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Abstract. The selection of weight matrices Q and R in the LQR control strategy for active 
suspension is susceptible to subjective interference. To address this issue, a modified differential 
evolutionary algorithm is proposed to optimize the active suspension LQR controller, ensuring 
that the weighting coefficients are set to their optimal values. The differential evolutionary 
algorithm exhibits drawbacks in terms of its slow convergence rate and the significant impact of 
algorithm parameter settings on the obtained results. An modified differential evolutionary 
algorithm that is adaptive to the two candidate mutation strategies and adaptively adjusts the 
scaling factor and crossover rate is proposed so as to better improve the ability of jumping out of 
the local optimum and global search. The algorithm's functionality is verified by constructing a 
1/4 suspension model in the Simulink software platform and implementing a modified differential 
evolution algorithm program written in C++ language using MATLAB. The program iterates 
through Simulink inputs to obtain the optimal fitness value for three suspension comfort indices. 
By comparing the results with those obtained from passive suspension and traditional LQR control 
of active suspension, optimizing the LQR control of active suspension based on the modified 
differential evolution algorithm can effectively reduce vehicle vibration amplitude while 
considering overall suspension performance enhancement, thereby significantly improving ride 
comfort and handling stability. 
Keywords: LQR controller, active suspension, modified differential evolutionary algorithm. 

1. Introduction 

Automobile is one of the most important means of transportation in modern society, and the 
driving and riding experience of automobile has received more and more attention. The main 
components of the automobile suspension system are springs, shock absorbers and guiding 
mechanisms, which connect the body and wheels and attenuate the body vibration caused by the 
road excitation. Excessive vibration intensity may damage the system structure to a certain extent 
[1, 2]. Suspension system of vehicle ride comfort and security has an important influence, and is 
one of the key systems that determine vehicle dynamic performance [3]. Lately, with the 
development of automotive electronic technology and automotive intelligence, the application of 
MCU in vehicles has become increasingly common, coupled with the maturity and wide range of 
components technology such as adjustable shock absorber, air spring and vehicle sensor, advanced 
suspension system has received extensive attention and research. The controllable suspension, 
also referred to as "intelligent suspension" by certain automobile manufacturers, is capable of 
dynamically adjusting the damping or stiffness of the suspension based on the current driving 
conditions. This feature enhances the performance of the suspension system to a certain extent 
and mitigates the inherent trade-off between comfort and safety [4]. 

The quality of suspension system will directly affect the driving experience and the occupant's 
subjective comfort feeling. There are three kinds of automobile suspension systems: passive 
suspension, semi-active suspension and active suspension [5]. The component parameters and 
performance of traditional passive suspension are fixed, lacking the ability to adjust for different 
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driving conditions, thereby compromising comfort and handling stability under varying 
circumstances. To enhance automobile suspension performance, active suspension systems were 
introduced as a solution. By utilizing hydraulic actuators, linear motors, and other technologies, 
active suspension replaces or works in parallel with the springs and shock absorbers of passive 
suspension systems to generate corresponding forces based on control signals [6]. The active 
suspension system surpasses the limitations imposed by passive systems and provides a broad 
range of adjustable output. The use of appropriate control methods in the suspension system to 
reduce the vibration amplitude of the vehicle and improve the ride experience for passengers is 
the current research hotspot in the field of automobile suspension. 

