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Abstract. Currently, FEA software such as ABAQUS uses empirical models to predict the sound 
absorption coefficient of poroelastic materials. However, based on a recent review of the literature 
it was found that the current sound absorption empirical models are inadequate for accurate 
prediction of thin (𝑡 < 20 mm), low-density materials (𝜌஻ < 50 kg/m3). Therefore, the predictions 
of the sound pressure levels in vehicle cabins, using such software, will be inaccurate since the 
trim materials are thin and have a low density. Thus, this research aimed to develop an empirical 
model that can accurately predict the sound absorption coefficient of these materials. Hence, 
polypropylene fibres consisting of four different diameters were manufactured and converted into 
nonwovens. Thereafter, airflow resistivity and impedance tube experimental testing were 
performed on the specimens. Subsequently, statistical analysis of the data was performed using 
SAS software. SAS was used to identify which independent variables should be included in the 
models to be developed. The empirical models were developed using the regression analysis 
toolbox in Microsoft Excel. Once the models were developed, various checks were performed to 
validate the assumptions of linear regression. The software NumXL was used to perform Cook’s 
distance tests. Thereafter, the models were validated against the validation dataset, where it was 
found that the developed exponential model performed best. Finally, the exponential model was 
compared to existing models using two data sets i.e. an internal dataset, and an external dataset 
derived from the literature. The developed model outperformed all the historic models on both 
datasets. 
Keywords: sound absorption coefficient, predictive models, regression analysis, fibrous 
materials. 

Nomenclature 𝑑௙ Fibre diameter, (μm) 𝑓 Frequency, (Hz) 𝑝-value Significance level 
PD Percentage difference between the measured value and the predicted value, (%) 𝑅ଶ Coefficient of determination 
SM Selection metric 𝑡 Thickness of absorber, (mm) 𝜌஻ Bulk density of composite, (kg/m3) 

1. Introduction 

Current analytical models for the prediction of the sound absorption coefficient can provide 
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accurate results over large operating ranges, but they are highly complex and require 
comprehensive experimental testing to determine many variables [1]. This is often not feasible to 
use in practical applications [2]. Empirical models on the other hand offer the advantage of 
simplicity. The development of empirical models for this purpose is therefore not new and dates 
to the 1970s when Delany and Bazley presented the first empirical model for fibrous sound 
absorbers. This power-law function model provided a simpler method of relating the complex 
relationship between airflow resistivity, surface characteristic impedance, frequency, and the 
propagation wavenumber in order to predict the sound absorption coefficient of a fibrous material 
[3]. Many similar models have since been proposed for a variety of different fibres, natural and 
synthetic i.e., Mechel, Miki, Garai, Del Rey, Komatsu, Egab, Ramis, Liu, and Berardi models, 
refer to Table 8 for references. Each new model developed catered for a different range of material 
thickness, bulk density, and fibre diameter. All the variant models developed except for the 
Voronina model [4], and the Allard and Champoux model [5], used the same formulation with 
only the coefficients being adapted for new materials.  

It must be noted that empirical models do however have their limitations. They may fail to 
accurately predict the sound absorption coefficient of absorbing materials in certain ranges. 
Reasons for this include inadequate pre-processing of the data, inadequate model validation, 
unjustified extrapolation (e.g., application of the model to data that reside in a space which the 
model has never seen), or, most importantly, over-fitting the model to the existing data [6]. With 
this said caution should always be exercised when selecting an empirical model for real-world 
application.  

The idea for this research topic stemmed from a paper by Dunne et al [7]. In this research, a 
review of all the existing empirical models for the prediction of the sound absorption coefficients 
was given. After reviewing the current models, the paper went on to test the model prediction 
accuracies over the working ranges of these models. These results are summarised in Fig. 1.  

 
Fig. 1. Sound absorption model accuracy for empirical models [7] 

Fig. 1, demonstrates that the current available empirical models for the prediction of the sound 
absorption coefficient, of thin, low-density poroelastic materials, are inadequate. The range in 
which the current sound absorption coefficient models are not accurate correspond to densities 
less than 50.0 kg/m3 and thicknesses lower than 20.0 mm. This poses a problem for Finite Element 
Analysis (FEA) users, modelling thin low-density materials, such as those applied in vehicles for 
noise mitigation, since such software often employs empirical models for prediction. Since the 
FEA software is only as accurate as the models it utilises for prediction, it is necessary to develop 
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a model that can accurately predict the sound absorption coefficient for this range of materials.  
Therefore, this paper aims at developing a simple empirical model using multiple linear 

regression analysis. The model should be able to accurately predict the sound absorption 
coefficient of low-density, less than 50 kg/m3, thin, less than 20 mm thick, fibrous materials in the 
low to mid-frequency range (100-2000 Hz). Furthermore, an attempt will be made to develop a 
model with parameters that don't require experimental testing. 

2. Equipment and measurements 

The experimental testing done for this research was performed on equipment that was designed 
according to the ISO standards 9053-1 and 10534-2. Manufacturing of the experimental 
equipment was produced according to the specifications set out in the ISO standards and was of 
high quality. Two devices were developed to perform experimental measurements. The first was 
an airflow resistivity apparatus and the second was an impedance tube. The airflow resistivity tube 
was used to test the airflow resistance and the impedance tube was used to test the sound 
absorption, of various fibrous materials. It was necessary to quantify the airflow resistivity of the 
various materials since this is one of the parameters that the sound absorption coefficient has been 
shown to be dependent on. 

The fibres developed for this research were manufactured from polypropylene copolymer 
(HSV103). The polypropylene fibres were manufactured to four different diameters; yellow – 
19.4 μm, red – 29.7 μm, green – 40.8 μm and blue – 49.5 μm. This was done since the airflow 
resistivity of fibrous materials is dependent on the fibre diameter. Each fibre was coloured 
differently for identification purposes. Thereafter, the fibres were manufactured into nonwovens 
using an Aolong Nonwoven Needlepunching Machine. Specimens of 100 mm diameter were then 
cut out of the various nonwovens using a laser cutting machine. The total number of samples used 
in this research for the development and validation of the empirical model was 203 samples. The 
number of samples that were used for the model development dataset was 180 and the number of 
samples that were used as the validation dataset was 23. The software G*Power was utilised to 
check the required minimum number of samples that should be used for model development [8]. 
The number of samples utilised in this research was far higher than the necessary minimum 
number. 

