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Abstract. To address the problems of low detection accuracy of rolling bearings under different 
loads and the difficulty of effectively identifying the lack of labelled data, a rolling bearing fault 
diagnosis method combining GADF-DFT image coding and Multi-kernel domain coordinated 
adaptation network is proposed. Firstly, the vibration signal is converted into a two-dimensional 
image using GADF coding technology, and then the GADF image is converted into the frequency 
domain using discrete Fourier transform to extract deeper feature information. Combined with the 
multi-source domain adaptive method, the public feature extraction module is used to initially 
achieve feature mining of the image; the MK-MMD algorithm of the domain-specific adaptive 
module reduces the difference in feature distribution between the source and target domains; and 
the final classification difference minimization module reduces the problems caused by the 
classification errors that may be generated by the different domain classifiers due to the fact that 
the data samples are located near the category boundaries. The test uses the Case Western Reserve 
University dataset and divides the dataset with different operating conditions as the source and 
target domains, and the test results show that the proposed model demonstrates its effectiveness 
in responding to the complex operating condition changes in rolling bearing fault detection in 
multiple operating condition migration tasks, good adaptability and robustness, and is able to 
achieve accurate fault diagnosis under different operating conditions.  
Keywords: fault diagnosis, deep learning, domain adaptation, Gramian angular field. 

1. Introduction 

Rolling bearings are crucial in minimizing friction between shafts in rotating machinery; 
however, they are susceptible to failure under strenuous operating conditions [1]. The operational 
normalcy of these bearings is essential for the stable functioning of mechanical equipment, 
underscoring the necessity of prompt and efficient monitoring and diagnosis of their operational 
condition [2]. 

Traditionally, fault diagnosis techniques are categorized into signal processing [3] and 
data-driven methodologies [4]. Signal processing approaches, including wavelet decomposition 
[5], empirical modal decomposition [6], and variational modal decomposition [7], principally 
involve the extraction of fault characteristics by analyzing vibration signals across time, 
frequency, and time-frequency domains. While effective, these methods demand a considerable 
depth of expertise and experience for their implementation. In contrast, recent technological 
advancements have paved the way for data-driven methods, grounded in machine learning and 
deep learning, to supersede traditional signal processing techniques. Machine learning 
applications in fault diagnosis, such as support vector machines [8] and random forests [9], exhibit 
efficacy in fault identification. However, these approaches encounter two primary limitations: 
firstly, they rely heavily on feature vectors derived from signal processing for input, where the 
quality of feature extraction significantly influences fault classification outcomes [10]; secondly, 
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given that machine learning requires extensive labeled data for the supervised learning of fault 
characteristics, it faces challenges in industrial environments where unlabelled data is prevalent 
[11]. The evolution of computer vision and computational capabilities has notably advanced deep 
learning algorithms, particularly convolutional and residual neural networks, in machinery fault 
diagnosis. These advancements facilitate comprehensive, end-to-end intelligent diagnostics of 
rotating machinery. 

In the realm of real-world industrial settings, the task of diagnosing faults in bearings is met 
with numerous challenges, primarily due to the diverse nature of operational conditions. A primary 
concern is the variability in the distribution of bearing fault data, which can be attributed to 
differences in motor load torque. This variability complicates the provision of accurate data labels 
across a spectrum of operational scenarios, consequently impacting the quality and volume of 
available samples. Such a scenario hampers the ability to fulfill the data requisites essential for 
the training of deep learning models [12]. Furthermore, when deep learning models, which are 
initially trained on a limited set of domain-specific data, are employed in unfamiliar or varying 
contexts, there is a notable decline in their diagnostic efficacy [13]. Another significant issue is 
the direct incorporation of one-dimensional signals into network models. This approach may not 
effectively harness the inherent correlations within the data, thereby amplifying the uncertainty 
and intricacy involved in diagnosing bearing faults. Given these challenges, exploring novel data 
processing methodologies that enable precise fault diagnosis on partially labeled data emerges as 
a crucial area of research. 

In light of significant advancements in image recognition and classification [14], the 
conversion of one-dimensional vibration signals into two-dimensional images has emerged as a 
promising approach for bearing fault diagnosis. This method leverages the strengths of deep 
convolutional neural networks in extracting features from two-dimensional imagery. Such a 
conversion essentially reframes the fault diagnosis of one-dimensional time-series signals as an 
image classification task. For instance, Cheng Jie [15] et al. successfully automated bearing fault 
diagnosis by transforming vibration signals into recurrence plots (RP) for subsequent pattern 
recognition by classifiers. Similarly, Tong Yu [16] et al. employed Gramian Angular Difference 
Fields (GADF) to encode vibration signals. This encoding facilitated the identification of temporal 
correlations and the generation of feature maps for input into convolutional neural networks, 
thereby enabling adaptive fault feature extraction and classification for rolling bearings. However, 
these methods are not without limitations. The creation of time-frequency diagrams from vibration 
signals hinges on expert judgment, with parameter selection critically impacting the 
comprehensive representation of signal information in the resultant images. Additionally, images 
typically comprise various components-periodic, non-periodic, and noise-intertwined within the 
spatial domain, complicating direct analysis and separation. While the spatial domain offers 
insights into the visual aspects of images, it does not readily yield deeper feature information. 
Furthermore, the effectiveness of conventional deep learning techniques varies when diagnosing 
rolling bearing defects of different sizes, composite defects, and under variable speed conditions. 
Consequently, while the approach of converting vibration signals into two-dimensional images 
within a deep learning framework shows promise, addressing these challenges remains essential 
to enhance the diagnostic accuracy and applicability. 

