻ = trሺ𝑅்𝑋𝐿𝑋்𝑅ሻ. (2)

In this formulation, 𝐷 is represented by a diagonal matrix. The diagonal elements represent the 
sums of the elements in the corresponding columns of matrix 𝐺. 

By adding constraint 𝑅்𝑋𝐿𝑋்𝑅 = 𝐼 ∈ ℝሺ௡ೞା௡೟ሻ×ሺ௡ೞା௡೟ሻ, the objective function becomes: min tr ሺ𝑅்𝑋𝐿𝑋்𝑅ሻ   𝑠. 𝑡.𝑅்𝑋𝐿𝑋்𝑅 = 𝐼. (3)
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Using Lagrange multipliers helps solve the optimization problem posed by the equation, which 
translates into the determination of eigenvalues and eigenvectors of the generalized characteristic 
equation [40]: 𝑋𝐿𝑋்𝑅 = 𝜆𝑋𝐷𝑋்𝑅. (4)

From the previous formula, the eigenvectors associated with the smallest 𝑝 eigenvalues form 
the transformation matrix 𝑅 = ൣ𝑟଴, 𝑟ଵ, … 𝑟௣ିଵ൧ ∈ ℝௗ×௣. 

2.2. Cross-domain manifold structure preservation 

The CDMSP aims to use projection techniques to connect sample attributes from both the 
source and target domains into a single subspace. The purpose of this procedure is to uncover the 
similarity between samples by examining the hidden manifold configuration in Euclidean space. 
This exploration facilitates the precise alignment of intra-class congruence and overall data 
distribution. The CDMSP method is simple, obtaining a deterministic solution by solving the 
generalized eigenvalue problem. It is a semi-supervised domain adaptation method applicable to 
unlabeled target domain samples. 

Assuming the samples belong to the same class, their low-dimensional manifold spaces are 
close to each other, regardless of their domain. To achieve this, we define the total objective 
function as the minimization of the samples in and across domains on the similarity graph, based 
on sample set 𝑋 = ൣ𝑥ଵ, 𝑥ଶ, … 𝑥௡ೞା௡೟൧ ∈ ℝௗ×ሺ௡ೞା௡೟ሻ in the original space and sample set  𝑍 = ൣ𝑧ଵ, 𝑧ଶ, … 𝑧௡ೞା௡೟൧ ∈ ℝ௣×ሺ௡ೞା௡೟ሻ in the low-dimensional manifold: 

𝑚𝑖𝑛஼஽ெௌ௉ = ෍ 12 ฮ𝑧௦௜ − 𝑧௦௝ฮଶ𝐺௦௜௝௡ೞ
௜,௝ୀଵ + ෍ 12 ฮ𝑧௦௜ − 𝑧௧௧ฮଶ𝐺௖௜௝௡ೞା௡೟

௜,௝ୀଵ + ෍ 12 ฮ𝑧௧௜ − 𝑧௧௝ฮଶ𝐺௧௜௝௡೟
௜,௝ୀଵ  

      = ෍ 12 ฮ𝑅௦் 𝑥௦௜ − 𝑅௦் 𝑥௦௝ฮଶ𝐺௦௜௝௡ೞ
௜,௝ୀଵ + ෍ 12 ฮ𝑅௦் 𝑥௦௜ − 𝑅௧் 𝑥௧௝ฮଶ𝐺௖௜௝௡ೞା௡೟

௜,௝ୀଵ+ ෍ 12 ฮ𝑅௧் 𝑥௧௜ − 𝑅௧் 𝑥௧௝ฮଶ𝐺௧௜௝௡೟
௜,௝ୀଵ . 