2.1. Thickness and bulk density experimental measurements and results 

The mass of each sample was determined using a calibrated KERN PFB 2000-2 scale with an 
accuracy of 0.01 g and precision of ±0.03 g. Thereafter, the volume of each sample was calculated 
using the dimensions of the sample which were measured using a vernier calliper. From the mass 
and the volume, the bulk density of each sample was then determined and presented in  
Tables 1-4.  

2.2. Airflow resistivity experimental measurements 

The airflow resistivity tube presented in Fig. 2 was designed, developed and calibrated 
according to the ISO 9053-1 first edition 2018-10. The tube was manufactured from poly (methyl 
methacrylate) also known as plexiglass or acrylic glass. The air supply to the device was obtained 
from a central air compressing unit and was filtered before use. A pressure regulator to regulate 
the pressure coming into the flow meter was attached to the inlet line. A testo 512 pressure meter 
(0-200 Pa), with a resolution of 0.1 Pa, was used to measure the differential pressure as required 
by the ISO standard. A KOFLOC flow meter model RK120X series was used to regulate the inlet 
flow. This flow meter can measure flows as low as 5 ml/min, which is far lower than what is 
required by the ISO standard. A MaxiMet (GMX501) Compact Weather Station was utilised to 
monitor the ambient temperature, pressure and humidity in the laboratory where testing was 
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conducted. The MaxiMet Compact Weather Station provides pressure (accuracy of 0.1 hPa), 
temperature (accuracy of 0.1 °C) and accurate humidity data.  

Table 1. Specimen properties of 19.4 μm diameter fibre 
Sample No. Thickness (mm) Bulk density (kg/m3) Porosity Airflow resistivity (Pa.s/m2) NRC 

Y56 10.5 20.62 0.977 7029.629 0.15 
Y53 11.6 21.92 0.976 7545.725 0.17 
Y55 8.9 22.49 0.975 8444.663 0.11 
Y54 8.5 22.58 0.975 7492.902 0.18 
Y60 8.2 23.11 0.974 9181.513 0.15 
Y59 8.4 24.95 0.972 10053.372 0.14 
Y57 13.1 25.07 0.972 10043.68 0.17 
Y51 8.7 26.25 0.971 8144.818 0.21 
Y41 9 26.55 0.971 10075.121 0.15 
Y52 8.4 27.33 0.97 9199.771 0.13 
Y6 9.3 27.47 0.97 10134.17 0.17 
Y58 10.7 27.72 0.969 10158.223 0.15 
Y24 7.7 28.13 0.969 9624.715 0.16 
Y42 10.2 28.97 0.968 9603.044 0.16 
Y21 8.2 29.72 0.967 10838.636 0.15 
Y8 11.4 31.08 0.966 10045.336 0.17 
Y40 8.5 31.58 0.965 10232.096 0.17 
Y5 10.9 32.29 0.964 9673.632 0.18 
Y9 12.2 32.61 0.964 12135.436 0.17 
Y43 9.4 32.81 0.964 11854.76 0.16 
Y10 8.5 33.52 0.963 12629.01 0.15 
Y7 8.6 33.81 0.963 12581.789 0.14 
Y12 10.2 34.05 0.962 11227.14 0.16 
Y34 9.4 34.31 0.962 12854.285 0.17 
Y20 11.6 34.81 0.962 13513.737 0.18 
Y19 10.8 35.97 0.96 13711.948 0.16 
Y18 11.3 38.55 0.957 14423.639 0.17 
Y3 12 38.85 0.957 15667.163 0.17 
Y2 13.3 38.94 0.957 15194.283 0.2 
Y50 11.4 39.76 0.956 15799.167 0.2 
Y49 10.7 40.16 0.956 14760.509 0.18 
Y37 11.4 40.17 0.956 14954.269 0.17 
Y27 10.9 40.61 0.955 16568.816 0.17 
Y29 10.7 40.82 0.955 14524.575 0.18 
Y45 9.6 42.06 0.954 15769.624 0.17 
Y15 9 43.82 0.952 13154.191 0.13 
Y35 10.7 44.01 0.951 16088.508 0.19 
Y1 12.2 44.29 0.951 19264.355 0.2 
Y30 12.1 44.36 0.951 19186.155 0.19 
Y26 11.9 46.49 0.949 18346.929 0.18 
Y44 9.9 47.44 0.948 21000.789 0.19 
Y47 11.2 47.93 0.947 21282.25 0.2 
Y31 11.5 49.44 0.945 23797.372 0.21 
Y61 11 49.76 0.945 23648.788 0.18 
Y17 12.5 50.76 0.944 23843.627 0.24 

The experimental testing began by preparing the local environment (the laboratory) for testing. 
This was achieved by ensuring that the lab temperature was constant. Hence, the air conditioning 
units in the laboratory were turned on at a temperature of 22 °C several hours before testing began. 
This allowed for the temperature of the room to stabilise. The order of testing for the specimens 
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was random. This is important in order to eliminate the effect of any nuisance variable that may 
influence the observed airflow resistivity [9]. Therefore, since the testing was randomized and the 
environment, in which tests were performed, was as uniform as possible, this experimental design 
is a completely randomized design. The airflow resistivity of each sample is presented in  
Tables 1-4. 

 
Fig. 2. Airflow resistivity experimental setup 

2.3. Sound absorption coefficient experimental measurements and results 

Before the testing commenced the laboratory environment was given enough time for the 
ambient temperature to stabilise to approximately 22 °C. This temperature was maintained by 
using two air conditioning units. All experimental testing was carried out over a three-day period. 
The laboratory temperature, pressure, and humidity were monitored and captured for each test 
using the GMX501 Compact weather station. The temperature in the laboratory fluctuated no 
more than 2 °C during the three-day testing period. Microphone amplitude and phase calibration 
tests were performed according to the ISO 10534-2 standard. Furthermore, a reference test was 
performed using a manufacturer's sample. This was done to validate that the impedance tube using 
the two-microphone transfer function method was indeed capturing the data accurately. The setup 
is illustrated in Fig. 3. 