In terms of suspension system design, ever since the initial proposal by American professor 
Labrosse regarding the concept of suspension performance control, a series of active suspension 
prototypes have emerged successively, leading to the commercialization of numerous research 
findings that exhibit excellent control effects. The research on diverse fundamental control 
algorithms and their integrated control algorithms is currently thriving in the field of suspension 
control strategy. Scholars all over the world have introduced a variety of mature control 
technologies into the active suspension system of automobiles, such as PID control, LQG control 
[7]. Optimal control is a control method that selects one of several control methods to achieve the 
optimal objective function. It is widely used in the field of vehicle dynamics because of its high 
robustness, fast calculation speed and clear purpose in solving multi-variable and nonlinear 
problems. Linear quadratic regulator (LQR) control is a kind of relatively mature, relatively 
complete theory of optimal control method, which is widely used [8]. However, the control effect 
of this method depends largely on the weight coefficients of its performance indicators, and 
previous researchers have continuously adjusted the weights through human experience. In recent 
years, with the continuous development of intelligent algorithms, many researchers have begun to 
introduce intelligent algorithms in active suspension control. He et al. used genetic algorithm to 
improve the LQR controller and Kalman filter in the vehicle combination system to improve the 
overall performance of the vehicle system; Jiao Rui et al. introduced adaptive differential 
evolutionary algorithm to optimize the single-neuron PID control and to improve the vehicle 
suspension’s vertical acceleration of the vehicle body performance index to improve ride comfort. 
Oral Ö, Çetin L and Uyar E proposed a method to solve the optimal control problem, in which the 𝑄 and 𝑅 matrices are derived by time-domain computation, but the weighting parameters need to 
be adjusted. Chen Xiaobing et al. introduced a differential evolutionary algorithm to optimize the 
LQR controller of the active suspension to optimize the comfort of the ride, the stability of the 
driving and the safety, but the algorithm optimization process was slow, and the system 
convergence was not satisfactory. 

The differential evolutionary algorithm, being one of the classical intelligent algorithms, 
possesses the advantages of a limited number of control parameters, excellent convergence 
properties, and robust optimization capabilities [9]. Therefore, when dealing with optimization 
problems with constraints, many researchers have combined the Differential Evolution algorithm 
with the constraint process, and this algorithm has a stronger optimization ability than the genetic 
algorithm and greatly reduces the time complexity. However, the differential evolutionary 
algorithm also has problems such as slow convergence and large influence of algorithm 
parameters on the results [10]. 

Taking active suspension as the research object, this paper first built a two-degree-of-freedom 
suspension model in Matlab software, and then designed an LQR optimal control controller based 
on two-degree-of-freedom suspension. Due to the shortcomings of existing algorithms, a 
differential evolution algorithm based on adaptive scaling factor and adaptive cross probability 
was designed, and the excellence of the algorithm was verified by test functions. The optimization 
scheme is designed according to the fitness function, and the penalty function is added to quickly 
optimize the coefficients in the LQR matrix. Finally, the simulation results of passive suspension 
and traditional LQR suspension are compared, and the good effect of the proposed algorithm on 
LQR control optimization is proved. 
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2. Modeling of vehicle control system 

2.1. Pavement modeling 

The first-order filtered band-limited white noise method is used to model the stochastic 
pavement excitation as shown in Eq. (1): 𝑥ሶሺ𝑡ሻ ൌ −2𝜋𝑓𝑥ሺ𝑡ሻ  2𝜋ඥ𝐺ሺ𝑛ሻ𝜈𝜔ሺ𝑡ሻ. (1)

The lower cut-off frequency is 𝑓; 𝑥ሺ𝑡ሻ is the pavement vertical displacement; 𝐺ሺ𝑛ሻ is the 
pavement unevenness coefficient; 𝜈 is for speed; The Gaussian white noise with zero expectation 
is 𝜔ሺ𝑡ሻ. 

 
Fig. 1. Pavement excitation model 

Take 𝑓 as 0.1, the speed is set to 20 m/s. The road unevenness coefficient 𝐺ሺ𝑛ሻ is 5×10-6. A 
50 s section of simulated road condition is generated in MATLAB as shown in Fig. 2. The same 
section of road surface is input into the system during subsequent simulation. 

