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Abstract. Aiming at addressing the issues of structural parameter inversion and dynamic three-
dimensional deformation prediction in mining areas, a method of structural parameter inversion 
in mining areas based on synthetic aperture radar interferometry is designed by optimising 
parameter settings and simplifying the calculation process. Meanwhile, a method is proposed to 
transform the 3D deformation prediction of the mining area into line-of-sight direction 
deformation prediction, based on the constraint relationship between horizontal movement and 
vertical deformation gradient, and using spatio-temporal Kalman filtering for spatio-temporal data 
processing. The outcomes showcase that the absolute errors of 3D deformation parameter 
prediction are within the interval of 0-63.8 m and the absolute errors are within the range of 0-8 %. 
The structural parameter inversion method for mining airspace zone proposed by the study has 
high accuracy and precision in both shape and parameter prediction of the airspace zone, and the 
prediction errors are all less than 10 %. Compared with the Weibull model, the prediction error of 
the Kalman filter model is reduced by 8 %, which helps to better understand and predict the 
deformation of the mine openings. The study offers powerful technical support for the prevention 
and control of ground deformation and mobile geological disasters caused by mining, which is 
meaningful for the safe production in mining areas.  
Keywords: mining area, empty mining area, structural detection, deformation prediction, 
parametric inversion. 

1. Introduction 

As the boost of the national economy, the demand for mineral resources is increasing, and the 
scale of mine mining is gradually expanding [1]. However, in the process of mining, the formation 
and expansion of the mining airspace brings great hidden danger to the safe production of mines 
and seriously threatens the life safety of miners [2]. In order to ensure the safe production of mines 
and realise the efficient use of mine resources, the structural detection of mining airspace has 
become a problem that needs solving urgently. The purpose of the structural detection of mining 
airspace is to understand the spatial distribution of the airspace, morphological characteristics, 
development trends and other information, to provide a scientific basis for the safe production of 
mines [3]. At present, the commonly used methods of detecting the hollow area mainly include 
geological exploration method, seismic exploration method, electromagnetic method, drilling 
method and so on. Although these methods to a certain extent can obtain the information of the 
hollow area, but limited by the development level of the detection technology, the existing 
methods in the detection accuracy, scope and efficiency of the existing methods still have certain 
problems [4]. Recently, as the boost of computer technology, three-dimensional deformation 
prediction methods have gradually become a research hotspot in the structural detection of mining 
airspace [5]. Based on the dynamic three-dimensional deformation prediction of the mining area 
structure detection method, through real-time monitoring of the surface deformation of the mining 
area, to predict the formation and development of the mining area, aiming at offering a more 

https://crossmark.crossref.org/dialog/?doi=10.21595/jme.2024.24021&domain=pdf&date_stamp=2024-08-22


STRUCTURAL DETECTION STUDY OF MINE BLANKET AREA BASED ON DYNAMIC 3D DEFORMATION PREDICTION.  
QUANQIU CHEN, NAN JIA 

2 ISSN PRINT 2335-2124, ISSN ONLINE 2424-4635  

accurate and timely decision-making basis for the safe production of the mine. To this end, the 
study proposes a structural detection method for mining airspace zones based on dynamic 
three-dimensional deformation prediction. The study consists of four parts, the first part is a 
summary of related studies, the second part is the design of the method for detecting the structure 
of mining airspace zones, and the application is carried out in the third part, and the fourth part is 
a summary of the whole study. This research helps to enrich the theoretical system in the field of 
structure detection in mining airspace areas and improve the level of safe production in mining 
areas, and will provide useful reference and learnings for relevant engineers and technicians, and 
promote the development and application of structure detection technology in mining airspace 
areas. 

2. Related works 

Structural detection of mining airspace is a method to detect the spatial distribution and 
structural characteristics within the mining airspace by using geological exploration technology. 
Cao et al. detected the complex airspace of open pit mines by three-dimensional seismic 
exploration method, and surveyed the elevation of the anomalous area by combining the transient 
electromagnetic method. The results show that the joint use of the detection methods can achieve 
the visual display of the mining voids [6]. Zhang's team accurately determined the location of the 
abandoned mining voids and the morphology of the overburden layer through step-by-step 
detection, traditional detection and the combination of methods, providing accurate data for the 
evaluation of highway stability, and effectively solving the problem of the threat of the abandoned 
mining voids to the stability of the surface buildings [7]. Wang’s team aimed at coal mine Wang’s 
team proposed a new passive electromagnetic method and audio geomagnetic method for the 
detection of coal mining airspace. The outcomes showcase that these two methods could markedly 
identify the fault structure, judge the location of the collapse of the air-mining zone, as well as 
describe the potential distribution of fissure water infiltration [8]. Wen et al. explored the structure 
of the overburden and the stress distribution characteristics of the isolation workings for the 
Xinglongzhuang coal mine. The results showed that the fracture motion of the lower key layer 
had a dominant influence on microseismic activity and mining stress, as well as the microseismic 
energy caused by roof rupture accounted for 43.34 % of the total energy [9]. Zhang's research 
group combined shallow 3D seismic and transient electromagnetic methods in order to detect the 
distribution range of the voided area and water accumulation. The outcomes showcased that the 
data interpretation method enhances the prediction of the voided areas and waterlogging 
conditions [10]. 