Deep learning methods typically need to satisfy two conditions to achieve high accuracy [18]: 
first, the data in the training and test sets must be identically distributed; second, sufficient data 
annotation is required. However, in real industrial scenarios, these two conditions are often 
difficult to satisfy simultaneously. Due to the diversity of working environments, there are 
significant differences in the vibration data distribution of bearings, making it difficult to apply 
traditional deep learning methods. At the same time, since the bearings are in a healthy state most 
of the time, with few faults occurring, it is difficult to collect enough fault data and corresponding 
labels, which further restricts the application of traditional deep learning methods in complex 
working conditions. To overcome the limitations of traditional deep learning methods, the 
research of migration learning in the field of fault diagnosis has been deepened [19], especially 
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domain adaptive, which focuses on learning and bridging the differences between the source and 
target domains, mainly using the annotated data in the source domain to train a generalised fault 
diagnosis model applicable to the samples in the target domain. It adapts the model trained on the 
source domain to the task in the target domain by mapping the source and target domain samples 
to a shared feature space, minimizing the difference in feature distribution between them, and 
mining their similar features. In addition, in the absence of labeled data in the target domain, the 
unsupervised domain adaptive approach without labels can effectively use the knowledge of the 
source domain to enhance the learning capability of the target domain. This approach solves the 
challenge of insufficient labeled information in the target domain by migrating existing 
knowledge. 

Contemporary research in domain adaptation primarily addresses single-source unsupervised 
domain adaptation challenges. While single-source domain adaptation methods are effective in 
scenarios where data distribution is largely consistent, they may fall short in complex working 
environments. In such settings, the data and insights gleaned from a single source may not 
adequately represent the target domain's diversity and complexity [20]. This limitation becomes 
evident when these methods struggle to generalize effectively to target domains that significantly 
differ from the source domain. On the other hand, multi-source domain adaptation offers a robust 
alternative. By amalgamating data and knowledge from various source domains, multi-source 
methods provide a richer and more varied pool of information. Each source domain contributes 
unique insights reflecting different conditions and characteristics, thereby enabling a more 
nuanced understanding of the target domain’s complexity. Consequently, multi-source domain 
adaptation is particularly adept at navigating complex and variable work conditions, proving 
especially beneficial when bridging substantial disparities between source and target domains. 

Based on the above research foundation, this paper proposes a multi-source domain adaptive 
migration learning model based on Multi-Kernel Domain Coordinated Adaptation Network 
(MKDCAN) based on GADF-DFT. First, the one-dimensional vibration signal is converted into 
a two-dimensional image by the GADF algorithm, which has a unique mapping relationship with 
the time series before the conversion. Then, the Discrete Fourier Transform (DFT) is used and the 
deep feature information in the image can be mined more deeply by frequency domain analysis. 
Finally, after processing and transforming the image data, these data are used as source domain 
inputs to achieve accurate fault diagnosis by integrating diagnostic knowledge from multiple 
source domains using MKDCAN. 

2. GADF-DFT 

2.1. Gramian angular field 

Gram angle field coding is an image coding technique that converts a one-dimensional time-
series signal into a two-dimensional image by means of a dimensional transformation of the Gram 
matrix data in polar coordinates. GADF coding is particularly suitable for the analysis of vibration 
signals due to its ability to efficiently measure correlations between points in the signal over time 
by means of a trigonometric transformation of the angular difference, and by transforming the 
image texture to visualization of these correlations by transforming the image texture, preserving 
the full information of the vibration signal as well as enhancing the identification of faults in the 
signal [21]. 

First, the collected data set 𝑋 is partitioned into 𝑛 collection points based on the collection 
frequency of the vibration signal, i.e. 𝑋 = ሼ𝑥ଵ, 𝑥ଶ,⋯ , 𝑥௡ሽ, where the deflation process is 
performed on 𝑋 to normalise all data in 𝑋 to between [–1, 1], where 1 ≤ 𝑖 ≤ 𝑛: 

𝑋̃ = ሾ𝑥௜ − max(𝑋)ሿ + ሾ𝑥௜ − min(𝑋)ሿmax(𝑋) − min(𝑋) . (1)
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Fig. 1. GADF image encoding process 

The deflated value 𝑋̃ is then encoded as the angular cosine α and the time node 𝑡௜ is encoded 
as the radius 𝑅. 𝑅 is the distance from the locus of the polar coordinate system to the origin of the 
polar coordinates: 

ቐ𝛼 = arccos(𝑥̃௜) ,    − 1 ≤ 𝑥̃௜ ≤ 1,     𝑥̃௜ ∈ 𝑋̃,𝑅 = 𝑡௜𝑁 ,     𝑡௜ ∈ 𝑁.  (2)

In the above equation, the unit length of the polar coordinate system is divided equally into 
equal parts, and in Eq. (2) the angle 𝛼 in polar coordinates corresponds to the data points in the 
time series, and this correspondence preserves the temporal information of the vibration signal. In 
this way, the radius in polar coordinates can be used to determine the time value of each point in 
the time series. 

