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Abstract. Continuous developments in the field of 3D printing techniques and equipment have 
enabled their usage in the field of electronics structures, circuits, and device fabrication in addition 
to many other fields. This advancement has enabled the potential fabrication of sensors using 
silicon-based micro or even Nanoelectronics. Currently, the manufacturing and packaging of such 
devices and structures are heavily reliant on lithography, which can be slow and can involve 
substantial processing requirements. In this paper, a temperature-sensing Interdigital Transducer 
(IDT) structure was designed and fabricated using Direct Laser Writing (DLW) based on 
Two-Photon Lithography (TPL), which is a high-resolution 3D printing technology. The TPL in 
a positive photoresist was combined with the physical vapor deposition method and the lift-off 
process to create gold IDT microstructures. The developed sensing structures were characterized 
using a network analyzer to determine the resonance frequency and its dependence on the 
temperature changes. The results showed that the IDT structures exhibit a linear response toward 
the changes in temperature with an average sensitivity of 0.123 MHz/°C. The most important 
advantage in producing the IDT structure with the additive manufacturing technique is that a very 
small-sized structure is produced error-free and efficiently.  
Keywords: surface acoustic waves sensor, 3D lithography, two-photon lithography, additive 
manufacturing, temperature sensor. 

1. Introduction 

The application-based technological developments with customer requirements accelerated 
the development of sensor technology in many fields. Sensors are the main mechatronic system 
components that detect changes in the environment through mechanical or non-mechanical 
stimulations such as pressure, stiffness, roughness, and temperature [1-2]. The preferred 
manufacturing technology, selected materials, and the required response time are the most 
important factors in sensor technology. These factors are important in sensor fabrication. 

Developments in industrial applications have started to require more micro and nano-scale 
devices. This need requires sensor systems to be produced in smaller sizes for a wide variety of 
industrial applications [3-5]. Micro and Nano Electro-Mechanical Systems (MEMS/NEMS) are 
used in transportation sectors such as automotive [6] and aviation [7], energy [8], robotics [9-10], 
optics [11], biomedical [12] and geophysics [13]. MEMS devices function as biosensors in 
medical research and contribute to many promising studies [14]. These sensors can reduce very 
wet laboratories to a microchips [15]. In addition to the solutions produced for the electrical 
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[16-17], and construction [18] sectors, they also have applicability in knowledge and 
labor-intensive fields such as mechanics and chemistry. Although these devices are a single unit, 
they also have electrical and mechanical components. These devices can measure changes in 
physical quantities such as temperature, pressure, viscosity, stress, and mass [19-25]. Devices 
called laboratories on chips have become increasingly preferred in biomedical and bioengineering 
fields [26]. These devices with reduced geometric dimensions can react much faster and will 
continue to be more attractive as more efficient and portable devices [27-28]. Of course, in 
addition to these superior features, there are also some limitations. The most important of these is 
the need for simultaneous perception and execution in an environment while associating it with 
mutually exclusive mechanisms [29-30]. To overcome these limitations, single-platform devices 
capable of detecting acoustic waves have been proposed for simultaneous sensing and actuation. 
Such devices are known as Surface acoustic waves (SAW) sensors. These devices are widely used 
not only as sensors and actuators but also as filters, oscillators, and transformers. The applications 
here are made possible by the use of piezoelectric components as the central backbone of SAW 
sensors [31-34]. 