(5)

Within this structure, 𝑅௦/௧ ∈ ℝௗ×௣ represents an inductive matrix that projects data from both 
the source and target domains into a low-dimensional manifold subspace. 𝐺௦/௧ ∈ ℝ௡ೞ/೟×௡ೞ/೟ is a 
graph matrix representing the similarity of data point within both the source and target domains. 
If the labels of data points 𝑥௦/௧௜  and 𝑥௦/௧௝  are identical, the corresponding elements in the similarity 
matrix 𝐺௦/௧௜௝  are set to 1; otherwise, they are set to 0. 𝐺௖ ∈ 𝑅௡ೞ×௡೟ is defined as a cross-domain 
similarity graph matrix that aims to establish similarity links between source domain data points 
and target domain data points. If 𝑥௦௜  and 𝑥௧௝ are identical, 𝐺௖௜௝ is set to 1 and 0 otherwise. 

The objective function above is divided into three parts, and the binomials are expanded and 
transformed into the form of matrix multiplication and matrix trace. The following new 
expressions have been obtained: 

෍ 12 ฮ𝑅௦் 𝑥௦௜ − 𝑅௦் 𝑥௦௝ฮଶ𝐺௦௜௝௡ೞ
௜,௝ୀଵ = ෍  ൫𝑅௦் 𝑥௦௜𝑅௦் 𝑥௦௜ − 2𝑅௦் 𝑥௦௜𝑅௦் 𝑥௦௝ + 𝑅௦் 𝑥௦௝𝑅௦் 𝑥௦௝൯𝐺௦௜௝௡ೞ

௜,௝ୀଵ        = 2𝑅௦் 𝑥௦௜𝑅௦் 𝑥௦௜𝐷௦௜௜ − 2𝑅௦் 𝑥௦௜𝑅௦் 𝑥௦௝𝐺௦௜௝ = 2tr ሺ𝑅௦் 𝑋௦𝐿௦𝑋௦் 𝑅௦ሻ. (6)
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In this formulation, 𝐷௦ ∈ ℝ௡ೞ×௡ೞ represents a diagonal matrix. The diagonal elements are the 
sums of the elements in the corresponding columns of matrices 𝐺௦ ∈ ℝ௡ೞ×௡ೞ and  𝐿௦ = 𝐷௦ − 𝐺௦ ∈ ℝ௡ೞ×௡ೞ. 

In the same way, we can expand the other two terms as follows: 

෍ 12 ฮ𝑅௧் 𝑥௧௜ − 𝑅௧் 𝑥௧௝ฮଶ𝐺௧௜௝௡೟
௜,௝ୀଵ = 2trሺ𝑅௧் 𝑋௧𝐿௧𝑋௧் 𝑅௧ሻ, (7)

෍ 12 ฮ𝑅௦் 𝑥௦௜ − 𝑅௧் 𝑥௧௝ฮଶ𝐺௖௜௝௡ೞା௡೟
௜,௝ୀଵ= trሺ𝑅௦் 𝑋௦𝐷௦௖௜௜ 𝑋௦் 𝑅௦ሻ + tr൫𝑅௧் 𝑋௧𝐷௧௖௝௝𝑋௧் 𝑅௧൯ − 2tr൫𝑅௦் 𝑋௦𝐺௖௜௝𝑋௧் 𝑅௧൯. (8)

By unifying Eqs. (6-8), we get: 𝑚𝑖𝑛஼஽ெௌ௉ = trሺ𝑅௦் 𝑋௦ ሺ2𝐿௦ + 𝐷௦௖௜௜ ሻ 𝑋௦் 𝑅௦ሻ + tr൫𝑅௧் 𝑋௧ ൫2𝐿௧ + 𝐷௧௖௝௝൯𝑋௧் 𝑅௧൯       −2tr൫𝑅௦் 𝑋௦𝐺௦௖௜௝𝑋௧் 𝑅௧൯. (9)

Minimize Eq. (9) and rewrite it to obtain: 

𝑚𝑎𝑥ோೞ,ோ೟ 2tr (𝑅௦் 𝑋௦𝐺௦௖𝑋௧் 𝑅௧)tr (𝑅௦் 𝑋௦ (2𝐿௦ + 𝐷௦௖) 𝑋௦் 𝑅௦)  + tr (𝑅௧் 𝑋௧ (2𝐿௧ + 𝐷௧௖) 𝑋௧் 𝑅௧). (10)