 
Fig. 2. Simulated road conditions 

2.2. Active suspension modeling 

To mitigate the influence of extraneous factors, simplify the suspension system for streamlined 
analysis, and effectively evaluate the true impact of the enhanced differential evolutionary 
algorithm on optimizing LQR control in active suspension systems, this study employs said 
algorithm to a 1/4 automobile active suspension model using MATLAB simulation platform.  

The mathematical model of active suspension is established to establish the theoretical basis 
for the analysis of vibration characteristics and control performance. The active suspension model 
is constructed as shown in Fig. 3. In Fig. 3, the spring loaded mass is 𝑚; The unsprung mass is 𝑚௪; The suspension stiffness is 𝐾௦; 𝐾௧ is the tire stiffness; The vertical displacement of the body 
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is 𝑥; 𝑥௪ is the vertical displacement of the wheels; The vertical displacement of the road surface 
is 𝑥 and 𝑈 is the control force of the actuator [11]. 

 
Fig. 3. Model diagram of active suspension 

Differential equations are developed to describe the suspension model based on automotive 
vibration theory as well as Newton’s second law: 

ቊ𝑚𝑥ሷ = 𝑈 − 𝐾௦ሺ𝑥 − 𝑥௪ሻ,𝑚௪𝑥ሷ௪ = −𝑈 + 𝐾௦ሺ𝑥 − 𝑥௪ሻ − 𝐾௧൫𝑥௪ − 𝑥൯. (2)

Thus, the state variables of the system can be determined as: 𝑥 = ൣ𝑥ሶ, 𝑥ሶ௪ , 𝑥, 𝑥௪ , 𝑥൧் . (3)

The body vertical acceleration 𝑥ሷ , the suspension dynamic travel (𝑥 − 𝑥௪) and the tire 
dynamic displacement (𝑥௪ − 𝑥) are used as system output variables, i.e: 𝑦 = ൣ𝑥ሷ, 𝑥 − 𝑥௪ , 𝑥௪ − 𝑥൧. (4)

Thus, to get the system state space equation: ൜𝑥ሶ = 𝐴𝑥 + 𝐵𝑢 + 𝐺𝜔,𝑦 = 𝐶𝑥 + 𝐷𝑢,  (5)

where:𝑢 is the input matrix, 𝑢 = [𝑈(𝑡)]; 𝜔 is the white noise matrix, 𝜔 = 𝜔(𝑡); 𝐴, 𝐵, 𝐺, 𝐶, and 𝐷 are coefficient matrices as follows: 

𝐴 =
⎣⎢⎢
⎢⎢⎢
⎢⎡0 0 − 𝐾௦𝑚 𝐾௦𝑚 00 0 𝐾௦𝑚௪ −𝐾௧ + 𝐾௦𝑚௪ 𝐾௧𝑚௪1 0 0 0 00 1 0 0 00 0 0 0 2𝜋𝑓⎦⎥⎥

⎥⎥⎥
⎥⎤ ,      𝐵 =

⎣⎢⎢
⎢⎢⎢
⎡ 1𝑚− 1𝑚௪000 ⎦⎥⎥

⎥⎥⎥
⎤

,      𝐺 = ⎣⎢⎢
⎢⎡ 00002𝜋ඥ𝐺𝑢⎦⎥⎥

⎥⎤, 
𝐶 = ൦0 0 𝐾௦𝑚 𝐾௦𝑚 00 0 1 −1 00 0 0 1 −1൪ ,      𝐷 =  1𝑚 0 0൨் . 

actuator
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The 1/4 active suspension system is modeled by deriving the equations mentioned above and 
specifying its inputs and outputs. 

 
Fig. 4. Active suspension model 

3. LQR controller design 

The automobile suspension LQR controller is designed to achieve effective suspension control 
with small inputs using the fitness function as an object. Three performance metrics for evaluating 
the suspension include body sag acceleration, tire dynamic displacement and suspension dynamic 
travel. In addition, it is also necessary to consider the control of energy consumption, so that the 
control energy consumption is small. 

