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Abstract. The motors are critical components of the electromechanical transmission in vehicles, 
and its operating status directly affects the maneuverability of vehicles. To quickly and accurately 
identify the operating status of motors, this paper proposes a new entropy - Composite Multi-scale 
Weighted Reverse Slope Entropy (CMWRSlE) for motor fault diagnosis, which is a more 
interpretable entropy due to its deep exploration of signals. Firstly, the composite multi-scale 
weighted reverse slope entropy values are extracted from the vibration signals of the motor in 
different states; Secondly, the extracted features are dimensionally reduced by the manifold 
learning algorithm – Neighbourhood Preserving Embedding (NPE) and classified by the 
hierarchical prototype-based approach (HPA) to achieve the fault diagnosis of the motor. Finally, 
the method proposed in this paper is validated through two sets of experimental data: motor rotor 
faults and motor bearing faults. The results show that the accuracy of the proposed method in 
motor fault diagnosis reaches 100 %, which indicates the effectiveness of the proposed method.  
Keywords: motor rotor fault, motor bearing fault, composite multi-scale weighted reverse slope 
entropy, neighborhood preserving embedding. 

1. Introduction 

The motors are key components of the electro-mechanical compound transmission of vehicles. 
If fails, it will seriously damage the stability of the vehicle and affect driving safety [1]. Cai et al. 
[2] reviewed the latest research and technological progress in the motor system and electric 
transmission system of new energy vehicles, including comparison of motor types and 
characteristics, as well as control methods for motors. Choudhary et al. [3] sorted out various types 
of motor faults and their probability statistics, among which the more significant faults include 
motor bearing faults, motor stator and rotor faults, etc., and listed the state monitoring techniques 
and methods of the motor. Liu et al. [4] and Smith et al. [5] conducted simulation experiments on 
motor rotor faults and bearing faults respectively, providing data support for motor fault diagnosis. 
Yousfi et al. [6] coupled the electrical model of an induction motor with a centralized parameter 
model of a two-stage gear system to establish an integrated model. Through time-domain and 
frequency-domain analysis of vibration and motor current characteristics, fault detection of gear 
teeth was ultimately achieved. Rafaq et al. [7] reviewed parameter estimation techniques for 
permanent magnet synchronous motors. Despite the successful applications of parameter 
identification technology, it still has some limitations. For example, it could not cover all possible 
fault situations, especially when facing complex systems or new equipment, and require expert 
knowledge of the system. 

At present, data-driven methods are mainly used for motor fault diagnosis [8], and fault type 
recognition is achieved through machine learning such as neural networks and support vector 
machines [9]. However, the classification accuracy of neural networks is limited by the small 
sample size of motor faults [10]. To improve the accuracy of fault diagnosis and increase the 
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interpretability of fault diagnosis, it is necessary to extract features from fault data, and then 
combine dimensionality reduction algorithms and classifiers to achieve motor fault recognition. 
In the diagnosis of mechanical and electrical system dynamics faults, entropy is widely used due 
to its nonlinear characterization ability and clear physical significance [11], such as multi-scale 
permutation entropy [12], refined composite generalized multi-scale bubble entropy [13], and 
composite multi-scale weighted slope entropy [14]. In terms of feature dimensionality reduction, 
manifold learning could map high-dimensional data to low-dimensional spaces in a nonlinear way, 
mine the inherent low-dimensional structures hidden in high-dimensional spaces, and thereby 
improve the classification distance among fault features. 

Based on the above description, this article proposes a new feature – CMWRSlE for motor 
fault representation, which combines manifold learning algorithm NPE [15] and hierarchical 
prototype machine [16] to achieve motor fault diagnosis. The effectiveness of this feature is 
verified through two types of motor fault test data. 