Dynamic 3D prediction method is a technique for prediction in time series data, which mainly 
predicts future values by analysing the time evolution characteristics of the data. Dong et al. 
proposed a real-time wireless monitoring system and introduced a probabilistic prediction model 
based on time series and probabilistic prediction for slope displacement prediction. The results 
showed that the monitoring system and the prediction model possessed good safety control during 
construction, and the prediction accuracy could reach 90 % during operation [11]. Yakar’s group 
used UAV and remote sensing to model the rockfall site in three dimensions, and obtained 
information about the discontinuities of the rock slopes by analysing the three-dimensional point 
cloud data. The results show that point cloud analysis is useful for high-resolution terrain 
modelling and information acquisition in inaccessible areas [12]. Chen and his team members 
combined SAR pixel offset tracking and single-pair SAR imagery to monitor three-dimensional 
large surface displacements caused by underground coal mining. The outcomes showcase that the 
results of this method are in good agreement with GPS measurements [13]. Cai's research team 
proposed two types of fault resurrection and its mechanism of inducing coal explosions, including 
mining-induced quasi-static stress-dominated and seismic-induced dynamic stress-dominated, 
through the superposition of static and dynamic stresses. The outcomes showcased that 
fault-induced coal explosions are caused by the superposition of high static stresses within the 
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fault column and dynamic stresses induced by fault resurrection [14]. Chang et al. analysed the 
dispersion and concentration distribution characteristics of diesel particulate matter in 
underground mining workings by using computational fluid dynamics techniques. The results 
showed that the zone of high concentration of diesel particulate matter in the return mining face 
could be identified by these simulations [15]. 

The probability prediction model based on time series research is a statistical method that uses 
historical time series data to predict the probability of future events. It mainly analyzes and models 
time series data to identify potential trends, cycles, seasonality, and other information, in order to 
predict the probability of future events. Tang et al. proposed a wind speed interval construction 
model based on error prediction, which utilizes variational mode decomposition for wind speed 
prediction. The weight of the prediction error is determined through particle swarm optimization 
algorithm to obtain the width of the prediction interval. The experimental results show that the 
model has high accuracy in constructing wind speed prediction intervals [16]. Pärssinen et al. used 
the probability programming tool CoronaMaster to predict pandemic cases, hospital capacity, and 
mortality rates. This tool is based on Bayesian inference and is suitable for time series prediction 
and uncertainty challenges with small sample sizes. By sampling the parameter space through 
training period data, CoronaMaster can provide model parameters and their confidence intervals 
for the shape function selected by the user [17]. Na et al. proposed an improved optimized echo 
state network system based on biogeography for multivariate time series prediction. The system 
can simultaneously select the optimal feature subset and optimize model parameters, and utilizes 
an S-type population mobility model, covariance matrix migration strategy, and Lévy distribution 
mutation strategy to enhance rotation invariance and exploration ability. The experimental results 
show that the system has high accuracy in predicting multivariate time series and is superior to 
other traditional machine learning models [18]. 

In summary, many researchers have done different studies and designs for the structural 
detection and 3D prediction models of mining areas. However, some of the research methods are 
complicated in operation and require high technical equipment and environment, which may not 
be suitable for all mining actualities. The structural detection and prediction methods for goaf in 
mining areas mentioned in the above studies mainly focus on static three-dimensional detection, 
passive electromagnetic methods, and audio geomagnetic methods. The research methods based 
on dynamic three-dimensional deformation prediction are relatively lacking. Therefore, the study 
proposes a structural detection method for goaf in mining areas based on dynamic three-
dimensional deformation prediction. By combining geological exploration technology and three-
dimensional seismic exploration methods, the spatial distribution and structural characteristics of 
goaf in mining areas can be more accurately detected, providing important data support for mine 
stability assessment and risk prevention and control. 

3. Construction of structural detection method for mining airspace based on dynamic three-
dimensional deformation prediction 

A structural parameter inversion and dynamic three-dimensional deformation prediction 
problem for mining airspace is developed, and a structural parameter inversion method for mining 
airspace is designed, which uses synthetic aperture radar (SAR) interferometry to detect and 
monitor ground deformation, and improves the inversion accuracy and efficiency by optimising 
parameter settings and simplifying the calculation process. Secondly, a method is proposed to 
transform the 3D deformation prediction of the mining area into line-of-sight deformation 
prediction, which is based on the constraint relationship between horizontal movement and 
vertical deformation gradient, and utilises spatio-temporal Kalman filtering for spatio-temporal 
data processing. 
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3.1. Design of inversion method for structural parameters of mining airspace area 