The principle of active suspension LQR control based on improved differential evolutionary 
algorithm is shown in Fig. 5. 

 
Fig. 5. Block diagram of LQR control of active suspension based  

on improved differential evolutionary algorithm 

With the goal of improving the ride comfort of the car and at the same time ensuring the safe 
operation of the car, the optimization fitness function 𝐽 is determined as [12]: 

𝐽 = න [𝑞ଵ(𝑥௪ − 𝑥)ଶ + 𝑞ଶ(𝑥 − 𝑥௪)ଶ + 𝑞ଷ𝑥ሷଶ]𝑑𝑡ஶ
 . (6)

Type: in 𝑞ଵ and 𝑞ଶ, 𝑞ଷ respectively tire dynamic displacement body vertical acceleration, 
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suspension dynamic schedule, weight coefficient. 
Converting the above equation to matrix form, we have: 

𝐽 = න (𝑥்𝑄𝑥 + 𝑢்𝑅𝑢 + 2𝑥்𝑁𝑢)𝑑𝑡ஶ
 , (7)

where: 

𝑄 =
⎣⎢⎢
⎢⎢⎢
⎢⎡0 0 0 0 00 0 0 0 00 0 𝑞ଶ + 𝑞ଷ𝐾௦ଶ𝑚ଶ −𝑞ଶ − 𝑞ଷ𝐾௦ଶ𝑚ଶ 0
0 0 −𝑞ଶ − 𝑞ଷ𝐾௦ଶ𝑚ଶ 𝑞ଵ + 𝑞ଶ + 𝑞ଷ𝐾௦ଶ𝑚ଶ −𝑞ଵ0 0 0 −𝑞ଵ 𝑞ଵ ⎦⎥⎥

⎥⎥⎥
⎥⎤ ,     𝑅 = 𝑞ଷ𝑚ଶ ,       𝑁 = 1𝑚ଶ ⎣⎢⎢⎢

⎡ 00−𝑞ଷ𝐾௦𝑞ଷ𝐾௦0 ⎦⎥⎥⎥
⎤. 

The optimal control force for LQR is: 𝑈 = −𝐾𝑥(𝑡). (8)

Type: 𝑥(𝑡) for any time feedback state variables; 𝐾 for the optimal control feedback gain 
matrix. 

According to Eq. (8), 𝐾 can be written: 𝐾 = −𝑅ିଵ𝐵்𝑃𝑥. (9)

Type: 𝑃 for symmetric matrix. 
Through Riccati differential equation, 𝑃 can be obtained as follows: 𝑃𝐴 + 𝐴்𝑃 − 𝑃𝐵𝑅ିଵ𝐵்𝑃 + 𝑄 = 0. (10)

It can be seen that the effect of LQR control of active suspension completely depends on the 
weight matrix 𝑄 and 𝑅 [13]. However, there is no specific method for determining these two 
matrices, and they usually rely on the experience of the designers to select them, which makes it 
difficult to ensure that the optimization parameters are in the optimal state, and it takes a long 
time. To address the aforementioned issues, this paper proposes utilizing a modified differential 
evolutionary algorithm to optimize the weight matrix parameters. This approach aims to mitigate 
the impact of subjective human factors on weight selection and further enhance its efficiency, 
resulting in a more rapid and effective process [14]. 

4. Modified differential evolution algorithm and design 

4.1. Standard difference evolutionary algorithm 

Differential evolution algorithm is a new optimization algorithm, which is developed on the 
basis of swarm intelligence theory [15]. It is a new type of intelligent optimization algorithm that 
uses the collaboration and competition between individuals in the swarm [16]. Differential 
evolutionary algorithm realizes the optimization search through two ways: one is based on the 
realization of mutation operation through difference, and the other is the crossover operation of 
the population through probabilistic random selection. Although the name of its operation is the 
same as that of the genetic algorithm, the realization method is fundamentally different. The basic 
principle is to randomly generate a population with a certain number of individuals, each 
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individual is a vector representing a set of solutions to the optimization objective function, and 
then continuously update the individuals through mutation and crossover operations to increase 
the diversity of the population [17], and then through selection operations to eliminate the 
individuals with bad fitness values and retain the good ones, and then continuously approach the 
optimal solution through continuous iteration and computation, and find the optimal individual 
with the best fitness value can be found through continuous iteration and calculation [18]. 