2. Composite multi-scale weighted reverse slope entropy 

2.1. Reverse slope entropy 

Standardization of vibration sequences 𝐗 is performed as: 𝐱 = 𝐗 − 𝜇𝐗𝜎𝐗 , (1)

in which 𝜇𝐗 and 𝜎𝐗 respectively are the mean and the standard deviation of vibration sequences 𝐗, and then a new time series 𝐱 = ሼ𝑥ሺ𝑖ሻ, 𝑖 = 1, 2,⋯ ,𝑁ሽ, is obtained according to Eq. (1) to ensure 
the following slope entropy computation. Then the subsequence is obtained as following: 𝐗ሺ,ఛሻ = ሼ𝑥ሺ𝑗ሻ, 𝑥ሺ𝑗 + 𝜏ሻ,⋯ , 𝑥ሺ𝑗 + ሺ𝑚 − 1ሻ𝜏ሻሽ, (2)

in which 𝑗 = 1, 2, … ,𝑁 − ሺ𝑚 − 1ሻ𝜏, 𝑚 represents the embedding dimension and 𝜏 represents the 
delay time. Consider the difference in adjacent amplitudes 𝑥 − 𝑥ିଵ, and then divide it with the 
number of segments 𝑞 = 5 as shown in Fig. 1, namely. 

1) When 𝑥 > 𝑥ିଵ + 𝛾, the identifier was set as +2. 
2) When 𝑥 > 𝑥ିଵ + 𝛿 and 𝑥 ≤ 𝑥ିଵ + 𝛾, the angle is below 45° and above a small area near 

0°, set the identifier as +1. 
3) When |𝑥 − 𝑥ିଵ| ≤ 𝛿, in a small area near 0°, the identifier was set as 0. 
4) When 𝑥 < 𝑥ିଵ − 𝛿 and 𝑥 ≥ 𝑥ିଵ − 𝛾, the angle is above –45° and below the small area 

near 0°, set the identifier as -1. 
5) When 𝑥 < 𝑥ିଵ − 𝛾, the identifier was set as –2. 

-2

-1
0

1

2

-η -δ δ η

 
Fig. 1. Slope entropy with five division levels 

There are a total of 𝑞ିଵ types of permutation patterns that may appear after the symbolization 
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of 𝑚 -dimensional vectors. Let 𝑛 be the number of all pattern types, 𝜋 be the 𝑙th pattern and  Π = ሼ𝜋ሽଵషభ
, then the probability of each pattern is as follows: 

𝑝൫𝜋ሺ,ఛሻ൯ = ∑ 𝟏௨:௧௬ሺ௨ሻୀగ൫𝑋ሺ,ఛሻ൯ஸேିሺିଵሻఛ∑ 𝟏௨:௧௬ሺ௨ሻୀஈ൫𝑋ሺ,ఛሻ൯ஸேିሺିଵሻఛ , (3)

in which 𝟏ሺ𝑢ሻ is the indicator function of set 𝐀. When 𝑢 ∈ 𝐀, 𝟏ሺ𝑢ሻ = 1; when 𝑢 ∉ 𝐀,  𝟏ሺ𝑢ሻ = 0. Substitute Eq. (3) into Eq. (4), and then the slope entropy of the vibration sequence 𝐱 
at the specified embedding dimension 𝑚 and delay parameter 𝜏 is obtained as: 𝑆𝑙𝐸ሺ𝑚, 𝜏ሻ = − 𝑝൫𝜋ሺ,ఛሻ൯ln𝑝൫𝜋ሺ,ఛሻ൯గሺ,ഓሻ∈ஈ . (4)

Considering the volatility of vibration sequences under the same structure, an improved 
algorithm is proposed as shown in Fig. 2 [17]. In this algorithm, the same structured data is 
weighted based on its volatility, and Eq. (3) is replaced with: 

𝑝൫𝜋ሺ,ఛሻ൯ = ∑ 𝟏௨:௧௬ሺ௨ሻୀగ൫𝑋ሺ,ఛሻ൯𝑤ஸேିሺିଵሻఛ∑ 𝟏௨:௧௬ሺ௨ሻୀஈ൫𝑋ሺ,ఛሻ൯𝑤ஸேିሺିଵሻఛ . (5)

When 𝑤 = 𝐶, ∀𝑗 ≤ 𝑁 and 𝐶 ≥ 0, the above equation degenerates to Eq. (3). Substitute the 
statistical results of each pattern obtained from Eq. (5) into Eq. (4) and the weighted slope entropy 
is derived. 