Finally, by applying the trigonometric difference angle formula between each point, it is 
possible to reflect the temporal correlation of each point at different time intervals. This method 
uses changes in angle to quantify the relationship between different time points in a time series, 
thus revealing the temporal structure and dynamic properties within the signal: 

𝐺 = ൥sin (𝛼ଵ − 𝛼ଵ) ⋯ sin (𝛼ଵ − 𝛼௡)⋮  ⋮sin (𝛼௡ − 𝛼ଵ) ⋯ sin (𝛼௡ − 𝛼௡)൩ = ට𝐼 − ൫𝐗̃ଶ൯் ⋅ 𝐗̃ − 𝐗்̃ ⋅ ඥ𝐼 − 𝐗̃ଶ. (3)

The above transformation transforms the time series into a two-dimensional feature image that 
is symmetric along the diagonal. In order to create a symmetric two-dimensional feature image 
and retain the temporal features within the time series, the specific implementation process is 
shown in Fig. 1. 

2.2. Discrete Fourier transform of images 

A one-dimensional signal is essentially a combination of several sinusoids of different 
frequencies, and the Fourier transform is the conversion of these signals from the time domain to 
the frequency domain, a process reflected in the following equation: 

𝐹(𝜔) = න  𝑓(𝑡)𝑒ି௜ఠ௧𝑑𝑡ାஶ
ିஶ . (4)

A two-dimensional signal can be regarded as the superposition of multi-frequency sinusoidal 
plane waves, and a two-dimensional image is essentially composed of a discrete and finite number 
of pixel points, so the two-dimensional Fourier transform of the image must be applied in a 
discrete manner, and the transform equation is shown in Eq. (5): 
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𝐹(𝜇, 𝑣) =   ෍ ෍𝑓(𝑥,𝑦)𝑒ି௝ଶగቀఓ௫ெା௩௬ே ቁேିଵ
௬ୀ଴

ெିଵ
௫ୀ଴ , (5)

where 𝑓(𝑥,𝑦) is the pixel value of (𝑥,𝑦) in the spatial domain coordinates of the image, 𝐹(𝜇, 𝑣) 
is the spectrum of the image in the frequency domain, 𝑀 and 𝑁 are the dimensions of the image. 

Images contain periodic components, non-periodic components and noise, and it is difficult to 
analyze and separate these components directly from the spatial domain. Converting an image 
from the spatial domain to the frequency domain for analysis provides a different perspective for 
understanding and analyzing the image content; in the frequency domain, the image is represented 
as a collection of components with different frequencies, making it easier to distinguish and extract 
different features in the image. 

3. MKDCAN 

The migration learning framework of Multi-Kernel Domain Harmoniser and Adaptation 
Network (MKDCAN) model takes advantage of the deep neural network model with the 
advantage of mining the deep features of the data, and adopts the deep neural network model for 
migration learning feature extraction for multi-source domain fault diagnosis. In turn, a 
mechanical fault diagnosis method based on multi-source domain deep migration learning is 
proposed, and its fault diagnosis model is shown in Fig. 2. The fault diagnosis model of MKDCAN 
mainly consists of three parts: the public feature extraction module, the domain-specific adaptive 
module, and the classification difference minimisation module. 

 
Fig. 2. The structure of MKDCAN 

3.1. Public feature extraction module 

In the public feature extraction part, a public subnetwork is used to extract the public 
representation of all the domains that map the 2D image from the original feature space to the 
public feature space. The public feature extraction module uses the ResNet18 network, and to 
ensure that the model can extract as many fusion features as possible under different operating 
conditions, the network shares weights and biases, thus reducing the computational cost. The 
specific parameters are shown in Table 1. 
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Table 1. The structure of public feature extraction module  
Module Layer Output shape 
ResNet Input layer 3×224×224 

 Conv2d-BN-ReLU 64×112×112 
 MaxPool2d 64×56×56 
 Sequential 64×56×56 
 Sequential 128×28×28 
 Sequential 256×14×14 
 Sequential 512×7×7 

AddNet Conv2d-BN-ReLU 256×7×7 
 Conv2d-BN-ReLU 256×7×7 
 Conv2d-BN-ReLU 256×7×7 
 AvgPool2d 256×1×1 
 Output layer 10 

3.2. Domain-specific adaptive module 

The domain-specific adaptive module is designed to ensure that each pair of source and target 
domain data is mapped to a specific feature space. Given a batch image 𝑥ଶ from source domain ൫𝑋௦௝,𝑌௦௝൯ and 𝑋௦௝ batch image 𝑋௧ from target domain, the domain-specific adaptive module 
receives the public features 𝐹൫𝑋௦௝൯ and 𝐹(𝑋௧) from the public feature extraction module. 𝑁 
non-shared subnetworks of domain-specific features are then extracted for each source domain ൫𝑋௦௝,𝑌௦௝൯, mapping each pair of source and target domains to a specific feature space. The main 
goal of domain-specific adaptation is to learn domain-invariant feature representations that reduce 
the differences in feature distributions across domains by using different distance metrics, 
common metrics are Maximum Mean Discrepancy (MMD) loss [22], Correlation Alignment 
(CORAL) [23], Multi-Kernel Maximum Mean Discrepancy (MK-MMD) loss [24] and so on. 