 
Fig. 3. Assembled impedance tube 

Once the experimental setup was ready testing proceeded. The data was captured utilising a 
Coco-80 dynamic signal analyser and saved to an SD card. The noise source used was a 2426H 
JBL professional series compression driver speaker. The microphones used were ICP with model 
number 130E20. The captured data was then downloaded from the SD card into the Engineering 
Data management (EDM) software, where it was converted into excel format in order to be 
post-processed in MatLab using code that was developed for this research. The data for the sound 
absorption coefficient of the tested materials are presented in Table 1-4, in terms of the Noise 
Reduction Coefficient (NRC), for brevity. Also, it should be noted that all measurements below 
100 Hz, were removed from the data set due to inaccuracies observed in the data below this 
frequency limit. The reason for these inaccuracies occurring in the data below 100 Hz are most 
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likely due to the spacing between the microphones on the tube. This is because the measurement 
frequency range is dependent on the microphone spacing. As the spacing between the 
microphones reduces the accuracy of low-frequency measurements is limited but the accuracy of 
high-frequency measurements is improved. 

Table 2. Specimen properties of 29.7 μm diameter fibre 
Sample No. Thickness (mm) Bulk density (kg/m3) Porosity Airflow resistivity (Pa.s/m2) NRC 

R62 11.7 21.43 0.976 4181.467 0.11 
R61 12 21.58 0.976 4076.93 0.15 
R72 10.3 22.52 0.975 4136.866 0.13 
R75 10.3 24.12 0.973 5325.411 0.15 
R67 11.3 26.46 0.971 4880.613 0.13 
R38 11.5 26.51 0.971 5353.834 0.14 
R43 9.5 27.14 0.97 5615.964 0.12 
R65 10.9 27.22 0.97 5350.34 0.14 
R76 10.4 27.39 0.97 5737.029 0.12 
R69 11.4 27.47 0.97 5400.798 0.14 
R64 12 28.25 0.969 5992.259 0.13 
R78 12.9 28.47 0.969 4864.124 0.15 
R73 10.4 28.86 0.968 5220.59 0.14 
R45 9.3 28.99 0.968 5067.085 0.13 
R68 10.5 29.04 0.968 5352.203 0.14 
R54 9 31.78 0.965 5683.162 0.12 
R49 8.5 34.21 0.962 6047.986 0.14 
R46 8.9 34.65 0.962 5843.287 0.13 
R63 9.4 34.81 0.962 6438.5 0.15 
R71 10.6 34.87 0.961 5857.501 0.14 
R59 8.1 35.75 0.96 5506.098 0.14 
R51 10.2 35.78 0.96 6430.752 0.14 
R19 11.5 36.44 0.96 6609.939 0.16 
R44 7.1 36.64 0.96 6001.369 0.15 
R70 10.8 37.06 0.959 6473.837 0.14 
R41 11.6 37.75 0.958 6198.889 0.16 
R21 11.6 38.06 0.958 6735.765 0.17 
R47 8.1 38.8 0.957 7329.124 0.14 
R31 11.3 38.86 0.957 7389.898 0.16 
R48 9 39.76 0.956 7884.959 0.15 
R27 11.1 40.94 0.955 7039.178 0.14 
R4 11.9 41.45 0.954 7894.839 0.15 
R20 14.3 41.9 0.954 8156.462 0.17 
R18 10.6 42.65 0.953 8764.281 0.15 
R37 14.2 43.11 0.952 8076.418 0.16 
R7 12.3 43.74 0.952 8509.627 0.16 
R57 8.2 43.93 0.951 8218.652 0.15 
R39 11.5 44.43 0.951 9360.503 0.16 
R40 9 44.99 0.95 8481.733 0.13 
R5 11.5 46.47 0.949 9542.625 0.14 
R32 15.2 46.85 0.948 9897.757 0.21 
R55 8.7 46.95 0.948 9478.005 0.14 
R26 10.6 47.53 0.947 8764.281 0.15 
R50 11.5 50.36 0.944 10333.965 0.16 
R33 9.1 50.58 0.944 10397.25 0.15 
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Table 3. Specimen properties of 40.8 μm diameter fibre 
Sample No. Thickness (mm) Bulk density (kg/m3) Porosity Airflow resistivity (Pa.s/m2) NRC 

G4 10.7 24.64 0.973 2004.407 0.11 
G6 13.8 25.16 0.972 1554.141 0.14 
G18 8.4 25.23 0.972 2198.783 0.13 
G8 13.4 25.48 0.972 2502.648 0.14 
G1 12 25.51 0.972 2136.668 0.12 
G27 8.3 25.95 0.971 2364.551 0.09 
G48 11.8 26.64 0.971 3083.217 0.13 
G3 13 28.07 0.969 3690.822 0.13 
G16 7 28.08 0.969 3732.803 0.09 
G69 11.3 28.34 0.969 3619.126 0.13 
G10 9.6 28.69 0.968 3789.787 0.11 
G47 12.5 28.91 0.968 3340.234 0.12 
G2 12.1 29.38 0.968 3965.346 0.13 
G23 9.7 30.1 0.967 3750.717 0.12 
G9 12.4 30.47 0.966 3869.41 0.15 
G13 9.5 31.35 0.965 3620.24 0.13 
G72 12.3 31.87 0.965 3721.747 0.14 
G11 12.8 32.01 0.965 3995.973 0.13 
G28 9 32.31 0.964 2848.891 0.14 
G5 11.2 33.64 0.963 3502.538 0.15 
G51 12.2 34.45 0.962 4166.161 0.15 
G25 9.2 34.55 0.962 3630.933 0.15 
G12 11.9 35.51 0.961 4199.19 0.14 
G50 13.6 36.1 0.96 4055.216 0.15 
G54 11.7 36.83 0.959 4027.683 0.14 
G30 13 37.13 0.959 4176.472 0.14 
G29 14 37.92 0.958 3939.352 0.14 
G26 7 38.17 0.958 4430.141 0.13 
G78 13.5 38.19 0.958 4560.674 0.15 
G49 11.3 39.27 0.957 4973.286 0.16 
G41 13.8 42.57 0.953 4883.547 0.15 
G32 12 43.95 0.951 5378.872 0.14 
G46 13.3 44.17 0.951 5660.782 0.15 
G20 9 44.21 0.951 6348.956 0.13 
G52 10.8 44.91 0.95 6862.065 0.14 
G33 11.8 45.49 0.95 5845.335 0.14 
G73 13.8 45.98 0.949 6924.453 0.15 
G56 10.3 46.06 0.949 7195.175 0.13 
G55 9.4 46.71 0.948 5584.559 0.13 
G37 11 46.98 0.948 5963.061 0.14 
G76 12.7 47.37 0.948 7367.161 0.18 
G24 8.8 47.49 0.948 6169.788 0.15 
G15 9.5 47.83 0.947 5615.964 0.14 
G65 10.6 48.53 0.946 6864.52 0.14 
G84 12.9 50.46 0.944 6473.321 0.16 