As is known, SAW-based sensors can be fabricated using a cleanroom facility and 
conventional [35] or next-generation mask lithography. These complex several-step processes 
[36] are difficult to follow; Graphenic sensitive layers can be used in the manufacturing of new 
generation surface acoustic wave (SAW) sensors developed with a graphene sensitive layer. When 
this type of sensor is produced, low cost, easy manufacturability and superior performances can 
be achieved. In fact, within the capabilities of production technology, producing nano-sized 
products can increase the advantages mentioned. Studies on graphenic precision layer SAW 
sensors are ongoing. [37]. It is also known that there are individual layers that come together 
spontaneously. Therefore, with the rapid development of microprocessors and the development of 
software tools, SAW designs with complex structures in terms of both geometry and materials can 
be proposed. This revealed the need for new manufacturing technologies that could be used 
quickly to produce the proposed new designs. In this context, direct writing techniques have 
emerged as a promising approach in sensor fabrication. Au et al. [38] compared the cost of a sensor 
produced traditionally, that is, through lithography, with that of 3D printing technology. In 
stereolithography, the difference was found to be 15 USD [39]. The fact that the 3D printing 
technique is both low-cost and simple to produce has made it very attractive to reproduce the same 
structure with minimum human effort. Additionally, the sensitivity and accuracy of the printed 
sensor are affected compared to traditional methods [40-41]. Among the direct writing methods, 
Ink-jet printing provides improved flexibility in terms of both design customization and substrate 
size [42]. However, the need for miniaturized devices limits the use of this method as the line 
resolution is in the order of a few tens of micrometers. To improve spatial resolution, direct laser 
writing methods (DLW) are particularly interesting as they allow the fabrication on demand of 
customized complex structures with submicron resolution [43, 44]. 

DLW using a UV beam was introduced to create micro-supercapacitor devices onto a graphite 
oxide film. Other DLW-based techniques were reported in the literature. They allow the 
fabrication of sensors by laser fusion of silver laser reduction of graphene oxide, and laser 
micromachining. However, these techniques are limited to some specific materials [45]. 

In that context, Two-Photon Lithography (TPL) in positive photoresists combined with 
material deposition and lift-off is an interesting alternative approach as it allows the rapid 
fabrication of complex designs in a large choice of materials. In addition, TPL allows an increase 
in spatial resolution due to the non-linear absorption process and some photochemical effects 
[46-49]. Fabrication using TPL [50, 51] evolved in the 90s [52] and has found its application in 
many different fields including but not limited to biosensing [53-55], micro and nano-optics 
[56-61], robotics [62, 64], security [65]. 

This work focuses on the use of TPL combined with physical vapor deposition of Gold for the 
fabrication of an Interdigital Transducer (IDT) based passive temperature sensor. As compared to 
the conventional lithography techniques, Two-Photon Lithography (TPL) stands out from 
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traditional fabrication methods by eliminating the need for physical masks in the creation of IDTs 
for acoustic wave sensors. This mask-free approach offers greater flexibility, precision, and 
customization options, making TPL particularly advantageous for rapidly prototyping and 
tailoring IDT designs to specific sensor applications [66-69]. Moreover, combined with physical 
or chemical vapor deposition methods and lift-off, TPL in positive photoresists offers the 
advantage of fabricating IDT structures with a large number of materials (metals and metal oxides) 
[70-73]. 

2. Materials and methods  

2.1. Material determination for sensor fabrication 

Material selection is very important in sensor design. Because the performance, sensitivity, 
accuracy, and reliability of the sensors are highly dependent on the materials used in their 
construction. The thermal, mechanical, electrical, and chemical properties of the materials to be 
selected are directly affected by the sensitivity of the sensor to be produced, its signal-noise 
properties, and its environmental compatibility [74, 75]. Gold as a material for IDTs is important 
in certain high-frequency applications with its high electrical conductivity, chemical stability, ease 
of processing, and low insertion loss in certain frequency ranges. It has low acoustic attenuation, 
meaning it can maintain the intensity of sound waves passing through it with minimal loss [76, 78] 
This feature is useful in applications where sound transmission efficiency is paramount. It has a 
relatively high refractive index for sound waves. Also, since gold is not a good acoustic damper, 
it does not dampen sound waves [79-81]. For these reasons, the IDT structure in our study was 
made from gold. 

2.2. Sensor design 

The dimensions of the proposed single port IDT structure, presented in Figure 1, are provided 
in Table 1. 