MK-MMD is a method for measuring the difference between two probability distributions 
based on the principle of using a set of kernel functions to compute the mean difference between 
two data distributions. Compared to MMD, which use only a single kernel for transformation, 
MK-MMD enhances its effect by linearly combining multiple kernels to obtain an optimal kernel. 
This multi-kernel approach is able to combine the strengths of different kernels to capture and 
reflect the effects of MMD in a more comprehensive way, making it more effective when dealing 
with complex data distributions. The MK-MMD method is chosen for the domain-specific 
adaptive module to measure the distributional differences between domains with the following 
formula: 

𝑀𝐾 −𝑀𝑀𝐷ଶ൫𝑋௦௝,𝑋௧൯ = ∥∥∥∥∥1𝑚෍ ௠
௜ୀଵ  𝜙௞൫𝑥௜௦ೕ൯ − 1𝑛෍  ௡

௝ୀଵ  𝜙௞൫𝑥௝௧൯∥∥∥∥∥ுೖ
ଶ , (6)

where 𝜙௞ is the feature mapping to the regenerated kernel Hilbert space 𝐻௞ with kernel 𝑘, 𝑚 and 𝑛 are the number of samples in the source domain 𝑋௦௝ and the target domain 𝑋௧. 
3.3. Classification difference minimization module 

The classification difference minimization module uses a softmax classifier 𝐶, which is a 
multi-output network of 𝑁 domain-specific predictors ൛𝐶௝ൟ௝ୀଵே , after receiving the domain 
invariant features processed by the source domain specific domain adaptive module 𝐻൫𝐹(𝑥)൯. For 
each classifier, the classification loss is increased by calculating the cross-entropy, for 𝑁 source 
domain knowledge, its cross-entropy classification loss is calculated separately and summed to 
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obtain Eqs. (7): 

𝐿𝑜𝑠𝑠௦ௗ௖ = ෍ ே
௝ 𝐸௫∼௑ೞೕ𝐽 ቆ𝐶௝ ቆ𝐻௝ ൬𝐹 ቀ𝑥௝௦ೕቁ൰ቇ ,𝑦௝௦ೕቇ. (7)

Furthermore, different domain classifiers may produce classification errors when samples in 
the target domain are close to category boundaries. This is because each domain-specific classifier 
is optimized for its source domain, it may not be able to predict accurately when confronted with 
data in the target domain that has a different distribution from that of the source domain, 
highlighting the importance of category boundary alignment in both migration learning and 
domain adaptation tasks. To address this issue, the literature [25] proposes a multi-source fusion 
classifier to minimize the differences between all classifiers: 

𝐿𝑜𝑠𝑠ௗ௜௦௖ = 2𝑁 × (𝑁 − 1) ෍  ேିଵ
௝ୀଵ   ෍  ே

௜ୀ௝ାଵ  𝐸௫∼௑೟ ቀቚ𝐶௜ ቀ𝐻௜൫𝐹(𝑥௞)൯ቁ − 𝐶௝ ቀ𝐻௝൫𝐹(𝑥௞)൯ቁቚቁ. (8)

In summary, the total loss term of the MKDCAN model is made up of 3 components, which 
are denoted as follows: 𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠௦ௗ௖ + 𝜆𝐿𝑜𝑠𝑠௠௞ି௠௠ௗ + 𝛾𝐿𝑜𝑠𝑠ௗ௜௦௖, (9)

where 𝜆 and 𝛾 are the weights of 𝐿𝑜𝑠𝑠௠௞ି௠௠ௗ and 𝐿𝑜𝑠𝑠ௗ௜௦௖ respectively, and the model is mainly 
trained using the standard stochastic gradient descent (SGD) algorithm. In order to reduce the 
effect of noise at the beginning of training, a strategy of gradual adaptation is used instead of 
keeping the adaptation factors 𝜆 and 𝛾 constant. By gradually increasing 𝜆 and 𝛾 from 0 to 1, 
tuning is performed according to the formula 𝜆 = 𝛾 = ଶୣ୶୮ (ିఏ௣) − 1, which remains fixed 
throughout the experiment [26]. This gradual tuning approach significantly improves the 
parameter stability of MKDCAN and also simplifies the model selection process. 

4. Bearing fault diagnosis based on GADF-DFT and MKDCAN 

The specific steps of the bearing fault diagnosis method based on GADF-DFT and MKDCAN 
are as follows: 

1. The acquired signal is converted to a GADF image, and the GADF image is discrete Fourier 
transformed. Fig. 3 shows the specific conversion. 