3. Sound absorption coefficient model development 

A model is simply the mathematical relationship between a predictor variable and a response 
variable. However, when no theoretical knowledge of the relationship between an independent 
variable 𝑥 and dependent variable 𝑦 is available the choice of the model implemented is based on 
an inspection of the scatter plots. From the analysis of these plots, it can be determined if the data 
falls on a straight line, show evidence of curvature, or indicate some anomaly [10]. Thereafter it 



DEVELOPMENT OF AN EMPIRICAL MODEL FOR THE PREDICTION OF THE SOUND ABSORPTION COEFFICIENT FOR THIN AND LOW-DENSITY FIBROUS 
MATERIALS. REGAN DUNNE, DAWOOD DESAI, STEPHAN HEYNS 

8 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460  

can be determined if the method of least-squares can be implemented to develop regression 
models. These types of regression models are thought of as empirical models [9]. Since this was 
the case with the research being conducted, an empirical model approach was implemented. It 
must be noted at this point that the power law relationship proposed by Delany and Bazley was 
not utilised in this research. The reason for this was to develop a model with a simpler formation 
that did not require prior rigorous experimental testing of the parameters utilised in the model.  

Table 4. Specimen properties of 49.5 μm diameter fibre 
Sample No. Thickness (mm) Bulk density (kg/m3) Porosity Airflow resistivity (Pa.s/m2) NRC 

B51 12.8 20.32 0.978 1023.344 0.1 
B50 10 20.95 0.977 1489.809 0.1 
B40 11.4 20.96 0.977 1869.847 0.09 
B25 11.4 22.2 0.975 1702.829 0.09 
B32 8.6 23.27 0.974 1816.663 0.09 
B23 11.5 24.06 0.973 1515.007 0.11 
B54 12.2 24.8 0.973 1868.323 0.11 
B33 10.4 25.13 0.972 2209.995 0.1 
B55 9 26.29 0.971 2332.697 0.11 
B26 9.8 26.67 0.971 2432.729 0.11 
B24 12.3 26.89 0.97 2451.56 0.12 
B44 10.5 27.02 0.97 2600.735 0.1 
B53 7.3 27.09 0.97 2530.106 0.08 
B27 7.5 27.78 0.969 2642.156 0.09 
B37 14 30.19 0.967 2982.352 0.13 
B29 10.4 31.92 0.965 2808.818 0.11 
B42 10 32.37 0.964 2816.451 0.1 
B28 9.9 32.82 0.964 2844.9 0.12 
B30 12.8 33.11 0.963 2842.34 0.12 
B36 11 33.28 0.963 2941.58 0.12 
B46 10.4 33.84 0.963 3111.287 0.12 
B49 8.7 34.5 0.962 2641.833 0.1 
B43 10.3 34.97 0.961 3172.688 0.12 
B31 11 35.1 0.961 3307.45 0.12 
B39 8.5 35.18 0.961 2915.673 0.12 
B47 11 35.42 0.961 3036.78 0.13 
B52 12 36.3 0.96 3479.41 0.13 
B41 8.5 37.39 0.959 3547.552 0.11 
B45 9.2 38.77 0.957 4170.829 0.1 
B19 9.5 40.52 0.955 3174.125 0.12 
B34 8.2 41.2 0.954 3562.404 0.1 
B11 9.7 41.5 0.954 3247.483 0.1 
B16 9.1 41.65 0.954 3095.002 0.12 
B20 9.8 42.52 0.953 3616.273 0.11 
B35 8.3 42.55 0.953 3898.48 0.12 
B17 10.8 44.25 0.951 3756.928 0.11 
B48 8.5 44.59 0.951 4280.23 0.12 
B21 10.3 45.83 0.949 4053.682 0.12 
B57 11.4 46.36 0.949 4486.707 0.14 
B8 10.8 47.31 0.948 4238.657 0.13 

B15 10.5 48.32 0.947 4487.99 0.12 
B10 8.5 48.89 0.946 4179.43 0.13 
B38 9 49.31 0.946 4192.039 0.12 
B5 9.9 49.82 0.945 4759.989 0.13 

B13 9 50.62 0.944 4639.214 0.12 



DEVELOPMENT OF AN EMPIRICAL MODEL FOR THE PREDICTION OF THE SOUND ABSORPTION COEFFICIENT FOR THIN AND LOW-DENSITY FIBROUS 
MATERIALS. REGAN DUNNE, DAWOOD DESAI, STEPHAN HEYNS 

 JOURNAL OF VIBROENGINEERING 9 

A regression model that contains more than one independent variable is called a multiple 
regression model. This is true for the model developed in this work and thus multiple linear 
regression was the tool used to develop the model. Building a regression model is an iterative 
process. It must be noted that designed experiments are the only way to determine cause-and-
effect relationships between the model predictors and dependent variables [9]. A useful tool for 
this is Analysis of Variance (ANOVA), which helps determine the quality of the relationship 
between the response and predictor variables by evaluating the sum of square errors, the mean 
square error, F-values (indicates if the linear regression model provides a better fit to the data than 
a model that contains no independent variables) and the p-values (smallest choice of the 
significance level that would allow the null hypothesis to be rejected). Other criteria that can be 
used to evaluate the goodness of fit of the model are the adjusted R-squared value (goodness of 
fit measure) and information criteria. Furthermore, scatter plots of the residuals aid as a useful 
visual tool when examining the performance of the regression model. Lastly, this point is vital in 
the model development process and must be noted. Predictor variables with a weak or no 
correlation with the response variable may sometimes be excluded. Typically, the decision to 
discard a variable is based on the analysis tools, utilised in multiple regression analysis, as 
discussed above i.e. ANOVA, adjusted R-squared value and information criteria [11].  