The differential evolutionary algorithm process is specified as follows. 
(1) Initialization of stocks. First starting from the NP random candidate solutions, usually a 

differential evolutionary population is formed by each individual for NP, remember to: 𝑥 ,ಸ = ൫𝑥ଵ,ீ , 𝑥ଶ,ீ ,⋯ , 𝑥,ீ൯,      (𝑖 = 1,2,⋯ ,𝑁𝑃), (11)

where is 𝑁𝑃 population size, from the current group after generation of mutation and crossover 
and individual choice and the NP a test. This step consists of a cycle, until reach the end condition. 
Randomly generated initial population, as shown in Eq. (12): 𝑥, = 𝑥, + 𝑟𝑎𝑛𝑑(0,1) × ൫𝑥, − 𝑥, ൯, (12)

where, denotes the 𝑗th component of the 𝑖th individual. 𝑥, , 𝑥,  respectively the first 𝑗 a 
component of the lower bound and upper bound. 𝑅𝑎𝑛𝑑(0,1) said within the range of (0, 1) 
uniformly distributed random Numbers. 

(2) Mutation operation. Differential strategies are the way in which differential evolutionary 
algorithms achieve individual variation, which is an important difference from genetic algorithms 
that exist. The difference between two random individuals and the scaling factor 𝐹 and the target 
vector generates a mutant individual. A mutant individual is generated from the difference of two 
random individuals with scaling factor F and target vector, and DE uses the difference strategy for 
individual mutation. Here are some common mutation strategies: 

1) DE/rand/1: 𝑣,ீ = 𝑥ଵ,ீ + 𝐹 × ൫𝑥ଶ,ீ − 𝑥ଷ,ீ൯. (13)

2) DE/best/1: 𝑣,ீ = 𝑥௦௧,ீ + 𝐹 × ൫𝑥ଵ,ீ − 𝑥ଶ,ீ൯. (14)

3) DE/current-to-best/1: 𝑣,ீ = 𝑥,ீ + 𝐹 × ൫𝑥௦௧,ீ − 𝑥,ீ൯ + 𝐹 × ൫𝑥ଵ,𝐺 − 𝑥ଶ,ீ൯. (15)

4) DE/current-to-rand/1: 𝑣,ீ = 𝑥,ீ + 𝑟𝑎𝑛𝑑 × ൫𝑥ଵ,ீ − 𝑥,ீ൯ + 𝐹 × ൫𝑥ଶ,ீ − 𝑥ଷ,ீ൯, (16)

where 𝑟ଵ, 𝑟ଶ, and 𝑟ଷ are index subscripts that represent three mutually unequal individuals 
randomly selected from the population. 𝐹 is the scaling factor that controls the strength of the 
difference [19]. 𝑥௦௧ represents the one which has the best fitness value of individual. 

(3) Cross-operation. To increase the diversity of the population, the variant vector and the 
parent vector are both combined to produce new candidate solutions and eventually a new test 
vector. The crossover operation between the 𝑔th generation individuals of 𝑥,ீ and the 
intermediate individuals of the variant 𝜐,ீ: 
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𝑢,,ீ = ൜𝜈,,ீ ,         𝑟𝑎𝑛𝑑 ≤ 𝐶𝑅  or  𝑗 =   𝑗ௗ ,𝑥,,ீ ,        otherwise,  (17)

where 𝐶𝑅 is the crossover probability, which determines the proportion of heredity among 
different individuals. 𝑗ௗ is a random integer in [1,2 … ,𝐷]. 