Derive 𝑅௦ and 𝑅௧ respectively and set their partial derivatives to 0, obtaining the following 
equation: 

𝑋௦𝐺௦௖௜௝𝑋௧் 𝑅௧ = 2𝑡𝑟 (𝑅௦் 𝑋௦𝐺௦௖𝑋௧் 𝑅௧)𝑋௦(2𝐿௦ + 𝐷௦௖)𝑋௦் 𝑅௦tr(𝑅௦் 𝑋௦ (2𝐿௦ + 𝐷௦௖) 𝑋௦் 𝑅௦) + tr(𝑅௧் 𝑋௧ (2𝐿௧ + 𝐷௧௖) 𝑋௧் 𝑅௧), (11)(𝑋௦𝐺௦௖𝑋௧் ) ்𝑅௦ = 2𝑡𝑟 (𝑅௦் 𝑋௦𝐺௦௖𝑋௧் 𝑅௧)𝑋௧(2𝐿௧ + 𝐷௧௖)𝑋௧் 𝑅௧tr(𝑅௦் 𝑋௦ (2𝐿௦ + 𝐷௦௖)𝑋௦் 𝑅௦) + tr(𝑅௧் 𝑋௧ (2𝐿௧ + 𝐷௧௖)𝑋௧் 𝑅௧). (12)

Eqs. (11-12) are equivalent to the generalized eigenvalue problem and can be easily 
constructed: 

൤ 0 𝑋௦𝐺௦௖𝑋௧்(𝑋௦𝐺௦௖𝑋௧் ) ் 0 ൨ ൤𝑅௦𝑅௧൨ = ൬൤𝑋௦ (2𝐿௦ + 𝐷௦௖) 𝑋௦் 00 𝑋௧ (2𝐿௧ + 𝐷௧௖) 𝑋௧் ൨ + 𝛼𝐼൰ ൤𝑅௦𝑅௧൨ Λ. (13)

Within the outlined framework, 𝐼 ∈ ℝ(௡ೞା௡೟)×(௡ೞା௡೟) is designated as the identity matrix, 𝛼 
represents the hyperparameter, and Λ is identified as the matrix of eigenvalues. By solving 
Eq. (13) to obtain the eigenvector corresponding to the maximum eigenvalue, we can determine 
the maximization objective function. Furthermore, the matrices 𝑅௦ and 𝑅௧, derived within the 
optimal subspace, are obtained from the eigenvectors corresponding to the leading 𝑑 eigenvalues. 

3. Cross-domain manifold structure preservation-based fault diagnosis model for rolling 
bearings across machines 

Based on cross-domain manifold structure preservation, low-dimensional data representation 
is established using the local neighborhood relationships between data samples. High-precision 
fault diagnosis for rolling bearings across various equipment was achieved in this study. Initially, 
similarity graphs were constructed separately for the source domain, target domain, and 
cross-domain. After that, the deterministic solution was obtained from the generalized eigenvalue 
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problem. Mapping high-dimensional features into low-dimensional manifold subspaces preserves 
the nonlinear relationships between data. This alignment addresses differences in data distribution 
while maintaining the consistency in the cross-domain manifold structure. Additionally, the 
training dataset is updated with labeled target domain samples with higher confidence based on 
each mapping result. This promotes subspace learning in subsequent iterations and accurately 
identifies cross-machine fault samples. The overall flow chart of the model is shown in Fig. 1. 

This investigation’s fault diagnosis approach unfolds in five pivotal stages: 
Step 1: Vibration signals with identified labels from one machinery unit are designated as 

source domain 𝐷௦, while signal data with unknown labels from a different apparatus are classified 
under target domain 𝐷௧. Concurrently, a small subset of labeled samples from the target domain 
is designated as supervised samples 𝐷௧௟. The feature extraction outcomes from vibration signals 
within both the source and the target domains serve as the foundational input. 

Step 2: Based on the initial distribution of the samples, similarity graph matrices within both 
the source and target domains are initialized, establishing dimension 𝑝 and hyperparameter 𝛼 for 
the shared subspace. 