An important part of model building involves the selection of the regressor variables to be used 
in the model. This is done by screening all the possible variables to obtain a regression model that 
contains the best subset of regressor variables [11]. The use of good model selection techniques 
was implemented in this research in order to increase confidence in the variables selected for the 
final model.  

Also, an essential part of the model-building process involves trying to identify some form of 
the equation that will fit the data best when there is curvature in the plot [10]. It must be noted that 
curvature was observed in some of the scatter plots, not included in this paper for the sake of 
brevity. However, the curvature was eliminated through the utilization of transformations which 
allowed for the linearization of the data since in order to apply the method of least-squares, for 
regression model development, the equations chosen must be linear in their coefficients. This is 
shown later in the model derivation section. 

3.1. Sound absorption coefficient collinearity check 

A collinearity analysis was performed on the sound absorption coefficient data using Statistical 
Analysis System (SAS) software [12]. As can be seen from Table 5, all the predictor variables had 
a Variance Inflation Factor (VIF) of less than 10, hence no collinearity was detected. This is 
important since collinearity occurs when there is a correlation present among predictor variables 
in the model. If the predictor variables are not correlated, then there's no collinearity present in the 
model. Collinear predictors provide redundant information and therefore cause instability in the 
model by inflating the variance of the parameter estimates, which raises the p-values. Hence, it is 
necessary to check for collinearity between predictors and remove redundancies.  

Table 5. Sound absorption coefficient collinearity check 

Variable DF Parameter 
estimate 

Standard 
error 𝑡 value Pr > |𝑡| Variance 

inflation 
Intercept 1 –0.0714 0.00512 –13.95 <.0001 0 

Frequency 1 0.000122 9.006166E-7 134.77 <.0001 1.000 
Thickness 1 0.00698 0.000315 22.15 <.0001 1.0145 

Bulk_Density 1 0.000751 0.0000899 8.35 <.0001 2.0421 
Airflow_Resistivity 1 0.00000248 2.935041E-7 8.44 <.0001 6.173 

Porosity 1 –0.00000170 0.00000173 –0.98 0.3258 1.0146 
Fibre_Diameter 1 –0.000992 0.000106 –9.39 <.0001 5.179 
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3.2. Selection criteria 

There are several selection criteria that can be used for model evaluation and selection; 1. 
significance levels (𝑝-value), 2. Information criteria (AIC – Akaike’s information criterion, AICC 
– corrected Akaike’s information criterion, BIC – Sawa Bayesian information criterion, SBC – 
Schwarz Bayesian information criterion), 3. Adjusted R-squared values. These criteria will now 
be applied to the various datasets to estimate which predictor variables are strongly correlated to 
the dependent variable. Predictor variables that are weakly correlated will be eliminated. 

3.3. Predictor identification and selection 

For the sound absorption coefficient, six possible predictors were chosen i.e., frequency, 
thickness, porosity, fibre diameter, bulk density, and airflow resistivity. Therefore, there are  2଺ = 64, possible models. This is a large number of possible models, and it is not practical to test 
the performance of each one, thus it is necessary to eliminate the least significant predictors. 
Therefore, STEPWISE model selection techniques were implemented using SAS software. The 𝑝-value, AIC, AICC, BIC, and SBC information criterion were all implemented for predictor 
selection. Fig. 4, lists the variables that were candidates for entry into the model at this step based 
on their significance level. It can be seen that frequency is the first predictor to enter the model. 

 
Fig. 4. 𝑝-value significance of variables in sound absorption coefficient model 

In Step 2, airflow resistivity entered the model. At this point, the selection method checks 
whether the first predictor, frequency, has become non-significant and if so, removes it. Frequency 
remained significant as expected since the sound absorption of a material is highly dependent on 
the frequency. The stepwise selection summary, Table 6, contains each variable that was added at 
each step of the process.  

Table 6. Stepwise model selection for sound absorption coefficient model 
Step Effect entered Number effects in 𝐹 value Pr > 𝐹 

0 Intercept 1 0.00 1.0000 
1 Frequency 2 11607.3 <.0001 
2 Airflow_Resistivity 3 1758.12 <.0001 
3 Thickness 4 460.11 <.0001 
4 Fibre_Diameter 5 27.40 <.0001 
5 Bulk_Density 6 68.85 <.0001 

As can be seen from Table 6, porosity is missing. Porosity was shown to be not statistically 
significant and therefore removed as a possible predictor. Next, the Coefficient Progression for 
the sound absorption coefficient is determined which is illustrated in Fig. 5. 
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Fig. 5. Selection fit criteria for sound absorption coefficient model 

Fig. 5 shows the effect each variable has on the model and how the model changes as new 
variables are entered. Furthermore, it can be seen that at the start of the analysis, the airflow 
resistivity (dark brown line) had a significant effect but as the analysis progressed and more 
variables are added the overall effect airflow resistivity had on the model decreased.  

Thereafter, the set of fit criteria, AIC, SBC, AICC, and adjusted R-square values for each step 
are plotted and compared side-by-side as can be seen in Fig. 6. A model containing frequency, 
airflow resistivity, thickness, fibre diameter and bulk density, as predictors, is predicted by all 
model selection fit criteria, AIC, AICC, SBC, and the adjusted R-square value to be the best. 

 
Fig. 6. Selection fit criteria for sound absorption coefficient model 

The Average Squared Error (ASE) is then calculated and plotted as illustrated in Fig. 7. 
It can be seen from Fig. 7, that the ASE levels out after thickness is added to the model. 