The inversion method of structural parameters of mining airspace is a method to infer the 
structural parameters of the underground mining airspace in the mining area through the observed 
phenomena such as surface settlement and changes in the water table in the mining area. 
Interferometric synthetic aperture radar (InSAR) technique is a method that uses SAR 
interferometry to detect and monitor ground deformation. The Post-Inversion Method (PIM) 
model is a commonly used method for processing InSAR data in the inversion of geometric 
parameters (GP) of the subsurface voided area.The PIM model obtains the GPs of the subsurface 
voided area, such as the size, shape, and location of the voided area, by inverting the InSAR data. 
However, the PIM model also has some disadvantages. For example, PIM models need to pre-set 
some parameters, such as the smoothness, coherence and noise level of the surface and subsurface 
media, etc. In addition to the key voiding zone GPs, PIM also requires a set of modelling 
parameters. These model parameters usually need to be determined from actual measurements and 
will vary with the mining geological conditions. In the PIM model, the angle of the main influence 
angle tangent (IAT) depends on the dominant nature of the overlying rock formation, which makes 
the difference between the main IAT in the strike and tendency downhill and uphill directions 
smaller, and it can be approximated by assuming that the main IAT is equal in all three directions 
[19]. In addition, the inflection deviation in the model is only used to calculate the calculated 
boundary lengths of strike and tendency, which are positively correlated with the strike boundary 
length and tendency boundary length. In the PIM model, the tangent of the main influencing angles 
of strike and dip can be approximately assumed to be equal, while the inflection point offset is 
only used to calculate the boundary length of strike and dip, which is positively correlated with 
the length of strike and dip boundaries. To simplify the calculation, it can be assumed that these 
parameters are equal. In the process of acquiring the surface deformation field by InSAR 
technology, the geometric 3D projection relationship of image imaging is shown in Fig. 1. 

 
Fig. 1. Image imaging geometry 3D projection relationship 

In three-dimensional projection, the vector projection sum in the direction of oblique moment 
is the line-of-sight direction deformation. Based on the three-dimensional geometric relationship, 
a linear equation is established as shown in Eq. (1) [20]: 𝐷௅ைௌ = cos𝜃 ⋅ 𝐷ௐ + sin𝜃sin𝜎 ⋅ 𝐷ே − sin𝜃cos𝜎 ⋅ 𝐷ா , (1)

where, the line-of-sight deformation serves as 𝐷௅ைௌ and the surface deformation components in 



STRUCTURAL DETECTION STUDY OF MINE BLANKET AREA BASED ON DYNAMIC 3D DEFORMATION PREDICTION.  
QUANQIU CHEN, NAN JIA 

 JOURNAL OF MEASUREMENTS IN ENGINEERING 5 

the north-south, east-west and vertical directions are 𝐷ே, 𝐷ா and 𝐷ௐ, respectively. The radar 
incidence angle serves as 𝜃 and the satellite heading azimuth is 𝜎. The relationship between line-
of-sight deformation and the GPs of the mine site is shown in Eq. (2) [21]: 

𝐷௅ைௌሺ𝑥,𝑦ሻ = ൥ cos𝜃sin𝜃sin𝜎−sin𝜃cos𝜎൩
் ቎ 𝑊ሺ𝑥,𝑦,𝐺𝑃,𝑀𝑃ሻ𝑈ሺ𝑥,𝑦,𝜑ே,𝐺𝑃,𝑀𝑃ሻ𝑈ሺ𝑥,𝑦,𝜑ா ,𝐺𝑃,𝑀𝑃ሻ቏, (2)

where, the horizontal deformations of any point on the surface of the mining area from north to 
south and from east to west are 𝑈(𝑥,𝑦,𝜑ே,𝐺𝑃,𝑀𝑃) and 𝑈(𝑥,𝑦,𝜑ா ,𝐺𝑃,𝑀𝑃), and the vertical 
deformation is 𝑊(𝑥,𝑦,𝐺𝑃,𝑀𝑃), respectively. However, InSAR data are usually high-resolution 
and high-noise, so they need to be downsampled to improve the computational efficiency and 
reduce the noise effect. Therefore, the study chooses the adaptive quadtree downsampling method 
to process the InSAR results, which can obtain the surface deformation information more 
efficiently and provide more accurate data support for the construction of the inverse model of the 
GPs of the mining area. Quadtree is a data structure that can dynamically adjust its structure 
according to changes in data to achieve optimal storage and query performance. The quadtree 
downsampling algorithm is an image sampling method based on the quadtree data structure. 
Firstly, divide the original image into equally sized quadtree structures, and then sample the nodes 
in the quadtree according to the set sampling strategy. During the sampling process, different 
sampling methods can be used, including random sampling, minimum coding sampling, clustering 
sampling, etc. In the quadtree downsampling algorithm, the selection of sampling strategy has a 
significant impact on the sampling results, and needs to be selected according to specific 
application scenarios and requirements. In InSAR processing, the adaptive quadtree 
downsampling method can effectively reduce data volume, improve data processing efficiency, 
and ensure data accuracy and integrity. Considering the coupling characteristics between the 
parameters, the study will improve the GP inversion method of mining airspace area by cross 
iteration, and reduce the dependence of model parameters by dividing the parameters. The 
crossover genetic fitness function is shown in Eq. (3): 𝑓 = min𝐷௅ைௌ(𝑥,𝑦) − 𝐷௅ைௌᇱ (𝑥,𝑦), (3)

where, the genetic fitness function is 𝑓, and the line-of-sight direction deformation of the predicted 
point is 𝐷௅ைௌᇱ (𝑥,𝑦). The parameters to be solved by the genetic algorithm are shown in Eq. (4): 