In addition, Bandt proposed a reverse permutation entropy [18] to measure the distance 
between useful information and white noise. On this basis, this paper proposes the weighted 
reverse slope entropy: 

𝑊𝑅𝑆𝑙𝐸ሺ𝐱,𝑚, 𝜏,𝑁ሻ =  𝑝൫𝜋ሺ,ఛሻ൯ − 1𝑞ିଵ൨ଶగሺ,ഓሻ∈ஈ . (6)

pattern k

Data with different 
fluctuation

pattern t

Data with different 
fluctuation  

Fig. 2. Volatility of data with the same structure [17] 

2.2. Composite multi-scale weighted reverse slope entropy 

Composite coarse-grained the sequence ሼ𝑥ሺ𝑛ሻ,𝑛 = 1, 2, … ,𝑁ሽ to obtain the sequence  𝐲ሺ௦ሻ = ൫𝑦,ሺ௦ሻ൯, that is: 

𝑦,ሺ௦ሻ = 1𝑠 𝑥௦ାିଵୀሺିଵሻ௦ା , 1 ≤ 𝑗 ≤ 𝑁𝑠 , 2 ≤ 𝑘 ≤ 𝑠, 1 ≤ 𝑠 ≤ 𝑠௫, (7)
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where, 𝑠 is the scale factor, and 𝑠୫ୟ୶ is the maximum scale factor. Under scale factor 𝑠, calculate 
the weighted reverse slope entropy 𝑊𝑅𝑆𝑙𝐸ሺ௦ሻሺ𝐱,𝑚ሻ of 𝑠 coarse-grained sequences 𝑦,ሺ௦ሻ and take 
the mean to obtain the composite weighted reverse slope entropy under scale 𝑠: 

𝐶𝑅𝑊𝑅𝑆𝑙𝐸ሺ𝐱,𝑚, 𝑠ሻ = 1𝑠 𝑊𝑅𝑆𝑙𝐸ሺ௦ሻሺ𝐱,𝑚ሻ௦ୀଵ . (8)

Combine the composite weighted reverse slope entropy at multiple scales and the composite 
multi-scale weighted reverse slope entropy as a vector 𝐂 is obtained finally. 

2.3. Neighbourhood preserving embedding 

Assuming the high-dimensional state space 𝐂 = ሼ𝑐 ∈ ℝ, 𝑖 = 1, 2,⋯ ,𝐷ሽ, where 𝐷 = 𝑠୫ୟ୶ in 
this paper, the goal of the NPE algorithm is to find the optimal projection matrix  𝐀 = ሼ𝐚ଵ,𝐚ଶ,⋯ , 𝐚ௗ, ሽ ∈ ℝ×ௗ, ሺ𝑑 < 𝐷ሻ and map high-dimensional data to relatively low 
dimensional feature spaces 𝐘 = ሼ𝑦 ∈ ℝௗ , 𝑖 = 1, 2,⋯ ,𝑁ሽ through dimensionality reduction [15]. 
The detailed algorithm is as follows: 

(1) Determine the nearest neighbor points. Use the 𝑘-nearest neighbor method to find the 𝑘 
sample points closest to the sample point 𝑐, in which Euclidean distance is often employed as a 
measure between the sample point 𝑐 and the 𝑘 sample points in the original manifold and then 
the neighborhood points are selected. Each sample point is only reconstructed from the relevant 
nearest neighbor points, and when 𝑐 is not a neighborhood of 𝑐, the connection weight 𝑤 = 0. 