(4) Selection of operations. The selection operation in the differential evolutionary algorithm 
employs a greedy approach to choose the individual with the optimal function value for inclusion 
in the next generation: 

𝑥,ீାଵ = ቊ𝑢,ீ ,            𝑓൫𝑢,ீ൯ ≤ 𝑓൫𝑥,ீ൯,𝑥,ீ ,             otherwise.  (18)

Differential evolutionary algorithm flow chart is as follows. 

 
Fig. 6. Differential evolution algorithm flow chart 

4.2. Differential evolution algorithm optimization strategy 

In standard differential evolution optimization algorithm, the scaling factor 𝐹 and crossover 
probability 𝐶𝑅 take fixed values, however, it is more difficult to determine an appropriate 
parameter in the optimization process [20]. As the scaling factor 𝐹 increases, the degree of 
population differentiation decreases, and the phenomenon of local extremes in evolution occurs, 
causing the population to converge prematurely. When the scaling factor 𝐹 is larger, it is less 
likely to fall into local extremes, but its convergence speed will be slower. The crossover 
probability 𝐶𝑅 can effectively control the participation of each dimensional parameter value in 
the crossover process, and at the same time take into account the global and local optimization 
ability. As the crossover probability 𝐶𝑅 decreases, the diversity of the population decreases, 
which easily leads to premature convergence. As the value of 𝐶𝑅 increases, the convergence of 
the algorithm increases. However, the crossover probability is too large so that its convergence 
slows down due to the size of the disturbance exceeding the degree of population differentiation. 

Based on the above problems, the improvement measures of differential evolutionary 
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algorithm are proposed. In order to solve the problem of selecting a suitable mutation strategy, a 
probability 𝑝 is introduced to realize the mutation strategy self-adaptation, and two mutation 
candidate strategies are provided [21]: 𝜈 = ൜𝑥ଵ + 𝐹 × (𝑥ଶ − 𝑥ଷ),         𝑈(0,1) < 𝑝,𝑥ଵ + 𝐹 × (𝑥ଶ − 𝑥ଷ) + 𝐹 × (𝑥ସ − 𝑥ହ),        otherwise, (19)

where 𝑖ଵ, 𝑖ଶ, 𝑖ଷ, 𝑖ସ, 𝑖ହ ∈ [1,𝑁𝑃] are randomly generated integers that are not the same as each 
other, and 𝑈𝑖(0,1) represents a random number whose value ranges from 0 to 1. 

The value of 𝐹 is constantly changing to prevent the local optimum problem from occurring, 
and a neighborhood search is used to achieve the scaling factor 𝐹 adaptive [22]: 

𝐹 = ൜𝑁(0.5,0.3),        𝑈(0,1) < 𝑓,𝛿 ,        otherwise.  (20)

𝑁(0.5,0.3) is a Gaussian random number with a mean of 0.5 and a standard deviation of 0.3; 𝛿 is cauchy random variables, and its scale parameter to 1. 
Here 𝑝 is initially set to 0.5. After completing the evaluation of all the offspring, the offspring 

obtained from Eq. (19) that were successfully transferred to the second generation are labeled as 𝑛𝑠ଵ and 𝑛𝑠ଶ, respectively, and the offspring that were discarded when Eq. (19) was generated are 
labeled as 𝑛𝑓ଵ and 𝑛𝑓ଶ. 