𝑃௥௘௤ = ∑ (𝑃௜ଵ/𝑓(𝑃௜ଵ))௞ଵ∑ (1/𝑓(𝑃௜ଵ))௞ଵ , (4)

where, the solution of the parameter to be solved is 𝑃௥௘௤, the estimated value of the parameter to 
be solved is 𝑃௜ଵ, and the number of parameter valuation groups is 𝑘. The specific cross iteration is 
as follows: firstly, the first iteration is carried out, assuming that the initial PIM model parameters 
are known and their empirical values are determined, and then the genetic algorithm is used to 
invert another set of parameters. Then the second iteration is carried out, the parameters obtained 
from the inversion are regarded as known, and the remaining parameters are inverted. In the 
iteration process, iteration termination judgement is required, and the iteration is judged to be 
terminated when the set threshold is met, at which time the GPs of the extraction zone are known. 
If it does not meet the judgement conditions, the initial PIM model parameters obtained are used 
to repeat the iterative update until the threshold conditions are met. The whole process of updating 
parameters through continuous iteration, and finally get the GPs of the mining zone that meet the 
set threshold. The overall flow of the structural parameter inversion method for the mining 
air-mining zone is shown in Fig. 2. 
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Fig. 2. Overall flow of the inversion method for structural parameters of the mining area's air-mining zone 

3.2. Design of dynamic three-dimensional deformation prediction method for mining 
airspace area 

In recent years, ground deformation and movement caused by mining has become a serious 
geological disaster. In order to prevent and control this disaster, the study proposes a method to 
transform the three-dimensional deformation prediction of the mining area into a one-dimensional 
line-of-sight orientated deformation prediction, which is based on the constraint relationship 
between horizontal movement and vertical deformation gradient, and uses spatio-temporal 
Kalman filtering for spatio-temporal data processing. At the same time, the adoption will also use 
the structural parameter inversion method for the mine's air-mining area to obtain a priori 
constraint parameters and solve the dynamic 3D deformation of the mine based on the predicted 
dynamic line-of-sight deformation. The time-varying linear combination of spatial field and 
temporal components in the dynamic 3D model 𝐿௧ is shown in Eq. (5) [22]: 𝐿௧ = ℎଵ × 𝑥ଵ(𝑡) + ℎଶ × 𝑥ଶ(𝑡) + ⋯+ ℎ௣ × 𝑥௣(𝑡) = 𝐻𝑋(𝑡), (5)

where, the spatial field 𝐻 = [ℎଵ,ℎଶ,⋯ ,ℎ௣] dimension of the observation data is 𝑛 × 𝑝; the 
dimension of the dynamic time component 𝑋(𝑡) = [𝑥ଵ(𝑡), 𝑥ଶ(𝑡),⋯ , 𝑥௣(𝑡)] is 𝑝 × 1, and the 
system state of the mean component of the observation data serves as 𝑋(𝑡). The representation of 
the observational data is showcased in Eq. (6) [23]: 𝑌௧ = 𝐻𝑋(𝑡) + 𝜔௧ , (6)

where, the observation data is 𝑌௧ and the observation error component is 𝜔௧. After Kalman filter 
modelling, the state equation is calculated as showcased in Eq. (7): 𝑋ᇱ(𝑡) = 𝐾𝑋ᇱ(𝑡 − 1) + 𝜀(𝑡), (7)

where, the system state vector (SV) is 𝑋′(𝑡); the state transfer matrix is 𝐾, and the state update at 
the time of 𝑡 is 𝜀(𝑡). The initial parameter estimation flow is shown in Fig. 3. 

Firstly, the initial SV and state transfer matrix are set to meet the requirements of the 
spatio-temporal Kalman filtering model. Define the observation vector and establish the 
relationship with the SV. According to the nature of multivariate Gaussian distribution, set the 
mean vector and covariance matrix of the SV and observation vector. Use the maximum 
expectation algorithm for iterative parameter estimation to obtain the estimated value and 
covariance matrix of the SV. In this process, first initialize the SV, initialize the observation 
sequence, and initialize the model parameters, and then perform multiple iterations. In each 
iteration process, the probability of the state sequence is calculated based on the observation 
sequence and model parameters, and then the SV and covariance matrix are updated using the 
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maximum expectation principle. This process will continue until convergence occurs. Finally, the 
estimated SV values and covariance matrix are obtained. The SV is filtered using the Kalman filter 
formula and the observation vector, and the filtered SV is interpolated to obtain the estimates of 
the missing data. Finally, the interpolated SVs and the state transfer matrix are used to predict the 
future SVs [24]. The kriging prediction for a point in the spatio-temporal field construction 𝐿෠௧(𝑠) 
is shown in Eq. (8): 𝐿෠௧(𝑠) = 𝑓்(𝑠)𝐴𝐿௧ + 𝜎క(𝑠)𝐵𝐿௧ , (8)

where, given the spatial trend as 𝑓(𝑠) and the row vector of the spatial trend 𝐹 as 𝜎క(𝑠), the trend 
matrix 𝐴 and the bending energy matrix 𝐵 are calculated as shown in Eq. (9): 