2. The transformed image is divided into source and destination areas according to different 
working conditions. 

3. For each iteration 𝑡, where 𝑡 goes from 1 to 𝑇, set the number of training iterations 𝑇: 
a. Take a random sample of 𝑚 images from one of the 𝑁 source domains, denoted as ቄ𝑥௦ೕ௜ ,𝑦௦ೕ௜ ቅ௜ୀଵ௠

. 

b. Take a sample of 𝑚 images from the target domain, denoted as ൛𝑥௧௜ൟ௜ୀଵ௠ . 
c. The source domain samples and target domain samples are input to the public feature 

extraction module to obtain the common potential representations 𝐹 ቀ𝑥௦ೕ௜ ቁ and 𝐹൫𝑥௧௜൯. 
d. The common potential representations of the source samples are input into the domain-

specific adaptive module to obtain the domain-specific representation 𝐻௝ ൬𝐹 ቀ𝑥௦ೕ௜ ቁ൰ of the source 
samples. 

e. Feed the domain-specific representations of the source samples into the domain-specific 
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classification module to obtain 𝐶௝ ቆ𝐻௝ ൬𝐹 ቀ𝑥௦ೕ௜ ቁ൰ቇ and classify them. 

f. Feed the common latent representations of the target samples into all domain-specific 
adaptive modules to obtain domain-specific representations of the target samples 𝐻ଵ ቀ𝐹൫𝑥௧ଵ௜ ൯ቁ , … ,𝐻ே ቀ𝐹൫𝑥௧ே௜ ൯ቁ. 

g. The MK-MMD loss is calculated using 𝐻௝ ൬𝐹 ቀ𝑥௦ೕ௜ ቁ൰ and 𝐻௝ ቀ𝐹൫𝑥௧ଵ௜ ൯ቁ. Use 𝐻ଵ ቀ𝐹൫𝑥௧ଵ௜ ൯ቁ , … ,𝐻ே ቀ𝐹൫𝑥௧ே௜ ൯ቁ to calculate the loss of differences between classification modules. 
h. Update the public feature extractor 𝐹, several domain specific adaptive modules 𝐻ଵ, … ,𝐻ே 

and several classification modules 𝐶ଵ, … ,𝐶ே to obtain the total loss. 

 
Fig. 3. Converting GADF images to GADF-DFT images 

5. Experiment 

5.1. Dataset introduction 

The data set used for the experiment is the bearing failure data set from Case Western Reserve 
University (CWRU). The experimental data were collected by accelerometers mounted on the 
drive end and fan end of the motor, the bearing type used on the drive end was 6205-2RS JEM 
SKF deep groove ball bearings, the bearing type used on the fan end was 6203-2RS JEM SKF 
deep groove ball bearings, and the rotational speeds of the motor included 1730, 1750, 1772, 
1797 r/min, the corresponding motor load is 0, 1, 2, 3hp (1 hp = 0. 746 kW), the sampling 
frequency includes 12 kHz and 48 kHz, the data used in this section of the experiment is the data 
at 12 kHz sampling frequency, the sampling time is 10s, the test equipment is shown in Fig. 4. 

 
Fig. 4. CWRU bearing data acquisition device 

In the CWRU dataset, the bearing failure diameters selected in this paper are 0.1778, 0.3556 
and 0.5334 mm, respectively, and the CWRU dataset includes the failure types of inner race fault, 
outer race fault and rolling ball fault, as well as the normal condition data, which is 10 types in 
total. The whole dataset is divided into training dataset and test dataset, which are shown in 
Table 2. Each image comprises 512 sample points, representing the length of each vibration signal 
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segmentation interval. This ensures that 300 samples are constructed for each type of signal 
feature, with all samples labelled using one-hot coding to distinguish between ten different bearing 
operating states. Furthermore, the dataset is divided in a ratio of 70 % training set and 30 % testing 
set, which ensures the availability of a standardised and high-quality database for the training and 
testing of the deep learning model. 

Table 2. Classification of bearing fault 
Label Bearing states Fault diameter / mm Sample length 

0 Rolling ball fault 0.1778 512 
1 Rolling ball fault 0.3556 512 
2 Rolling ball fault 05334 512 
3 Inner race fault 0.1778 512 
4 Inner race fault 0.3556 512 
5 Inner race fault 05334 512 
6 Normal * 512 
7 Outer race fault 0.1778 512 
8 Outer race fault 0.3556 512 
9 Outer race fault 05334 512 

5.2. Feasibility experiment on image coding 

In order to evaluate the effectiveness and performance of the GADF-DFT image coding 
technique in rolling bearing fault detection, several experimental methods are designed for 
comparative analysis in this study. The specific methods are as follows: 

1. Using GADF images, the images are fed into the MKDCAN model. 
2. Using GADF-DFT images and inputting the images to the MKDCAN model. 
3. The vibration signal is converted to Gramian Angular Summation Field (GASF) and input 

to the MKDCAN model. 
4. Perform a Discrete Fourier Transform on the GASF and input the image into the MKDCAN 

model. 
5. Convert the vibration signal to a Recurrence Plot (RP) and input it to the MKDCAN model. 
6. Perform a Discrete Fourier Transform on the RP and use the result again as input to the 

model. 
Image coding for different methods as shown in Fig. 5. 

 
a) GADF 

 
b) GADF-DFT 

 
c) GASF 

 
d) GASF-DFT 

 
e) RP 

 
f) RP-DFT 

Fig. 5. Image coding for different methods 

The data used in this experiment is from the CWRU dataset, which is divided into datasets 
according to different operating conditions and fault types. The resolution of the images generated 
is 256×256 pixels. For the same experimental scenario, the source and target domain data are input 
according to the same image coding method. 