 
Fig. 1. Design and design parameters of the proposed IDT sensing structure.  

COMSOL was used during the designing phase 

Table 1. Summary of geometric parameters for the proposed IDT structures 
Parameter Size in µm 

Thickness of the design 2 
Electrode finger width (𝑊) 3 

Distance between electrodes (𝑃) 6 
IDT length (reflectors) (𝐿ଶ) 80 

IDT length (𝐿ଵ) 100 
Distance between IDT and reflectors (𝐷) 3 

Distance between two IDTs (𝜆଴) 21 
Aperture (𝐴) 92.5 

Number of reflectors (𝑁௥) 15 
Number of IDT pairs (𝑁௜) 30 
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Fig. 1 describes the structural design parameters for the proposed resonator-based temperature 
sensor. As depicted in Fig. 1, the IDT structure is designed with a certain pitch among them and 
the resulting surface acoustic wave is well-founded when the pitch of the IDT fingers and the 
wavelength of the surface wave are equal to each other. Eq. (1) is employed to determine the 
resonant frequency (𝑓), which is a function used for measuring the temperature, of the proposed 
structure and its relation to the propagation velocity (𝑉௥) of the resulting surface wave: 𝑓 = 𝑉𝑟𝜆 , (1)

where 𝜆 is the wavelength of the SAW. The IDT structure needs to be quantified to develop its 
model. Fig. 1 and Table 1 show the labeled IDT structure and its explanation respectively. To 
achieve the strongest IDT activation and phase superposition of SAW, the IDT pitch, which is 𝑊 + 𝑃, should be equal to half of the SAW wavelength, as described by the wave interference 
principle. Therefore: 

𝑊 + 𝑃 = 𝑁 ∗ 𝜆2. (2)

The distance (𝐷) between the IDT and the adjacent reflectors should also satisfy equation 3 to 
make sure that IDT receives the standing wave on its peak: 

𝐷 =  ൬𝑁 − 12൰ ∗ 𝜆2. (3)

The aperture width of the IDT fingers also plays an important role in the performance of the 
SAW resonator. Normally, it is between 50 and 100 times the SAW wavelength. 

2.3. Fabrication 

Nanoscribe GmbH’s Photonic Professional GT was utilized for the fabrication of the sensing 
structure. The fabrication setup was based on a DLW system using TPL in a positive photoresist. 
This system implemented a femtosecond fiber laser source which was operating at 780 nm 
wavelength. The power of the deployed laser source was between 50-150 mW with 80 MHz of 
repetition rate. The laser source produced a pulse length of 100-200 femtoseconds.  

The fabrication process of IDT structures made from gold on a glass substrate is shown in 
Fig. 2. The dimension of the glass substrate used for this fabrication process was size  
22 mm×22 mm with a thickness of 170 µm. The substrate was cleaned before the realization of 
the printing process. Later on, 60 % v/v of MICROPOSIT S1813 positive photoresist was 
deployed on the surface of the substrate. The sample was then spin-coated onto the substrate at 
4000 RPM for 30 seconds using a Karl Suss CT62 spin-coating machine (Fig. 2(a)). After the 
completion of the spin coating process, a layer of approximately 500 nm in thickness was 
achieved. The sample was then exposed using Nanoscribe GmbH’s Photonic Professional GT 
(Fig. 2(b)). The magnification and the numerical aperture of the objective were 63x and 1.4 
respectively. After the TPL sept, the sample was developed using the MF-319 developer solution 
for 30 seconds at room temperature. Then the sample was cleaned by immersing it in deionized 
water. After development, 5 nm of chromium and 30 nm of gold were successively deposited on 
the sample by physical vapor deposition (Fig. 2(c)). The chromium was used to improve the 
adhesion of gold on the glass substrate. To remove the remaining photoresist from the sample, a 
lift-off process was employed by immersing the prepared sample in acetone and keeping it there 
for 10 hours (Fig. 2(d)). Finally, the sample was rinsed using de-ionized water and blow-dried 
using air. 
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Fig. 2. Fabrication workflow for the printing of IDT structures using TPL followed by physical vapor 

deposition of gold and lift-off. (Renderings are done through the software Blender) 