(2) Reconstruct the weight matrix. Reconstruct of each data point ci linearly from neighboring 
points, and calculate of the reconstruction weight matrix 𝐖 for this sample point. Minimize the 
following reconstruction error: 

min 𝜀ሺ𝐖ሻ =  ብ𝑐 − 𝑤𝑐 ብଶ , ሺ𝑗 = 1, 2, … ,𝑘ሻ, (9)

where, ∑ 𝑤ୀଵ = 1. 
(3) Calculate the feature mapping matrix. Maintain the linear reconstruction weight of the 

sample points unchanged, reconstruct the original data sample, and minimize the reconstruction 
error, i.e.: 

minΦሺ𝐚ሻ =  ቆ𝑦 − 𝑤𝑦 ቇଶ = 𝐘்𝐌𝐘, (10)

where, 𝐌 = ሺ𝐈 −𝐖ሻ்ሺ𝐈 −𝐖ሻ, 𝐈 is the identity diagonal matrix. Constraints are: 𝐲்𝐲 = 𝐚்𝐂𝐂்𝐚 = 1. (11)

By using the Lagrangian method, the objective function and constraint conditions are merged 
and derived, and the minimization problem of the objective function can be transformed into 
solving the generalized eigenvalue problem as shown in Eq. (11): 𝐂𝐌𝐂்𝐚 = 𝛌𝐂𝐂்𝐚. (12)

Since 𝐂𝐌𝐂் and 𝐂𝐂் are semi positive definite matrices, the eigenvectors corresponding to 
the smallest 𝑑 eigenvalues 𝜆ଵ ≤ 𝜆ଶ ≤  ⋯ ≤ 𝜆ௗ form the projection matrix 𝐀: 𝐘 = 𝐀்𝐂. (13)
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Then a low dimensional representation of 𝐂 in the low dimensional space ℝௗ is obtained, and 𝐘 is the reduced dimensional data matrix. 

2.4. Motor fault diagnosis flowchart 

The motor fault diagnosis process based on CMWRSlE and NPE is as follows: 
1) Collect vibration signals of motor normal and different fault types, and set the data length 𝑁 = 2048 to extract composite multi-scale weighted reverse slope entropy. 
2) Normalize each segment of data and then extract CMWRSlE, with parameters set as: 

embedding dimension 𝑚 = 3, maximum scale factor 𝑠௫ = 30, symbol segmentation parameters 𝛾 = 1, 𝛿 = 0.001. 
3) The number of neighboring points in NPE is 𝑘 = 5, and the first 5 principal components 

(PCs) after dimensionality reduction are taken as training features. 
4) Set the number of training samples and testing samples respectively for each type of motor 

fault, substitute the training samples into the HPA for classification training while the testing 
samples for testing, and define the classification accuracy as: 𝐴𝑐𝑐 = 𝑛ோ𝑛் × 100%, (14)

where, 𝑛ோ and 𝑛் respectively represents the total number of correctly classified samples and the 
total number of test samples. 

3. Experiment and results 

3.1. Motor rotor fault data from Wuhan University in China 

The simulation test bench for motor rotor faults at Wuhan University in China is shown in 
Fig. 3 [4]. The vibration signals of the motor rotor state include four types: normal, contact 
friction, imbalance, and misalignment. The rotor imbalance is simulated by screwing a 2 g mass 
block into the threaded hole at the edge of the mass disk; misalignment is achieved by changing 
the relative position of the shafts at both ends of the coupling; contact friction fault is achieved by 
screwing the friction screw into the shell of the friction screw and then contacting the rotating 
shaft. During the signal acquisition process of normal and various faults, the rotor speed is 1200 
r/min, the sampling frequency is 2048 Hz, and the sampling time is 1 s. The rotor state data used 
in this paper are pre-processed with wavelet threshold denoising, as shown in Fig. 4. 

 
Fig. 3. Rotor laboratory bench [4] 
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45 sets of data were collected for each type of rotor state, and a total of 180 sets of data were 
acquired finally. The mean and the standard deviation (std) of the entropy values at each scale 
factor are calculated as shown in Fig. 5(a), while the mean and the std of the first three PCs after 
NPE dimensionality reduction are shown in Fig. 5(b). As the first three PCs shown in Fig. 6, it is 
indicated that various faults of the motor rotor can be clearly identified. 