Step 3: Solve the eigenvalues and eigenvectors of the generalized characteristic Eq. (13) to 
obtain the induced matrices 𝑅௦ and 𝑅௧ projected from the source and target domains to the 
low-dimensional manifold subspace. 

Step 4: Update the sample distribution according to 𝑍௦ = 𝑅௦் 𝑋௦ and 𝑍௧ = 𝑅௧் 𝑋௧, and use the 𝐾-nearest neighbor (𝐾 = 1) to predict unlabeled samples in the target domain. 
Step 5: Add samples with high confidence of the prediction results to the target domain 

supervised sample 𝐷௧௟. 
Repeat steps 3 through 5 until the results converge. 

 
Fig. 1. The overall process of the model 

4. Experimental validation 

To evaluate the proposed methodology’s efficacy and generalization capacity, this 
investigation employed fault data from two distinct testing apparatuses to assess the bearing fault 
diagnosis algorithm. The evaluation included bearing vibration data from Case Western Reserve 
University (CWRU) and a dataset produced by a bearing fault testing device constructed by our 
research group. 



CROSS-DOMAIN MANIFOLD STRUCTURE PRESERVATION FOR TRANSFERABLE AND CROSS-MACHINE FAULT DIAGNOSIS.  
CAN LI, GUANGBIN WANG, SHUBIAO ZHAO, ZHIXIAN ZHONG, YING LV 

1374 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460  

4.1. Dataset description 

Dataset A: The first group of datasets was released by Case Western Reserve University, 
including bearing vibration data under four different working conditions (0 HP/1797 rpm, 
1 HP/1772 rpm, 2 HP/1750 rpm, 3 HP/1730 rpm). For each working condition, the dataset records 
four health states of the bearing: normal (NO), outer ring fault (OF), inner ring fault (IF), and 
rolling element fault (BF). Additionally, the sampling frequency of the vibration signal is 12 kHz. 

Dataset B: Originating from a custom-constructed experimental setup depicted in Fig. 2, this 
study's secondary dataset includes four distinct health conditions: normal operation (NO), outer 
ring defect (OF), inner ring defect (IF), and rolling element failure (BF). The examination involved 
three specific motor operational scenarios: a 500 N load at 1800 rpm, a 1000 N load at 1200 rpm, 
and a 1500 N load at 600 rpm, with a uniform sampling rate of 16 kHz across all data points. 

Table 1. Transfer task information of two datasets 
Source domain  Target domain 

Dataset Working 
condition 

Sampling 
frequency Dataset Working 

condition 
Sampling 
frequency 

A0 0 HP/1797 rpm 

12 kHz 

B1 500 N/1800 rpm 

16 kHz 

A0 0 HP/1797 rpm B2 1000N/1200 rpm 
A0 0 HP/1797 rpm B3 1500 N/600 rpm 
A1 1 HP/1772 rpm B1 500 N/1800 rpm 
A1 1 HP/1772 rpm B2 1000N/1200rpm 
A1 1 HP/1772 rpm B3 1500 N/600 rpm 
A2 2 HP/1750 rpm B1 500 N/1800 rpm 
A2 2 HP/1750 rpm B2 1000N/1200 rpm 
A2 2 HP/1750 rpm B3 1500 N/600 rpm 
A3 3 HP/1730 rpm B1 500 N/1800 rpm 
A3 3 HP/1730 rpm B2 1000N/1200 rpm 
A3 3 HP/1730 rpm B3 1500 N/600 rpm 

 

  
Fig. 2. Self-built fault test rig: 1) motor; 2) coupling; 3) spindle; 4) bearing housing; 5) carbon brush; 
6) test bearing housing; 7) vibration acceleration sensor; 8) bearing; 9) base; 10) power; 11) load bolts 

Table 2. Type description of bearing dataset 
Label 1 2 3 4 
Type NO OF  IF BF 

This research establishes a framework for identifying faults in bearings across multiple 
devices. The methodology involves gathering vibration data from the bearings of any device 
operating under specified conditions, along with corresponding labels, to create a source domain 
dataset. Concurrently, data from a secondary device is acquired to develop a target domain dataset, 
aiming to replicate the process of identifying bearing fault types across different devices in 
real-world contexts. In this research, each health condition is represented by 100 samples, each 
containing 2048 data points, resulting in a total of 400 samples per dataset. This approach 
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delineates migration tasks for fault diagnosis across 12 distinct devices. Details regarding the 
dataset are provided in Table 1, offering a comprehensive overview. 