Furthermore, the addition of the fibre diameter and bulk density decreases the ASE very little, this 
is most likely since airflow resistivity is highly dependent on these two variables. 

Furthermore, several information criteria tests i.e., AIC, AICC, BIC, and SBC, were also 
conducted. All, the criteria tests uniformly agreed with the results obtained from the 𝑝-value 
criterion selection test, this is to say that AIC, AICC, BIC, and SBC ranked the model containing 
frequency, airflow resistivity, thickness, fibre diameter and bulk density as the best. The results 
for all the information criterion selection tests are not displayed for sake of brevity. 



DEVELOPMENT OF AN EMPIRICAL MODEL FOR THE PREDICTION OF THE SOUND ABSORPTION COEFFICIENT FOR THIN AND LOW-DENSITY FIBROUS 
MATERIALS. REGAN DUNNE, DAWOOD DESAI, STEPHAN HEYNS 

12 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460  

 
Fig. 7. Progression of average squared error for sound absorption coefficient model 

3.4. Sound absorption coefficient model selection 

The model selection process requires applying the data to each model and analysing which 
model gives the highest adjusted R-squared value. During this process, every possible 
combination of the variables was checked to see which combination would give the highest 
adjusted R-squared value for the dataset, Microsoft Excel was utilized to perform this. The result 
of this process is expressed in Tables 7, 8. 

Table 7. Sound absorption coefficient model R-squared comparison  

Combinations 

F, AR, 
FD, 

BD, T ሺ𝑅ଶሻ 
F, FD, 
BD, T ሺ𝑅ଶሻ F, AR, 

FD, T ሺ𝑅ଶሻ F, AR, 
BD, T ሺ𝑅ଶሻ 

F, AR, 
FD, 
BD ሺ𝑅ଶሻ 

F, T, 
AR ሺ𝑅ଶሻ F, FD, 

BD ሺ𝑅ଶሻ F, FD, 
AR ሺ𝑅ଶሻ F, FD, 

T ሺ𝑅ଶሻ F, BD, 
AR ሺ𝑅ଶሻ F, BD, 

T ሺ𝑅ଶሻ 
Model type            

Log-log 0.849 0.849 0.848 0.848 0.835 0.847 0.835 0.834 0.834 0.834 0.826 
Exponential 0.792 0.792 0.791 0.789 0.779 0.789 0.778 0.778 0.789 0.777 0.768 
First-order 

polynomial with 
two-Interactions 

– – – – – 0.913 0.886 0.888 0.881 0.886 0.798 

Third-order 
polynomial with 
three-interactions 

– – – – – 0.931 0.902 0.908 0.897 0.904 0.815 

Footnote: F – frequency, AR - airflow resistivity, FD – fibre diameter, BD – bulk density, T – thickness 

Table 8. Sound absorption coefficient model R-squared comparison  
Combinations F, AR, ሺ𝑅ଶሻ F, FD ሺ𝑅ଶሻ F, T ሺ𝑅ଶሻ F, BD ሺ𝑅ଶሻ 

Model type     
Log-log 0.834 0.83 0.823 0.812 

Exponential 0.777 0.775 0.766 0.755 
First-order polynomial with one-interaction 0.884 0.84 0.757 0.761 
Second-order polynomial with interactions 0.901 0.856 0.773 0.777 

From Table 7, it can be seen that the 3rd order polynomial with three interactions model gives 
the highest R-squared value. An interesting point to note is that this model is only dependent on 
frequency, airflow resistivity and thickness. This model has ten terms, however, despite the large 
number of terms, this model is surprisingly still simpler than current models. The final model will 
be selected later since further analysis for determining the best model is still necessary. 
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3.5. Sound absorption coefficient model comparison 

Fig. 8 displays the percentage difference between the measured and predicted sound absorption 
coefficient models developed in this research. Note, two validation datasets were used in this 
research, an internal dataset which was a subset taken from the main dataset and an external dataset 
which was compiled using literature data. The data for Fig. 8, was obtained by running the 
validation dataset in Table 9 through each model and then calculating the percentage difference 
between the NRC measured value and the NRC predicted value. The NRC was used since it is an 
average sound absorption coefficient value thus making it possible to compare the performance 
of each model.  

Table 9. Validation dataset 
Sample No. Thickness (mm) Bulk density (kg/m3) Porosity Airflow resistivity (Pa.s/m2) NRC 

Y23 12 31.78 10821.00 19.4 0.18 
Y62 12.1 21.89 7190.71 19.4 0.14 
R74 13 36.55 7878.88 29.7 0.15 
R56 10.7 43.68 9183.22 29.7 0.15 
G7 13.8 32.14 3846.84 40.8 0.14 
G64 13.4 47.45 5205.24 40.8 0.15 
B18 12.4 50.81 4129.30 49.5 0.13 
B4 9.6 51.37 4142.01 49.5 0.14 
B2 17 44.25 3114.57 49.5 0.17 
B7 6.9 53.39 4782.71 49.5 0.10 

G14 9.7 31.67 3402.13 40.8 0.11 
G17 10.2 38.43 4093.42 40.8 0.13 
G19 9.1 31.82 2871.38 40.8 0.11 
G21 8.4 38.25 3691.78 40.8 0.13 
G22 8.9 38.35 4087.86 40.8 0.14 
G71 9.8 32.79 4026.94 40.8 0.13 
R2 10.2 44.20 8665.41 29.7 0.16 
R24 9.2 50.54 9283.67 29.7 0.17 
R58 10.3 43.09 7760.59 29.7 0.15 
R66 10.7 47.52 10828.33 29.7 0.16 
R77 11.5 33.57 5820.87 29.7 0.14 
Y22 9.5 31.72 11865.01 19.4 0.17 
Y48 10.5 33.40 10806.63 19.4 0.18 

From Fig. 8, it is evident that the exponential model overall attained the lowest percentage 
difference between the measured and predicted values for the internal and external datasets.  