2.4. IDT structures characterizations 

– Electron scanning microscopy; by using a sputter coater SC7640 from Quorum 
Technologies, the samples were metalized. A Field Emission Gun (FEG Hitachi SU8030) 
operating at 10 kV was used to perform scanning electron microscopy (SEM). 

– Optical microscopy; A Nikon Eclipse LV100 upright microscope was used to capture optical 
microscopy images. 

– Resonance frequency measurements. 
The fabricated IDT structures were tested using a network analyzer to measure their frequency 

response and to determine the resonance frequency. The general representation of the setup is 
shown in Fig. 3. 

 
Fig. 3. Schematic diagram of the setup for temperature response 

3. Results. Printed IDT 

Following the workflow shown in Fig. 2 several IDT structures, shown in Fig. 4, were 
fabricated using the DLW technique. Scanning Electron Microscopy (SEM) images of one of the 
fabricated IDT structures are shown in Fig. 5. 
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Fig. 4. The Fabricated IDT structures using DLW technique 

 
Fig. 5. SEM images of the fabricated IDT structure 

 
Fig. 6. Frequency response of the fabricated IDT structures 

The frequency response of the developed sensor is shown in Fig. 6. The resonance frequency 
of the designed structure was predicted to be 424.01 MHz by the theoretical calculations and 
simulations. From the experiments, the value of resonance frequency was measured as 426.2 MHz. 
Comparing these two results, the deviation of 0.5 % is well within the acceptable range. 

The illustration of the test setup is shown in Fig. 3. The optical microscope image of the IDTs 
used for temperature response analysis is given in Fig. 7. The frequency response of the fabricated 
IDTs was measured from 20 °C to 100 °C with a step size of 5 °C. The results are presented in 
Fig. 8. 
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Fig. 7. Optical microscope image of the IDTs used for temperature response analysis 

 
Fig. 8. Temperature response of the five analyzed IDT structures. Each IDT structure was analyzed 10 

times. Each point in the figures a)-e) corresponds to the average frequency measured for a given 
temperature, f) is the average of the responses of the 5 IDT structures. The red line is a linear fit 
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The fabricated IDT structures show very good linearity when tested against temperature. The 
average sensitivity is 0.123 MHz/°C. The average R2 values from 10 tests for each IDT structure 
along with the combined average value are shown in Fig. 8. The results show that the IDT 
structures exhibit a linear response towards the temperature changes. 

The standard deviation and variance plot for each IDT is presented in Fig. 9. This variation 
can be due to more than one reason. Even though the conditions during the testing were mostly 
the same, it is possible that external noise and interference were present. Factors such as 
electromagnetic interference or acoustic noise can introduce additional variability in the observed 
response. 

 
Fig. 9. Standard deviation and variance plot for the fabricated IDTs 

4. Conclusions 

In this study, the micro-sized heat sensor is produced using the layered manufacturing 
technique. The 2PP method was used as a mask in the layered production technique. Usable results 
were obtained in the tests and analyzes of the heat sensor produced with this technique. The most 
important advantage in producing the IDT structure with the additive manufacturing technique is 
that a very small-sized structure is produced error-free and efficiently 

The electron microscope images of the fabricated IDT structures showed consistency of the 
employed printing method with the proposed design. The frequency response of the fabricated 
IDT structures was measured using a test setup and the peak frequency was found to be 
426.2 MHz. The simulations gave only a slightly deviating resonant frequency of 424.01 MHz. 
The results of those tests showed their response to be very much linear with the temperature 
changes. The average R2 value of all the responses was > 0.99. 
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