The datasets in Table 1 and Table 2, along with the signal spectrum in Fig. 3, facilitate a 
comprehensive analysis of signal spectra. This analysis reveals that frequency data for identical 
fault types shows substantial variations across different devices. These variations can compromise 
the efficiency of conventional fault diagnosis methodologies, leading to a significant decrease in 
the accuracy of bearing fault identification across different devices. Therefore, it is imperative to 
advance technologies for diagnosing faults in rolling bearings across multiple devices, 
highlighting their critical value for engineering applications. 

 
a) Spectrum of NO DataA 

 
e) Spectrum of NO DataB 

 
b) Spectrum of OF DataA 

 
f) Spectrum of OF DataB 

 
c) Spectrum of IF DataA 

 
g) Spectrum of IF DataB 

 
d) Spectrum of BF DataA 

 
h) Spectrum of BF DataB 

Fig. 3. Signal spectrum of fault dataset 

4.2. Experimental conclusion 

To demonstrate the superior cross-domain transferability of CDMSP, this investigation 
conducts a comparative analysis with various machine learning algorithms. This examination 
includes three conventional machine learning algorithms and three prevalent transfer learning 
approaches, comprising two unsupervised and one semi-supervised methodology. A 
comprehensive description of each method is provided as follows: 

KNN [3]: The K-nearest neighbor algorithm (KNN) is a benchmark method often used in 
classification tasks. In this study, the 1NN method (𝐾 = 1) is specifically used. 

SVM [4]: The support vector machine (SVM) is another commonly used baseline algorithm 
in classification problems. 

LPP [35]: Locality Preserving Mapping (LPP) is a manifold learning technique that maps high-
dimensional data to low-dimensional space through nonlinear transformation. Its purpose is to 
maintain the nonlinear structural relationships between data points. 
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JDA [41]: Joint Distribution Adaptation (JDA) is an effective transfer learning technique that 
combines marginal distribution and conditional distribution adaptation. 

MEDA [16]: Manifold Embedded Distribution Adaptation (MEDA) is an advanced transfer 
learning strategy that dynamically adjusts the weights of marginal and conditional distributions. 

SSMTL [42]: Semi-Supervised Metric Transfer Learning (SSMTL) is a semi-supervised 
learning method with cross-domain metric ability, particularly suitable for transfer learning 
situations. 

In the conducted research, the K-nearest neighbor algorithm (KNN, where 𝐾 = 1) was used as 
the fundamental classifier, with the shared subspace dimensionality set to 20 and the process 
iterated ten times. The hyperparameter B was set to 10. 

Classification accuracy and the standard deviation accuracy of fault samples were used as 
metrics for evaluating algorithm performance. To validate the reliability of the outcomes, each 
task underwent 50 iterations, with the mean value of these iterations deemed the conclusive result. 
This approach facilitated the assessment of seven distinct classification algorithms’ efficacy in 
diagnosing bearing faults across various transfer tasks. The findings are presented in Table 3, 
which shows the diagnostic outcomes from transitioning the CWRU dataset to a proprietary 
bearing fault experimentation setup, highlighting the maximum recognition rate within identical 
tasks in bold. 

To show the algorithm’s time complexity, we use the time required to complete the fault 
identification as the evaluation index. The unified operating environment is: Operating System: 
Windows 10; CPU: Intel (R) Core (TM) i7-12700H; GPU: NVIDIA GeForce RTX 3060; RAM: 
16GB; Software: MATLAB 2019b. 