Randomly select 10 training samples from each state, which are then dimensionally reduced 
by NPE and brought into the HPA for training. The rest 35 samples are then dimensionally reduced 
by NPE and used as testing samples. Randomly select 10 training samples and repeat the above 
test 100 times. The classification results are shown in Table 1, and the classification accuracy of 
each test is 100 %. 
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Fig. 4. Vibration signals of rotor faults 
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Fig. 5. Statistics of motor rotor fault features 
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Fig. 6. The first three PCs of state features of motor rotor with NPE 

Table 1. Comparison with literature [4] 
Method Minimum classification accuracy Maximum classification accuracy Mean 

EEMD-CC 98 % 100 % 99.29 % 
this paper 100 % 100 % 100 % 

3.2. Motor bearing failure data from Case Western Reserve University in the United States 

The artificial fault bearing experimental device at Case Western Reserve University (CWRU) 
consists of a driving motor, a loading motor, a torque sensor, etc. The test bearing is installed at 
the driving end, and the deep groove ball bearing model is SKF6205, as shown in Fig. 7 [5]. There 
are three types of single point damage on bearings processed by electric discharge: rolling element 
failure (BF), inner ring failure (IRF), and outer ring failure (ORF). The diameter of single point 
damage for each fault type is shown in Table 2, which represents the degree of damage. During 
the signal acquisition process of normal and various bearing faults, the sampling frequency is 
12 kHz and the sampling time is 1 second. Fig. 8 shows the fault signals of each rolling bearing 
component at the damage diameter 0.007 inches with the sampling length 2048. 

 
Fig. 7. Bearing fault test rig of CWRU [5] 

Extract 50 samples of fault feature vectors for normal and various fault types of bearings in 
Table 2, and a total of 500 samples are obtained. The mean and the standard deviation (std) of the 
entropy values at each scale factor are calculated as shown in Fig. 9(a), while the mean and the 
std of the first three PCs of various fault characteristics of motor bearings in Table 2 after NPE 
dimensionality reduction are shown in Fig. 9(b). As the first three PCs shown in Fig. 10(a), it can 
be seen that there is a slight overlap between BF21 and ORF14, but the two can be clearly 
separated in the fourth to sixth PCs as shown in Fig. 10(b). 

10 samples of training samples were randomly selected for the normal state and each type of 
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fault of the motor bearings. After NPE dimensionality reduction, they were brought into the HPA 
for training, while the rest 40 samples were used as testing samples after NPE dimensionality 
reduction. Randomly select 10 training samples and repeat the above test 20 times, and the 
classification accuracy of each test is 100 %. 

 
Fig. 8. Vibration signals at the damage level 0.007 inch for different fault types  

of bearings on the condition of load 2 hp and rotating speed 1750 r/min 
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Fig. 9. Statistics of motor bearing fault features 
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Table 2. Design of test experiment schemes regarding faulty motor bearings 
Working condition Fault  

types 
Damage  

diameter (inch) 
Training  
samples 

Testing  
samples Label Load (hp) Speed (rpm) 

2 1750 normal 0 10 40 1 
2 1750 RF 0.007 10 40 2 
2 1750 RF 0.014 10 40 3 
2 1750 RF 0.021 10 40 4 
2 1750 IRF 0.007 10 40 5 
2 1750 IRF 0.014 10 40 6 
2 1750 IRF 0.021 10 40 7 
2 1750 ORF 0.007 10 40 8 
2 1750 ORF 0.014 10 40 9 
2 1750 ORF 0.021 10 40 10 

 

 
a) The first three PCs 

 
b) The fourth to sixth PCs 

Fig. 10. The first six PCs of fault features of motor bearings with NPE 

4. Conclusions 

The CMWRSlE proposed in this article could consider the influence of the structure, 
multi-scale characteristics, and amplitude effects of motor fault vibration data, thereby more 
accurately mining fault features and noise suppression. By combining the proposed CMWRSlE 
with NPE for motor fault diagnosis, the fault classification accuracy of the two sets of data was 
100 % after 100 and 20 random sample tests, respectively. It can be seen that CMWRSlE can 
accurately and stably characterize motor faults, achieve accurate positioning of motor bearing 
faults, and effectively identify more types of motor faults under complex working conditions. 
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