⎩⎪⎨
⎪⎧𝐴 = ቆ𝐹்෍ 𝐹ିଵక ቇିଵ 𝐹்෍ିଵక ,𝐵 = ෍ −෍ 𝐹ିଵక 𝐴.ିଵక

 (9)

Define
initial state

Defining
observation vectors

Mean
vector

Covariance
matrix

Parameter iterative 
estimation

State vector
filtering

Vector
interpolation

State vector
prediction  

Fig. 3. Initial parameter estimation flow 

In Eq. (9), the spatial covariance matrix constructed by 𝜎క is ∑క. The spatial trend component 
is removed by least squares as shown in Eq. (10): 𝑌ௗ(𝑡) = 𝑌௧ − 𝐹(𝐹்𝐹)ିଵ𝐹்𝑌௧, (10)

where, the spatial trend component is 𝑌ௗ(𝑡), and the experimental semi-variance is calculated as 
shown in Eq. (11): 

𝛾ොௗ = 12𝑇෍ [𝑌ௗ(𝑡, 𝑠ଵ) − 𝑌ௗ(𝑡, 𝑠ଶ)]ଶ௧்ୀଵ , (11)

where, the experimental semivariance fitting function is 𝛾ොௗ, which is usually chosen to be 
expressed in the form of an exponential or spherical semivariance function. The spatial covariance 
is calculated as shown in Eq. (12): 𝜎క(𝑠ଵ, 𝑠ଶ) = 𝐶 − 𝛾ොௗ(‖𝑠ଵ − 𝑠ଶ‖), (12)

where, the abutment value is 𝐶 and the distance operator is ‖⋅‖. The spectral decomposition of the 
bending energy matrix 𝐵 is calculated as shown in Eq. (13): 𝐵 = 𝑈Λ𝑈ିଵ, (13)
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where, the eigenvectors of the matrix 𝐵 are the column vectors 𝑢௜ of 𝑈, and its eigenvalues are 
the diagonal elements 𝜆௜ of the diagonal matrix Λ. After the time-varying linear combination of 
the spatial field and the time component is represented by the linear combination of the 
eigenvectors, the spatial field can be shown in Eq. (14): 𝐻 = ൣ𝐹, 𝜆௤ାଵΣక𝑢௤ାଵ,⋯ , 𝜆௡Σక𝑢௡൧, (14)

where, the spatial trend 𝐹 = [𝑓்(𝑠ଵ),𝑓்(𝑠ଶ),⋯ , 𝑓்(𝑠௡)]. In order to solve for the observation 
valuation, it is first necessary to compute an estimate of the SV based on the known observations 
and the SV prediction. Then, based on the estimated value of the SV and the corresponding gain, 
the predicted value of the state covariance is calculated. Next, for the missing observations, the 
filtering results of the observations at moment 𝑡 can be derived by setting the corresponding 
matrix value to 0 and then based on the SV estimate. Finally, if it is necessary to predict the 
observation value at a certain moment, the state prediction at that moment is calculated, and then 
the prediction of the observation value is calculated using the state prediction and the 
corresponding gain. When the basic model is constructed, the cumulative line-of-sight to 
deformation sequence is shown in Eq. (15): 𝑑௟௢௦ = ቂ𝑑௧భି௧  భ ,𝑑௧మି௧భ ,⋯ ,𝑑௧೘షభି௧  భ ,𝑑௧೘ି௧భቃ, (15)

where, the cumulative line-of-sight deformation sequence with respect to the 𝑡ଵ time is 𝑑௟௢௦, and 
the cumulative line-of-sight deformation sequence after spatio-temporal interpolation filtering is 
shown in Eq. (16): 𝑑௟௢௦ଵ = ൣ𝑑௧భି௧భଵ ,𝑑௧మି௧భଵ ,⋯ ,𝑑௧೘షభି௧భଵ ,𝑑௧೘ି௧భଵ ൧, (16)

where, the cumulative line-of-sight deformation sequence after spatio-temporal filtering 
difference is 𝑑௟௢௦ଵ . After spatio-temporal interpolation filtering, as well as state transfer matrix and 
spatial field processing, the dynamic prediction of the cumulative line-of-sight deformation of the 
mine surface is shown in Eq. (17): 𝑑௟௢௦௣௥௘ௗ௜௖௧ = ቂ𝑑௧೘శభି௧భଵ ,𝑑௧೘శమି௧భଵ ,⋯ ,𝑑௧೘శ೛షభି௧భଵ ,𝑑௧೘ି௧భଵ ቃ. (17)

The cumulative line-of-sight to deformation dynamics in Eq. (17) is predicted as 𝑑௟௢௦௣௥௘ௗ௜௖௧. 
Conventional methods require InSAR monitoring data from at least three tracks, this study 
performs dynamic 3D deformation prediction of the mine site by basing on single-track InSAR 
monitoring data. The method reduces the number of unknowns to 𝑚 by constructing the constraint 
relationship between horizontal deformation and vertical deformation, which enables the 
decomposition of 3D deformation. The study establishes a basic model from InSAR time series 
processing to dynamic 3D deformation prediction through the functional relationship between 
horizontal deformation and vertical deformation gradient. In summary, the dynamic three-
dimensional deformation prediction method for mining airspace is shown in Fig. 4. 