Table 3. Accuracy of bearing fault identification under different machines by different methods 
Task KNN SVM LPP JDA MEDA SSMTL* CDMSP* 

A0→B1 38.25 33.00 53.75 49.00 50.00 85.53 100.00 
A0→B2 41.00 28.25 18.25 49.50 49.50 83.68 100.00 
A0→B3 22.50 18.50 30.50 48.25 49.50 82.63 95.27 
A1→B1 41.25 44.25 42.25 50.00 50.00 87.11 100.00 
A1→B2 39.25 32.25 23.00 50.00 50.00 88.95 100.00 
A1→B3 18.75 25.50 29.75 47.75 29.25 77.37 94.84 
A2→B1 43.00 53.50 48.00 50.00 50.00 88.16 100.00 
A2→B2 45.25 40.00 49.00 50.00 50.00 90.79 100.00 
A2→B3 29.00 24.25 23.00 48.50 31.25 83.16 94.13 
A3→B1 51.50 55.50 30.50 50.00 50.00 88.16 100.00 
A3→B2 48.75 35.25 44.00 50.00 50.00 87.11 99.70 
A3→B3 33.75 24.75 22.50 48.75 32.75 73.42 94.92 
Average 37.69 34.58 34.54 49.31 45.19 84.67 98.24 

Std. 10.02 11.72 12.21 0.83 8.54 5.04 2.56 
Time(s) 0.63 5.62 5.70 15.97 27.74 4.20 7.50 

Note: The representation with * indicates semi-supervised transfer learning, which provides 1 % labeled 
samples of the target domain as supervised samples. 

The analysis in Table 3 shows that the CDMSP methodology introduced in this investigation 
consistently outperforms six alternative fault diagnosis approaches across twelve cross-device 
fault diagnosis tasks, achieving superior fault detection accuracy in every evaluated task. The 
standard deviation and running time of 12 transfer task results indicate that CDMSP has excellent 
robustness and low time complexity. 

In cross-machine fault diagnosis, the accuracy of traditional diagnostic models is only  
30 %-40 %, and the accuracy of traditional transfer learning methods is also below 50 %. The 
SSMTL method, which provides supervised samples in the target domain, shows great 
improvement in fault identification across machine domains. Moreover, when the target domain 
data is a B3 transfer task, the fault identification accuracy of all methods is not high due to the 
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target condition of low speed and heavy load, resulting in a greater distribution difference. This 
indicates that an elevated load can augment the spatial separation of bearing fault characteristics, 
consequently magnifying the variance in cross-domain distributions. When evaluating the efficacy 
of traditional classification algorithms in cross-device transfer tasks, it is observed that these tasks 
often yield suboptimal performance. Transfer learning emerges as a potent mechanism for 
mitigating such distributional disparities, enhancing task-specific accuracy, particularly through 
the application of semi-supervised transfer learning techniques, which in certain instances deliver 
superior detection outcomes. Nonetheless, the reliability of these techniques remains subpar, with 
certain tasks not achieving the requisite accuracy levels. This scenario underscores the 
complexities associated with diagnosing bearing faults across diverse machinery, compounded by 
the challenge of acquiring ample fault samples from operational machinery. Hence, leveraging 
insights from labeled data harvested from a single machine to facilitate intelligent fault diagnosis 
in other machinery holds significant practical implications. 

4.3. Experimental analysis 

4.3.1. Performance analysis of algorithms with limited supervised data 

In engineering, the disparity in mechanical equipment’s operational environments 
significantly complicates the collection of bearing monitoring signals, often precluding the 
acquisition of adequate known-state bearing data samples. Consequently, this investigation seeks 
to assess the CDMSP algorithm's capacity to maintain diagnostic accuracy across various labeled 
supervisory samples within the target domain. By modulating the number of supervisory samples, 
the study evaluates the algorithm's efficacy across twelve cross-device fault diagnostic tasks. To 
mitigate variability in experimental findings, each diagnostic task was subjected to fifty iterations. 
The outcomes of these investigations are depicted through box plots, as illustrated in Fig. 4. 