The accuracy results of the test set are shown in Fig. 6, with the increase of the number of 
iterations, except for the model with RP-coded images as input, the other models reach 
convergence at about 10 iterations, and their fault detection accuracy curves all tend to be stable, 
compared with other coding methods, the model of the RP image coding method fluctuates more, 
which may be due to the fact that RP image coding works by analyzing the reproducibility of the 
time series between the different points in time.  
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GADF and GASF can better capture the overall trend and periodicity characteristics of the 
data by taking into account the relative angles of the time points in the time series, and GADF and 
GASF are better able to capture the fundamental modes and frequency components of the vibration 
signals, whereas RP may emphasize more the dynamic interactions and variations, which may not 
be the most stable feature to distinguish between different fault types; Furthermore, in 
multi-source domain adaptation, the model needs to extract and fuse useful information from 
different source domains and apply it to the target domain, and if the features captured by RP 
coding vary significantly between source domains or with the target domain, the model may have 
difficulty in finding a stable domain-invariant representation. 

 
Fig. 6. Comparison of different image coding methods 

Among the models with other coding methods as input, GADF-DFT image coding has the 
highest fault diagnosis accuracy, with fault recognition accuracy up to 99.29 %, and the model is 
more stable. It can be clearly seen from the above data sets that, first of all, compared with GASF 
coding, GADF coding has a better effect because GADF constructs images by calculating the 
angle difference between different time points in the time series, which can better reveal the 
dynamic changes of vibration signals and potential fault characteristics. Secondly, compared with 
GADF coding, GADF-DFT coding has a better detection effect because the GADF-DFT coding 
method can effectively distinguish periodic and non-periodic components in images by using 
two-dimensional discrete Fourier transform conversion from the spatial domain to the frequency 
domain. This conversion allows us to view images from the perspective of frequency, revealing 
the details and characteristics that are difficult to identify in the direct spatial representation, and 
the analysis is carried out in the frequency domain, so that the signal components that were 
originally mixed in the spatial composite image can be effectively separated, thus strengthening 
the extraction and recognition of the key features of fault diagnosis. Therefore, through the 
introduction of frequency domain analysis, GADF-DFT coding not only improves the acquisition 
of the original signal characteristics, but also improves the ability to distinguish the bearing state. 

5.3. Comparison experiment between single-source domain and multi-source domain 

This section will test the four different load conditions of the bearing failure data set, labelled 
Hp0, Hp1, Hp2 and Hp3 respectively (corresponding to the speed of 1797 rpm, 1772 rpm and 
1750 rpm, 1730 rpm). Assume that the multi-source domain task is set to Hp0-Hp1→Hp2, which 
means that Hp0 and Hp1 are both labelled source domains, Hp2 is unlabeled target domains, and 
the corresponding single-source domain tasks are set to Hp0→Hp2 and Hp1→Hp2.The 
comparison schemes and results of the tests in this section are shown in Table 3 and Fig. 7. 

This analysis reveals that in transfer learning scenarios encompassing multiple operating 
conditions, the model's classification accuracy generally surpasses that of migrations from a single 
source domain to the target domain. More concretely, models trained on data amalgamated from 
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two distinct operating conditions exhibited an increase in classification accuracy by as much as 
3.30 percentage points compared to those trained on data from a single condition. 

Furthermore, a comparative analysis of the classification accuracy evolution in tasks migrated 
from a single case versus multiple cases underscores the enhanced performance stability offered 
by multi-source transfer learning methods. This observation underscores the criticality of 
integrating data from diverse conditions in multi-source migration learning. It not only contributes 
to heightened accuracy but also significantly bolsters the stability of the model. 