 
Fig. 8. Sound absorption coefficient model comparison using internal and external data dataset 
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Table 10 evaluates all six sound absorption coefficient models that were developed. A 
selection metric has been developed as seen in Eq. (1). The selection metric attempts to give an 
objective value that can help identify the so-called “best” model: 

𝑆𝑀 = 100𝑅ଶ𝑘𝑃஽ , (1)

where 𝑅ଶ is the coefficient of determination, 𝑘 is the number of predictors in the model and 𝑃஽ is 
the percentage difference between the measured value and the predicted value. It can be seen that 
the average Selection Metric for the exponential model is 1.58, which is 28.5 % higher than the 
next closest, which is the 1st order polynomial model. Hence, the Exponential model is selected 
as the best model. 

Table 10. Sound absorption coefficient best model selection 

Model 𝑅ଶ Number of 
predictors ሺ𝑘ሻ Selection metric 

(SM) internal data 
Selection metric 

(SM) external data 
Log 0.849 4 1.03 1.00 

Exponential 0.792 4 1.97 1.19 
1st Order Poly 1-Interaction 0.884 3 1.76 0.50 

3rd Order Poly 3-Interactions 0.931 9 0.54 0.78 
2nd Order Poly 1-Interaction 0.901 5 1.29 0.32 
1st Order Poly 2-Interactions 0.913 6 0.95 0.37 

3.6. Validating model assumptions 

Before a model can be used for future predictions the model assumptions must be validated. 
The assumptions of linearity, independence, normality, and homogeneity of variances were all 
validated. Furthermore, the influential observations were tested and analysed. No influential data 
points were found when applying the Cook’s distance, using the software NumXL [13], in the 
dataset and hence no model adjustment was necessary.  

Model linearity was validated using scatter plots of the response versus the predictor variables. 
The normality assumptions were validated by making use of a histogram plot of the residuals. The 
independence and equal variance assumptions were validated by making use of a residual plot of 
the errors. 

4. Model derivation 

The derivation of the model that has just been developed is now given. Linear regression 
analysis is used for the derivation of the developed models. Thereafter, the developed model is 
benchmarked against the currently existing models to evaluate its performance.  

4.1. Derivation of sound absorption coefficient empirical equation 

From the above analysis, it was shown that the variables frequency, airflow resistivity, 
thickness, bulk density, and fibre diameter are all statistically significant and therefore should be 
included in the sound absorption coefficient model. Therefore, the regression function in 
Microsoft Excel was utilized to do a regression analysis on the predictors selected. From the 
previous section, it was found that overall, the exponential model performed the best and hence 
was selected as the model of choice. Also, it must be noted that upon further analysis, it was found 
that including the airflow resistivity in the exponential model yielded no improvement and 
therefore was removed as a predictor. The derivation of the sound absorption coefficient 
regression model will now be carried out. 

The exponential model to be derived is nonlinear and therefore needs to be transformed into a 
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linear form. The nonlinear form of the equation is given in Eq. (2): 𝑌 = 𝑒ሺఉబାఉభ௑భାఉమ௑మାఉయ௑యାఉర௑రሻ. (2)

Simplifying the right side: 𝑌 = 𝑒ሺఉబሻ𝑒ሺఉభ௑భሻ𝑒ሺఉమ௑మሻ𝑒ሺఉయ௑యሻ𝑒ሺఉర௑రሻ. (3)

Then applying the law of logs: lnሺ𝑌ሻ = ln൫𝑒ሺఉబሻ൯ + ln൫𝑒ሺఉభ௑భሻ൯ + ln൫𝑒ሺఉమ௑మሻ൯+ln൫𝑒ሺఉయ௑యሻ൯+ln൫𝑒ሺఉర௑రሻ൯, lnሺ𝑌ሻ = 𝛽଴lnሺ𝑒ሻ + 𝛽ଵ𝑋ଵ lnሺ𝑒ሻ + 𝛽ଶ𝑋ଶ lnሺ𝑒ሻ + 𝛽ଷ𝑋ଷ lnሺ𝑒ሻ + 𝛽ସ𝑋ସ lnሺ𝑒ሻ. (4)

So that in the linear form: lnሺ𝑌ሻ = 𝛽଴ +𝛽ଵ𝑋ଵ + 𝛽ଶ𝑋ଶ + 𝛽ଷ𝑋ଷ + 𝛽ସ𝑋ସ. (5)

Then substituting the independent variables that were selected i.e., frequency, fibre diameter, 
bulk density, and thickness, into Eq. (5), the formulation appears as follows: lnሺ𝑌ሻ = 𝛽଴ +𝛽ଵ𝑓 + 𝛽ଶ𝑡 + 𝛽ଷ𝑑௙ + 𝛽ସ𝜌஻. (6)

Applying the natural log to the independent data in order to transform the data to a linear form 
is now applied. Since there is a lot of data an example only using data from one sample will be 
given. 

Table 11. Untransformed sound absorption coefficient data 
Frequency ሺ𝑓ሻ Thickness ሺ𝑡ሻ Fibre diameter ൫𝑑௙൯ Bulk density ሺ𝜌஻ሻ Sound absorption coefficient ሺ𝛼ሻ 

1000 9.5 40.8 47.83 0.111 

Table 12. Transformed sound absorption coefficient data 
Natural log (ln) of: 

Frequency ሺ𝑓ሻ Thickness ሺ𝑡ሻ Fibre diameter ൫𝑑௙൯ Bulk density ሺ𝜌஻ሻ Sound absorption coefficient ሺ𝛼ሻ 
1000 9.5 40.8 47.83 –2.198 

Applying this transformation to the data and running a regression analysis in Microsoft Excel 
yields the regression model data illustrated in Table 13.  

It can be seen from Table 13, that all variables are significant with 𝑝-values much less than the 
significance level criteria of 𝛼௣ = 0.05. Also, the adjusted R-squared value is 0.792, this is rather 
low, since using a 3rd order polynomial regression model to predict the sound absorption 
coefficient yields an R-squared value of 0.931 which is significantly higher. Nevertheless, it was 
shown in the previous section that the exponential model outperformed the 3rd order polynomial 
regression model when it came to prediction accuracy, hence the reason it was chosen. Now 
substituting the coefficients from Table 13 into Eq. (8), the following equation is derived: lnሺ𝛼ሻ = −3.688 +0.0011𝑓 + 0.051𝑡 − 0.01𝑑௙ + 0.00438𝜌஻. (7)

Then transforming back to the nonlinear form, the following equation is arrived at: 𝛼 = 𝑒൫ିଷ.଺଼଼ା଴.଴଴ଵଵ௙ା଴.଴ହଵ௧ି଴.଴ଵௗ೑ା଴.଴଴ସଷ଼ఘಳ൯, (8)
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where 𝛼 is the sound absorption coefficient, 𝑓 is the frequency in Hz, 𝑡 is the material thickness 
in mm, 𝑑௙ is the fibre diameter in μm, and 𝜌஻ is the bulk density in kg/m3. 