4. Analysis of the application of the method of detecting the structure of the mining hollow 
area 

The study takes the San Yuan coal mine as the research object, applies the proposed inversion 
method of the structural parameters of the mining area, and constructs a three-dimensional 
geological model through the geophysical exploration software GeoStudio, and predicts and 
analyses the structural parameters of the mining area. 
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Fig. 4. Dynamic 3D deformation prediction method for mining airspace area 

4.1. Analysis of the application of structural parameter inversion methods for mining 
airspace areas 

Aiming at studying the influence of the proposed method of inversion of structural parameters 
in the mining area, the experiment takes the San Yuan coal mine as the research object and 
analyses the structural parameters of the empty mining area. In GeoStudio, a geophysical 
exploration software, a three-dimensional geological model is constructed according to the actual 
mining area, reflecting the geological structure and lithological distribution of the mining area. 
The structural parameters of the goaf in the mining area were experimentally analyzed, and the 
accuracy of cross iterative estimation and non iterative estimation was compared. At the same 
time, the Kalman filtering model was used to predict the dynamic three-dimensional deformation 
of the goaf in the mining area, and compared with the Weibull model. The experimental factors 
mainly include the specific geological conditions of the mining area, the accuracy and 
performance of geophysical exploration equipment, etc. During the experiment, the measurement 
equipment mainly includes geophysical exploration equipment, including GeoStudio software, 
Global Positioning System (GPS), etc. The seismic instrument model is Trimble T8, the 
electromagnetic instrument model is GEM Systems GSM-19T, and the magnetic instrument 
model is Bruker GSM-29, The GPS receiver model is Trimble R10. GeoStudio software version 
is 2021.1, including Seismic Electrical, Magnetic, and GPS modules. The accuracy and reliability 
of GeoStudio software are directly related to the construction of geological models, while the 
accuracy and performance of GPS directly affect the accuracy of deformation prediction. The 
statistical analysis of measurement data is shown in Table 1. 

Table 1. Statistical analysis of the measured data 
Data name Error Sensitivity Confidence interval  

Length ±0.01 m 83 % 95 % 
Width ±0.01 m 92 % 95 % 

Thickness ±0.07 m 91 % 95 % 

In Table 1, the statistical analysis results of the measurement data indicate that the errors in 
length, width, and thickness are ±0.01 m, ±0.01 m, and ±0.07 m, respectively, with corresponding 
sensitivities of 83 %, 92 %, and 91 %, and confidence intervals of 95 %. Measurement data has 
high accuracy and reliability, and can be used as a basis for practical applications. The experiment 
evaluates the accuracy and precision of the inversion method for structural parameters of goaf in 
mining areas by comparing the three-dimensional surface maps of simulated goaf and actual 
estimated goaf, as well as parameter prediction results. Then, cross iterative estimation and 
non-iterative estimation methods were used to predict geometric parameters, and their accuracy 
was compared. The three-dimensional surface map and parameter prediction of the mine's empty 
mining area are shown in Fig. 5. 
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Fig. 5. 3D surface map and parameter prediction of the mine's air extraction zone 

Fig. 5(a) shows the 3D surface map of the mining airspace area, and the aggregate shapes of 
the simulated airspace area and the actual estimated airspace area are similar, and the vertical 
projections basically coincide with each other. Fig. 5(b) shows the combined parameter prediction 
results of the mining airspace area, with MV denoting the measured data and PV denoting the 
predicted data. The absolute error of parameter prediction is in the interval of 0-63.8 m, and the 
absolute error is in the range of 0-8 %. The results show that the structural parameter inversion 
method for mining airspace zones proposed by the study has high accuracy and precision in both 
the shape of the airspace zones and parameter prediction. For verifying the reliability of the 
inversion of the GPs of the mining airspace. The study analyses the accuracy of cross iterative 
inversion based on the predicted and measured values of GPs. The comparison of predicted and 
measured values of GPs is shown in Fig. 6. 
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Fig. 6. Comparison of predicted and measured values of geometrical parameters 
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In Fig. 6, MV represents the measured value and IV represents the inversion value. The 
absolute error is the difference between the measured value and the true value, and the relative 
error is the ratio of the absolute error to the true value. Fig. 6(a) showcases the comparison results 
of the length estimation and inversion value of the open area, which shows that the absolute error 
of the length inversion value is less than 0.2 m, and the relative error is less than 1 %. Fig. 6(b) 
showcases the comparison results of the estimated width of the open area and the inversion value, 
the absolute error of the inversion value of the visible width is less than 6m, and the relative error 
is less than 5 %. Fig. 6(c) showcases the comparison results of the estimated thickness of the 
hollow zone and the inversion value, which shows that the absolute error of the thickness inversion 
value is less than 0.3 m, and the relative error is less than 8 %. The results show that the estimates 
of the goaf geometric parameters (length, width and thickness) obtained by the inversion method 
have high accuracy and reliability compared with the estimated value. The comparison of the 
accuracy of cross iterative estimation and non-iterative estimation is shown in Fig. 7. 
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Fig. 7. Comparison of accuracy of cross iterative estimation and non-iterative estimation 