Table 3. Basic size and style requirements 
Multi-source domain 

task 
Average 
accuracy 

Single-source domain 
task 

Average 
accuracy 

Percentage 
increase 

Hp0-Hp1→Hp2 99.29 % Hp0→Hp2 
Hp1→Hp2 

98.28 % 
98.67 % 

0.10 % 
0.06 % 

Hp0-Hp1→Hp3 98.34 % Hp0→Hp3 
Hp1→Hp3 

97.62 % 
97.60 % 

0.74 % 
0.76 % 

Hp0-Hp2→Hp1 99.06 % Hp0→Hp1 
Hp2→Hp1 

98.25 % 
98.40 % 

0.82 % 
0.67 % 

Hp0-Hp2→Hp3 99.31 % Hp0→Hp3 
Hp2→Hp3 

96.14 % 
98.77 % 

3.30 % 
0.55 % 

Hp0-Hp3→Hp1 99.40 % Hp0→Hp1 
Hp3→Hp1 

98.68 % 
97.72 % 

0.73 % 
1.72 % 

Hp0-Hp3→Hp2 99.25 % Hp0→Hp2 
Hp3→Hp2 

98.50 % 
98.47 % 

0.76 % 
0.79 % 

Hp1-Hp2→Hp0 99.13 % Hp1→Hp0 
Hp2→Hp0 

98.76 % 
98.35 % 

0.37 % 
0.79 % 

Hp1-Hp2→Hp3 99.34 % Hp1→Hp3 
Hp2→Hp3 

97.33 % 
98.32 % 

2.07 % 
1.03 % 

Hp1-Hp3→Hp0 98.73 % Hp1→Hp0 
Hp3→Hp0 

97.45 % 
97.12 % 

1.31 % 
1.66 % 

Hp1-Hp3→Hp2 98.97 % Hp1→Hp2 
Hp3→Hp2 

98.91 % 
98.12 % 

0.06 % 
0.86 % 

Hp2-Hp3→Hp0 99.32 % Hp2→Hp0 
Hp3→Hp0 

98.99 % 
98.01 % 

0.33 % 
1.34 % 

Hp2-Hp3→Hp1 99.40 % Hp2→Hp1 
Hp3→Hp1 

99.03 % 
98.70 % 

0.37 % 
0.71 % 

5.4. Comparison of MKDCAN with other multi-source domain methods 

In order to evaluate the performance of the proposed MKDCAN method in mechanical fault 
diagnosis, the method is compared with several transfer learning algorithms in the current field. 
The comparison algorithm including joint distribution (JDA), cointegration relationship alignment 
(CORAL), source domain merging to net adaptation (MSDAN), multi-source vs. net adaptation 
(MAAN), and domain vs. net adaptation (DANN). By comparing the same 12 types of 
multi-source domain transfer learning tasks, the accuracy and generalization ability of these 
methods in different fault diagnosis tasks can be comprehensively evaluated. In particular, the 
average classification accuracy of the proposed method on various tasks was 99.13 %, which was 
significantly higher than the average accuracy of the JDAs, CORALs, MSDANs, MAANs and 
DANNs, which was 89. 03 %, 87.15 %, 91.09 %, 92.32 % and 97.72 %, respectively. This 
significant performance difference indicates that the proposed method can abstract and exploit 
cross-domain features more effectively in the face of multi-source domain data, thus improving 
the accuracy of fault diagnosis and the stability of the model. 

Fig. 8 shows the classification effectiveness of the multi-source domain adaptive algorithm 
MKDCAN and other multi-source domain adaptive algorithms in the bearing fault diagnosis task. 
From Figs. 4-3(f), it can be observed that the MKDCAN algorithm proposed in this paper achieves 
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the highest accuracy in fault type diagnosis, effectively reducing the number of misclassified 
samples. This result demonstrates the superior performance of MKDCAN in dealing with the 
problem of adaptive fault diagnosis in multi-source domains. 

 
a) Hp0→Hp2 

 
b) Hp1→Hp2 

 
c) Hp0-Hp1→Hp2 

Fig. 7. Visualization of single-source and multi-source domain feature distributions 

Table 4. Comparison of MKDCAN with other multi-source domain methods 
Multi-source domain task CORAL JDA MSDAN MAAN DANN MKDCAN 

Hp0-Hp1→Hp2 90.34 % 93.41 % 92.69 % 89.98 % 96.01 % 99.29 % 
Hp0-Hp1→Hp3 87.67 % 87.78 % 90.05 % 91.65 % 97.37 % 98.34 % 
Hp0-Hp2→Hp1 88.92 % 92.49 % 93.72 % 94.53 % 98.46 % 99.06 % 
Hp0-Hp2→Hp3 89.05 % 89.15 % 91.36 % 93.17 % 98.13 % 99.31 % 
Hp0-Hp3→Hp1 83.78 % 87.85 % 90.58 % 91.29 % 98.95 % 99.40 % 
Hp0-Hp3→Hp2 82.99 % 85.66 % 88.34 % 90.70 % 99.60 % 99.25 % 
Hp1-Hp2→Hp0 88.53 % 91.43 % 93.07 % 95.64 % 98.78 % 99.13 % 
Hp1-Hp2→Hp3 87.36 % 85.94 % 89.66 % 90.98 % 97.59 % 99.34 % 
Hp1-Hp3→Hp0 87.60 % 89.42 % 90.40 % 92.26 % 97.77 % 98.73 % 
Hp1-Hp3→Hp2 88.31 % 88.98 % 90.93 % 92.05 % 97.67 % 98.97 % 
Hp2-Hp3→Hp0 84.83 % 86.10 % 89.78 % 91.75 % 95.26 % 99.32 % 
Hp2-Hp3→Hp1 86.45 % 90.17 % 92.45 % 93.81 % 97.04 % 99.40 % 

Average accuracy 87.15 % 89.03 % 91.09 % 92.32 % 97.72 % 99.13 % 

6. Comparative experiments with different datasets 

In order to thoroughly verify the generalizability of the MKDCAN model proposed in this 
paper, fault diagnosis experiments on different datasets are performed in this section. By testing 
the model on multiple datasets, the performance of MKDCAN can be more comprehensively 