Update the probability 𝑝 by learning: 

𝑝 = 𝑛𝑠ଵ × (𝑛𝑠ଶ + 𝑛𝑓ଶ)𝑛𝑠ଶ × (𝑛𝑠ଵ + 𝑛𝑓ଵ) + 𝑛𝑠ଵ × (𝑛𝑠ଶ + 𝑛𝑓ଶ). (21)

After each learning stage 𝑛𝑠ଵ, 𝑛𝑠ଶ, 𝑛𝑓ଵ and 𝑛𝑓ଶ will be cumulatively updated. 
The crossover probability 𝐶𝑅 value is adaptive. First, the crossover rate 𝐶𝑅 is assigned to 

each individual and the initial value of 𝐶𝑅 is set to 0.5. 𝐶𝑅 is updated every 5 generations in the 
population. The value of 𝐶𝑅 is correlated with the success of the offspring in entering the next 
generation, and in each generation, is weighted to compute the current change in fitness value ∆𝑓(𝑘), and the corresponding 𝐶𝑅 of the individuals entering the next generation is entered into 
the array 𝐶𝑅. Updates are performed every 10 generations, and the 𝐶𝑅 array is emptied one 
last time after the update is completed: 𝐶𝑅 = 𝑁(𝐶𝑅, 0.1), (22)Δ𝑓(𝑘) = 𝑓(𝑘) − 𝑓௪(𝑘), (23)𝐶𝑅 =  𝑤 ∗ 𝐶𝑅(𝑘)|ோೝ|

ୀଵ , (24)

𝑤𝑘 = Δ𝑓(𝑘)∑ Δ𝑓(𝑘)|ೝ|ୀଵ . (25)

In order to verify the change of the actual effect after the improvement of the differential 
evolutionary algorithm. Example to make the test function 𝑦 = ∑ 𝑥ଶଷୀଵ  take the minimum value, 
run it for 1000 times and observe the final result of the optimization search. Fig. 7 shows the 
optimization curves obtained by the standard unimproved differential evolutionary algorithm and 
the algorithm with the above improved strategy. 
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Fig. 7. Optimization curve before and after improvement 

The differential evolutionary algorithm and the modified differential evolutionary algorithm 
were run the above test functions, each independently for 1000 times before the average value 
obtained by the two algorithms was obtained by taking the average value of the two algorithms. 
Among them, the result obtained by the improved differential evolutionary algorithm is  
4.64267E-18, and the result obtained by the differential evolutionary algorithm is 0.000894206. 
The results show that the method by adaptively adjusting the two candidate mutation strategies, 
the adaptive scaling factor and the crossover rate is an effective improvement scheme to increase 
the convergence speed and search capability of the algorithm. The modified differential 
evolutionary algorithm is therefore selected for numerical optimization of the weight matrix in the 
LQR control of active suspension. 

4.3. Adaptation function design 

Due to the fact that there are not only unit differences but also different numerical magnitudes 
between different performance indicators, the design of the fitness function requires 
de-measurement processing. It is necessary to determine the specific parameters of the vehicle, 
take the three ride performance evaluation indexes of the passive suspension as the baseline before 
optimization, and optimize the ratio between the output performance indexes of the LQR 
controlled suspension and the passive suspension by the improved algorithm as the fitness function 
of the optimization model. Therefore, the fitness function of the system is designed as follows 
[23]: 

min    𝐿 = 𝐵𝐴(𝑋)𝐵𝐴 + 𝑆𝑊𝑆(𝑋)𝑆𝑊𝑆 + 𝐷𝑇𝐷(𝑋)𝐷𝑇𝐷 , 𝑋 = (𝑞ଵ,𝑞ଶ,𝑞ଷ)10ିଷ ≤ 𝑋 ≤ 10,     ( 𝑖 = 1,2,3), (26)

where: 𝐵𝐴, 𝑆𝑊𝑆, 𝐷𝑇𝐷 are the corresponding root mean square values of body vertical 
acceleration, suspension dynamic travel and tire dynamic displacement optimized by the improved 
algorithm, respectively; 𝐵𝐴, 𝑆𝑊𝑆, 𝐷𝑇𝐷 are the three performance indexes of passive 
suspension, respectively; 𝑋 is the optimization variable [5]. 