 
a) Number of supervised samples: 1 

 
b) Number of supervised samples: 5 

 
c) Number of supervised samples: 10 

 
d) Number of supervised samples: 20 

Fig. 4. The performance of CDMSP under small supervised samples 
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Analysis of the data in Fig. 3 indicates that, aside from transfer tasks targeting domain B3 
(Tasks 3, 6, 9, 12), the CDMSP method demonstrates significant cross-device transfer proficiency 
even when supervised samples are scarce, with accuracy levels approaching 100 %. This 
evidences the method's robust performance in target operational conditions with low loads. 
However, when the target field's working condition is low speed and heavy load, the scarce 
supervision samples are insufficient to provide adequate cross-domain transfer information. When 
the number of supervised samples is 5, except for Task 6 (A1→B3) with an experimental accuracy 
rate of less than 80 %, other experimental results are greater than 85 %. When the number of 
supervised samples is greater than 10, the accuracy of CDMSP remains basically stable, proving 
that the distribution difference across machine domains is expanded due to excessive load, and 
more supervised samples are needed to improve cross-domain adaptive learning ability. 

4.3.2. Diagnostic outcomes in the presence of noise disturbances 

In the actual operation of rolling bearings, the external environment can interfere with the 
collected vibration signals. To evaluate the robustness of the CDMSP methodology under ambient 
noise conditions, test samples were deliberately infused with noise to mimic fault diagnosis 
environments influenced by such disturbances. Four distinct sets of cross-device fault 
identification tasks were randomly chosen, maintaining constant parameters within the diagnostic 
model. Noise intensities of 10 dB and 20 dB were subsequently introduced into the designated test 
samples. For result validation, each task underwent 50 iterations. The experimental results are 
illustrated in Fig. 5. 

Fig. 4 shows that the CDMSP approach exhibits significant robustness in noisy environments, 
where the precision of fault detection remains largely unaffected by substantial noise disturbances. 
In particular, the three transfer tasks of A0 to B1, A0 to B2, and A1 to B1 are essentially not 
disturbed by noise, reflecting the robustness of CDMSP to noise. As mentioned earlier, the 
distributional difference across the machine domain caused by the excessive load of the target 
machine (task A0 to B3) is enlarged, reducing the accuracy of the diagnosis model. However, our 
method can still maintain high fault recognition accuracy in a noisy environment. 

4.3.3. Subspace dimension and hyperparameter sensitivity analysis 

The primary goal of employing transfer learning to reduce variance in cross-domain 
distributions is to locate a shared subspace that minimizes the distance between domains. The 
CDMSP model uses projection matrices 𝑅௦ and 𝑅௧ to generate a reduced-dimensional manifold 
subspace. As detailed in Section 2, the dimensions of these projection matrices are specified as 𝑑×𝑝, where 𝑑 is the dimensionality of the original sample space, and 𝑝 is the dimensionality of 
the shared subspace. This arrangement allows for a detailed exploration of which dimensions in 
the common subspace best retain domain-invariant features among diverse machine samples. 
Therefore, it is imperative to explore how changes in subspace dimensions impact the average 
efficacy of the CDMSP approach. Changing the dimensions of the projection matrices allows for 
the evaluation of average accuracy in different subspaces, as depicted in Fig. 6. 

Examination of the findings in Fig. 6 reveals a significant increase in the recognition rate of 
the diagnostic model as subspace dimensionality increases from 1 to 5. Beyond this threshold, 
increasing the dimensionality from 5 to 50 does not significantly affect the model's average 
accuracy. This observation suggests that subspaces of insufficient dimensionality fail to capture 
cross-domain fault characteristics adequately, while maintaining lower dimensionality could 
significantly reduce further modeling costs. Thus, setting the dimensionality of CDMSP's shared 
subspace to exceed 5 is a prudent choice. 

The CDMSP method proposed in this paper also includes another hyperparameter 𝛼. As a 
regularization hyperparameter, we need to discuss its sensitivity in the model.  𝛼 = {0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000} were set up respectively, and 50 experiments 
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were conducted. The results are shown in Fig. 7. 