Table 13. Microsoft excel regression statistics on sound absorption coefficient 
Regression statistics     

Multiple R 0.889     
R square 0.792     

Adjusted R square 0.792     
Standard error 0.337     
Observations 4497     

ANOVA     
  df SS MS F Significance F 

Regression 4 1939.817 484.954 4268.736 0 
Residual 4492 510.318 0.114   

Total 4496 2450.136       
  Coefficients Standard error t Stat P-value  

Intercept –3.688 0.0409 –90.088 0  
Frequency 0.00109 8.59E-06 127.346 0  
Thickness 0.0509 0.00299 17.0344 4.21E-63  

Fibre diameter –0.00989 0.000443 –22.351 5.2E-105  
Bulk density 0.00437 0.000602 7.273 4.12E-13  

4.2. Model comparison using validation datasets 

In this section, the model developed in this research is compared to the currently existing 
models using both the internal dataset and an external dataset. From this, the model performance 
is analysed. 

Table 14 gives the model performance of the currently available sound absorption coefficient 
models for nonwoven fibrous materials. It can be seen that overall, the Mechel model performed 
best when compared to current models, with an average noise reduction coefficient percentage 
difference between the actual and predicted value of 30.86 %. MatLab was used to perform all 
the calculations of the various models. 

Table 14. Sound absorption coefficient historical models comparison on internal dataset 

Model NRC minimum % 
difference 

NRC maximum % 
difference 

NRC average % 
difference 

Allard [5] 19.85 79.23 46.38 
Berardi [14] 103.74 195.24 164.22 

Delany & Bazley [3] 15.82 57.63 41.43 
Del Rey [15] 203.66 293.66 232.15 

Egab [16] –643.53 –394.10 –480.38 
Mechel [17] 2.15 48.38 30.86 

Miki [18] 186.98 307.86 262.42 
Garai [19] 92.93 164.48 136.95 

Komatsu [20] 410.74 705.35 554.03 
Liu [21] 135.48 188.34 171.25 

Ramis [22] 108.45 333.35 160.03 
Voronina [4] 85.09 117.01 101.41 

The average prediction error for the developed sound absorption coefficient exponential model 
compared with the two current best-performing models can be seen in Fig. 9. It is immediately 
evident that the developed sound absorption coefficient exponential model outperforms the 
currently available models on both datasets.  
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Fig. 9. Viable model comparison on internal and external data 

The literature data used to produce the external data graph in Fig. 9, was obtained from the 
following reference: Ballagh [23], Garai and Pompoli [19], Li et al. [24], Liy et al. [21], and Yang 
et al. [25]. 

Fig. 10 visually demonstrates the prediction accuracy of the developed sound absorption 
coefficient exponential model on four different materials from the internal validation dataset. As 
can be seen, the exponential model closely follows the experimental data.  

 
Fig. 10. Prediction accuracy on validation dataset (solid lines represent experimental data  

and dotted lines represent model prediction) 

Furthermore, Figs. 11-12, demonstrates the prediction accuracy of the developed sound 
absorption coefficient exponential model against the currently existing best two models. 

The experimental data plotted in Fig. 12, was obtained from reference [21]. The data was 
captured from a nonwoven specimen that was manufactured from 77 % kapok fibre and 23 % 
polypropylene fibre. The nonwoven had a thickness of 6 mm a bulk density of 45.07 kg/m3 and a 
mean fibre diameter of 17.9 μm. It must be noted that it is very difficult to find data in the literature 
with similar properties to the material that was developed in this research. This is simply because 
no regression models have been developed for this range of materials.  

Thus, it can be seen from Figs. 11-12, that the sound absorption coefficient exponential model 
outperforms the current best models. Furthermore, the sound absorption coefficient exponential 
model also shows great flexibility in being able to accurately predict the sound absorption 
coefficient of a material that is made up of two different fibres, one being natural and the other 
being synthetic, as seen in Fig. 12. 
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Fig. 11. Model accuracy comparison using internal data 

 
Fig. 12. Model accuracy comparison using external data 

5. Conclusions 

From the onset of this research, the aim was to develop an empirical model that could 
accurately predicate the sound absorption coefficient of thin, low-density fibrous poroelastic 
materials in the low to mid-frequency range (100-2000 Hz). The reason is that currently, no 
existing empirical models can accurately predict in this range. Several empirical models were 
developed with the 3rd order polynomial regression attaining the highest adjusted R-squared 
value. Each developed model was then tested using a validation dataset, it was found that the 
exponential model outperformed the 3rd order polynomial regression model when it came to 
prediction accuracy on both the internal and external datasets. The reason for this may be that the 
3rd order polynomial regression model was overfit to the data, thus giving the illusion that it was 
the “best” model due to the high adjusted R-squared value. Thereafter, the exponential model was 
benchmarked against the historic models in the literature, it was found to perform substantially 
better on both the internal dataset and external dataset. Furthermore, the exponential model 
showed great flexibility since it was able to accurately predict the sound absorption coefficient of 
a material that was made up of two different fibres. This also proves that the sound absorption 
coefficient model is adequate and can be used to predict the sound absorption coefficient for 
different types of materials within the range that the model was built for. Also, the sound 
absorption coefficient exponential model does not require airflow resistivity to be used for 
predictions, whereas almost all other current models require airflow resistivity. Thus, no 
experimental testing is required when using this model. This is a great advantage over the current 
models and will save the users time and resources. Therefore, it can be concluded that an 
exponential empirical model that can accurately predict the sound absorption coefficient of thin, 
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low-density sound-absorbing materials was successfully developed using regression analysis. 
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