FAULT DIAGNOSIS ALGORITHM BASED ON GADF-DFT AND MULTI-KERNEL DOMAIN COORDINATED ADAPTIVE NETWORK.  
CAIMING YIN, SHAN JIANG, WENRUI WANG, JIANGSHAN JIN, ZHENMING WANG, BO WU 

 JOURNAL OF VIBROENGINEERING 13 

evaluated to ensure that it can still maintain its efficient and accurate fault diagnosis capability in 
a variable real-world application environment. In this section, the bearing dataset from the 
University of Paderborn (PU) is selected to verify the fault diagnosis performance of MKDCAN 
on different datasets. 

 
a) CORAL 

 
b) JDA 

 
c) MSDAN 

 
d) MAAN 

 
e) DANN 

 
f) MKDCAN 

Fig. 8. Visualization of single-source and multi-source domain feature distributions 

The PU bearing data set is a rolling bearing type 6203, which includes three states of normal 
operation, inner ring failure and outer ring failure, the sampling frequency of the sample is set to 
64 kHz, and 15 sets of bearing data are selected to cover the vibration of bearings under four load 
conditions, and the data of inner ring failure, outer ring failure and the three states of normal 
operation have been recorded in each load condition, and the data of the PU data set are shown in 
Table 5. The actual failure information from the accelerated fatigue test at a running speed of 
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1500 rpm in this data set was selected for the experiment, and the radial forces F experienced by 
the bearings were 1000 N and 400 N, and the load torques 𝑀 were 0.7 N·m and 0.1 N·m. The 
length of each image in this dataset is set to 500, and the training set and test set are divided 
according to the ratio of 7:3. The specific classification is shown in Table 6 and the data set is 
divided into four types of data sets according to different working conditions. For example, the 
working condition N15_M07_F10 means that the data set is collected at the operating speed of 
1500 rpm, the loading torque of 0.7 N·m, and the radial force of the bearing is 1000 N.  

Table 5. PU rolling bearing dataset 
Fault type IR OR Normal 
Fault label 0 1 2 

Bearing designation 

KA04 KI04 K001 
KA15 KI14 K002 
KA16 KI16 K003 
KA22 KI18 K004 
KA30 KI21 K005 

Table 6. Classification of PU bearing datasets 
Fault type IR OR Normal Working condition Fault label 0 1 2 

Ⅰ Train 700 700 700 N15_M07_F10 Test 300 300 300 

Ⅱ Train 700 700 700 N15_M01_F10 Test 300 300 300 

Ⅲ Train 700 700 700 N15_M07_F04 Test 300 300 300 

The experimental settings in this section refer to the previous section, and the experimental 
results are shown in Table 7. As can be seen from the table, the MK-IMFSAN method performs 
well in all the comparative experiments, with an average fault diagnosis accuracy of 97.36 %, 
which ranks first among all the comparative methods. 

 
a) CORAL 

 
b) JDA 

 
c) MSDAN 

 
d) MAAN 

 
e) DANN 

 
f) MKDCAN 

Fig. 9. Classification effectiveness of domain adaptive algorithms on the PU dataset 

Fig. 9 shows the specific classification effects of the six domain adaptive methods, and these 
plots further confirm that MKDCAN performs significantly better than the other algorithms. The 
experimental results confirm that the MKDCAN algorithm maintains its good recognition 
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accuracy, high generalization and robustness in dealing with multi-source domain adaptive fault 
diagnosis problems across datasets. 

Table 7. Experimental results of cross-domain diagnosis under PU dataset 
Multi-source domain task CORAL JDA MSDAN MAAN DANN MKDCAN 

Ⅰ+Ⅱ→Ⅲ 86.98 % 88.96 % 91.04 % 93.39 % 97.54 % 98.52 % 
Ⅰ+Ⅲ→Ⅱ 87.54 % 88.84 % 91.29 % 93.12 % 97.49 % 98.19 % 
Ⅱ+Ⅲ→Ⅰ 85.16 % 86.27 % 88.37 % 90.40 % 94.79 % 95.38 % 

Average accuracy 86.56 % 88.02 % 90.23 % 92.30 % 96.62 % 97.36 % 

7. Conclusions 

In this paper, an innovative multi-source domain adaptive migratory learning model, 
GADF-DFT-based multi-kernel domain coordinated adaptive network is proposed, which 
converts one-dimensional vibration signals into two-dimensional images and performs deep 
frequency domain analysis. This method not only overcomes the limitations of traditional deep 
learning methods under complex working conditions, but also improves the accuracy and 
applicability of fault diagnosis. The experimental results show that the GADF-DFT image coding 
method has stronger fault-specific recognition, while compared with other multi-source domain 
adaptive methods, MKDCAN achieves an average fault diagnosis accuracy of 99.13 % in the case 
of missing labels, which has better recognition accuracy and robustness. Meanwhile, the 
experimental results under different datasets show that MKDCAN has better classification effect, 
which further validates the generalization and robustness of MKDCAN model. 
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