 
Fig. 5. The performance of CDMSP under noise 

 
Fig. 6. CDMSP in different dimensions 

The average accuracy of each hyperparameter 𝛼 and its fluctuation range in repeated tests are 
shown in Fig. 7. When 𝛼 = 0.0001 or 0.001, the accuracy of CDMSP is low and unstable, often 
resulting in very low accuracy. When 𝛼 is greater than 0.01, the accuracy of the cross-domain 
fault identification model remains above 90 %. Therefore, 𝛼 should be set to a value greater than 
0.01. 

 
Fig. 7. CDMSP at different 𝛼 values 

 
Fig. 8. Diagnostic model convergence process 

4.3.4. Analysis of model convergence 

To study the convergence performance of CDMSP after cross-domain structure expansion, we 
present the changes in average fault identification accuracy from the CWRU data set to the 
self-built test rig data set. The results are shown in Fig. 8. 

It is observed that as the number of iterations increases, the average recognition accuracy of 
CDMSP also increases. Although the accuracy decreases in the second iteration, a subspace with 
higher accuracy is learned in subsequent iterations, demonstrating CDMSP's good adaptive ability 
and convergence. 

4.3.5. Analysis of feature visualization 

To enhance the understanding of sample distributions within the shared subspace, we 
visualized fault type distributions for the cross-machine transfer fault identification task A0→B3 
using the t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm [43]. The adaptation 
outcomes for four diagnostic models-KNN, LPP, SSMTL, and CDMSP-were represented using 
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two-dimensional scatter plots. As shown in Fig. 9, markers with identical colors but different 
shapes indicated the same fault types, providing clearer visibility into the effectiveness of 
minimizing cross-domain distributions. 

Examination of Fig. 9 shows notable distribution differences between the source and target 
domains in the initial distribution, with substantial overlap across diverse fault types. The use of 
conventional machine learning algorithms for fault diagnosis in such scenarios could lead to 
misclassification among distinct fault categories, resulting in extremely low model accuracy. After 
manifold projection, the cross-domain distribution difference in LPP is significantly reduced, but 
due to the lack of cross-domain adaptive ability, distinguishing between different categories 
remains difficult. The semi-supervised transfer learning method SSMTL increases discrimination 
between categories after adding cross-domain supervised samples, but the difference between 
cross-machine domains is not effectively reduced. The cross-domain manifold structure 
maintenance method proposed in this paper performs well in visualizing sample distribution. The 
inter-sample distribution distance among identical fault categories is significantly diminished, 
reducing cross-domain discrepancies. The inter-sample distribution distance among identical fault 
categories is significantly diminished, reducing cross-domain discrepancies. 

 

 
a) KNN 

 
b) LPP 

 
c) SSMTL 

 
d) CDMSP 

Fig. 9. A0→B3 bearing sample distribution two-dimensional scatter plot 

5. Conclusions 

This paper proposes a cross-domain manifold structure-preserving method for cross-machine 
fault diagnosis. The CDMSP method expands the application of locality-preserving projection in 
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the cross-machine domain. By introducing a cross-domain similarity graph, the generalized 
eigenvalue problem is solved to obtain a deterministic solution, establishing a local 
low-dimensional representation between the cross-machine domain data samples. 
High-dimensional features are mapped to a low-dimensional manifold subspace, preserving the 
nonlinear relationships between the data and maintaining the consistency of the cross-domain 
manifold structure while aligning data distribution differences. Experimental results on 12 
cross-machine fault diagnosis tasks show that CDMSP has low time complexity, high fault 
identification accuracy, strong convergence, and excellent diagnostic performance on small load 
target equipment with sparsely labeled target samples. Additionally, the proposed method is not 
sensitive to hyperparameters, making it easy to select optimal hyperparameter values for different 
target machines or conditions. Therefore, CDMSP has a high practical application value in 
identifying faults in rolling bearings across different machines. 

In future work, we will explore the application of CDMSP in a wider range of machines and 
more complex working conditions. This includes identifying more fault types and applying the 
method to unbalanced fault samples. Additionally, addressing the limitation that a few supervised 
samples are needed for CDMSP is a primary research direction. 
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