In Fig. 7, With denotes cross iterative estimation and Non denotes non-cross iterative 
estimation. Fig. 7(a) showcases the comparison of the inversion errors for the length class 
parameters, and the non-crossed iterative estimation increases the relative error of the length class 
parameter estimation by about 18 %. Fig. 7(b) showcases the comparison of the inversion errors 
of the angle class parameters, and the non-cross iteration estimation increases the relative error of 
the angle class parameter estimation by about 24 %. Comprehensively, it showcases that the cross 
iteration estimation has a better effect compared with the non-cross iteration estimation. The effect 
of the PIM initial model error on the inversion results of the air-sea zone is shown in Fig. 8. 

In Fig. 8, S, T and O denote the subsidence coefficient, tangent angle and offset in the initial 
parameters of the PIM model, respectively. Fig. 8(a) showcases the results of the effect of the 
error content of the initial parameters of the PIM model on the inversion of coal seam thickness. 
Fig. 8(b) showcases the results of the influence of the error content of the initial parameters of the 
PIM model on the inversion of the length of the mining zone. Fig. 8(c) showcases the results of 
the influence of the error content of the initial parameters of the PIM model on the inversion of 
the dip angle of the air-mined zone. When the error between the sinking coefficient and the tangent 
of the main influencing angle increases, the differences between the boundary length, boundary 
width, mining direction azimuth and the true value can be basically ignored. When the initial 
model parameter error of any PIM increases, there is no significant change in the accuracy of coal 
seam thickness and average mining depth. It demonstrates that the error content of the initial 
parameters of the PIM model has no obvious influence on the inversion accuracy of the 
geometrical parameters of the extraction zone. 
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Fig. 8. Effect of PIM initial model error on the inversion results of the extraction zone 

4.2. Analysis of the application of dynamic 3D deformation prediction methods for mining 
airspace areas 

Aiming at verifying the prediction effect of the Kalman filter model (KFM) in the dynamic 
three-dimensional deformation prediction method of the mining area, the KFM was utilized for 
forecasting the line-of-sight direction deformation after the spatio-temporal field matrix and the 
unknown parameters were established. The difference-like results predicted by the KFM are 
shown in Fig. 9. 

Fig. 9(a) showcases the prediction effect of the KFM for date 1, with a peak prediction 
difference of less than 40 percent and an average prediction error of less than 7 per cent. Fig. 9(b) 
shows the prediction effect of the KFM for date 2, with a peak prediction difference of less than 
40 % and an average prediction error of less than 8 %. Fig. 9(c) shows the prediction effect of the 
KFM for date 3, with the peak prediction difference less than 40 % and the average prediction 
error less than 10 %. In summary, it can be seen that the KFM prediction error will gradually 
increase with the increase between, which is a common problem of model prediction, but the 
overall error is less than 10 %. Overall, the KFM shows a strong prediction ability. The results of 
the deformation prediction of the Global Positioning System (GPS) position in different directions 
are shown in Fig. 10. 

Fig. 10(a) shows the deformation prediction of the GIS location in vertical direction with the 
root mean square error of 1.5 cm, Fig. 10(b) shows the deformation prediction of the GIS location 
in east-west direction with the root mean square error of 1.7 cm, and Fig. 10(c) shows the 
deformation prediction of the GIS location in north-south direction with the root mean square error 
of 0.8 cm.  
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Fig. 9. Disparity-like results predicted by the KFM 
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Fig. 10. Deformation prediction results for different orientations of GPS positions 



STRUCTURAL DETECTION STUDY OF MINE BLANKET AREA BASED ON DYNAMIC 3D DEFORMATION PREDICTION.  
QUANQIU CHEN, NAN JIA 

14 ISSN PRINT 2335-2124, ISSN ONLINE 2424-4635  

The results show that the proposed dynamic 3D deformation prediction method for mining 
airspace area shows high accuracy in predicting the deformation of mining area. deformation 
prediction method shows high accuracy in predicting the deformation of the mining area, which 
helps to better understand and predict the deformation of the mining airspace. In order to verify 
the application of the proposed dynamic 3D deformation prediction method based on the KFM, 
the Weibull model is used as a comparison in the experiment, and the fitting of the Weibull model 
is shown in Fig. 11. The Weibull model is a continuous probability distribution model used to 
describe the probability of a random variable reaching or exceeding a certain value at a certain 
moment. This model is based on a Weibull function, which is a combination of a power function 
and a logarithmic function. 
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Fig. 11. The fit of the Weibull model 

Fig. 11 showcases the fit of the Weibull model before the time-zero correction. Fig. 11(a) 
shows the fit of the Weibull model to measurement point 1. Fig. 11(b) showcases the fit of the 
Weibull model to measurement point 2. It demonstrates that the fitting accuracy of the Weibull 
model is poor and easily limited by the time zeros. Although the Weibull model can characterise 
the distribution of random variables, it may not be able to adequately capture the dynamics of the 
data when dealing with time series data. A comparison of the model's line-of-sight deformation 
prediction results is shown in Fig. 12. 
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Fig. 12. Comparison of line-of-sight deformation prediction results of models 

In Fig. 12, KF denotes the KFM. Fig. 12(a) shows the fitting of GPS data for the KFM and the 
Weibull model, and the KFM has a better fit. Compared to the Weibull model, the prediction error 
of the KFM is reduced by 8 %. Fig. 12(b) shows the comparison between the fitting of the KFM 
and the InSAR measurement data, which shows that both of them have the same trend and the 
spatial characterisation is basically the same. It can be seen that the dynamic 3D deformation 
prediction method based on the KFM has better application and practicability when dealing with 
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problems such as dynamic 3D deformation prediction in mining areas. During the period of 
20210915, the deformation prediction comparison of the goaf in the mining area is shown in 
Fig. 13. 

 
a) InSAR-horizontal 

 
b) KFM-horizontal 

 
c) Weibull-horizontal 

 
d) Logisitc-horizontal 

 
e) InSAR-vertical 

 
f) KFM-vertical 

 
g) Weibull-vertical 

 
h) Logisitc-vertical 

Fig. 13. Prediction and comparison of goaf deformation in mining area 

Fig. 13(a-d) represent the horizontal gradients predicted by each model, while Fig. 13(e-h) 
represent the vertical gradients predicted by each model. The black dashed line surrounding the 
area indicates a difference between the predicted value and the actual value. It can be seen that 
there is no significant difference between the predicted deformation of the KFM proposed in the 
study and the InSAR measurement data, indicating that the spatial continuity between the two is 
basically the same. However, there is a difference between the predicted deformation of Weilbull 
and Logisitc models and the InSAR measurement data. The results indicate that the proposed KFM 
has the highest prediction accuracy and can accurately predict the dynamic three-dimensional 
deformation of mining areas. In order to verify the effectiveness of the dynamic 3D deformation 
prediction method based on the KFM proposed in the study, the experiment will compare the mine 
subsidence prediction method based on InSAR technology and LSTM algorithm proposed in 2023 
[25]. The experiment will use maximum absolute error (MAE), maximum relative error (MRE), 
mean absolute deviation (MAD), and Wilmot consistency index as evaluation indicators. The 
comparison results of the two methods are shown in Table 2. 

Table 2. Comparative results of the two methods 
Method MAE MRE MAD Wilmot 

Presented in 2023 2 cm 6 % 1.1 % 0.999 
Research proposal 1.8 cm 5 % 1.0 % 0.999 

From Table 2, it can be seen that the two methods have similar performance in prediction 
accuracy and both have high prediction accuracy. The methods proposed in the study on MAE, 
MRE, and MAD are slightly lower than those proposed in 2023. The Wilmot consistency index 
of the two methods is equal. The results indicate that the proposed method performs slightly better 
in prediction and evaluation than the method proposed in 2023, but the two methods are 
comparable in reliability. 

5. Conclusions 

Aiming at the inversion of structural parameters of mining areas and the prediction of dynamic 
3D deformation, the study designed a method for the inversion of structural parameters of mining 
areas based on SAR interferometry, which optimises the parameter setting and simplifies the 
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calculation process. Meanwhile, a method is proposed to transform the 3D deformation prediction 
of the mining area into line-of-sight deformation prediction, which is based on the constraint 
relationship between horizontal movement and vertical deformation gradient, and utilises 
spatio-temporal Kalman filtering for spatio-temporal data processing. The experiment showcases 
that the absolute error of the length inversion value is below 0.2 m, and the relative error is below 
1 % when comparing the length prediction and inversion value of the hollow zone. Comparison 
of the estimated value of the width of the mining area and the inverse value shows that the absolute 
error of the inverse value of the width is less than 6 m, and the relative error is less than 5 %. The 
absolute error of the parameter prediction of the inversion method of the structural parameters of 
the mining area proposed by the study is within the range of 0-8 %. The overall error of the KFM 
is less than 10 %, which reduces the prediction error by 8 % compared to the Weibull model. This 
study offers strong technical support for the prevention and control of ground deformation and 
mobile geological hazards caused by mining. However, there are still some limitations in the 
study, such as further optimisation in model parameter setting and data processing. Future research 
will continue to explore and improve the structural parameter inversion and dynamic 3D 
deformation prediction methods of mining airspace in order to improve the prediction accuracy 
and practicality. 
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