The optimization of active suspension control necessitates the enhancement of its various 
performance indicators, specifically ensuring that the root-mean-square value of the optimized 
output is smaller than the corresponding indicators for passive suspension. In order to guide the 
population to evolve towards the target direction and find the ideal optimal solution faster, the 
constraint conditions are designed as: 



ACTIVE SUSPENSION LQR CONTROL BASED ON MODIFIED DIFFERENTIAL EVOLUTIONARY ALGORITHM OPTIMIZATION.  
JUNYI ZOU, XINKAI ZUO 

1160 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460  

ቐ𝐵𝐴 < 𝐵𝐴,𝑆𝑊𝑆 < 𝑆𝑊𝑆,𝐷𝑇𝐷 < 𝐷𝑇𝐷.  (27)

Determine whether each set of weighting coefficients 𝑋 satisfies Eq. (27), if it does, the fitness 
function value for that individual is 𝐿; otherwise, to penalize that set of weighting coefficients for 
not meeting the constraints, take the value of that penalization function 𝜓 to be: 𝜓 = 𝐿 + 10. (28)

5. Simulation result analysis 

Using MATLAB/Simulink software to build an automobile 1/4 active suspension model and 
apply LQR control strategy for simulation experiments [24]. The passive suspension, the 
traditional LQR control of the suspension and the improved differential evolutionary algorithm 
optimized active suspension LQR control are simulated given the same road inputs [25]. The 
values of the three performance indicators obtained from the simulation to evaluate the suspension 
are output. The effectiveness of the improved differential evolutionary algorithm applied to the 
active suspension LQR control strategy is verified based on the simulation results. The simulation 
parameters of the active suspension of the vehicle using a certain model are shown in Table 1. 

Table 1. The main parameters of vehicle simulation 
Name Unit Numerical value 

Sprung mass kg 40 
Unsprung mass kg 340 

Suspension stiffness N/m 17000 
Tire stiffness N/m 190000 

Road roughness coefficient m3 5×10-6 
Speed of vehicle m/s 20 

Suspension damping stiffness N·s/m 1400 

On the basis of taking the weight coefficient 𝑞ଷ = 1 of body vertical vibration acceleration, 
the value of optimization variable 𝑞ଵ, 𝑞ଶ can be any non-negative value. 

After several iterations of optimization, the optimized weight coefficients are obtained by 
improving the differential evolutionary algorithm as 𝑞ଵ = 104290, 𝑞ଶ = 10647, 𝑞ଷ = 1. The 
simulation results under different control are analyzed in time domain and frequency domain and 
compared. 

5.1. Time domain analysis 

The relevant parameters in the simulation were determined, and the time-domain simulation 
comparison curves of 3 different performance indicators of the corresponding suspension under 
different controls were obtained by running the simulation, as shown in Fig. 8. The results of the 
simulation root-mean-square values were shown in Table 2. 

Table 2. Comparison of RMS responses of different control time domains 

Suspension performance indicators Uncontrolled LQR control LQR control based  
on improved DE 

Vertical body acceleration (m/s2) 2.396 2.375 2.357 
Suspension dynamic travel (mm) 23.36 17.11 17.01 
Dynamic tire displacement (mm) 7.949 7.639 7.420 
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a)  

 
b)  

 
c) 

 
d)  

 
e)  

 
f) 

Fig. 8. Passive Suspension, LQR control suspension, improved differential evolutionary optimization  
LQR control suspension time domain simulation results 

Fig. 8(a) and (b) include LQR control and modified differential evolution algorithm 
respectively to optimize the body vertical acceleration diagram of LQR control suspension 
compared with passive suspension. Fig. 8(c, d) includes the suspension dynamic travel diagram 
of LQR control and improved differential evolution algorithm to optimize LQR control suspension 
compared with passive suspension respectively. Fig. 8(e, f) includes the tire dynamic displacement 
diagram of LQR control and improved differential evolution algorithm to optimize LQR control 
suspension compared with passive suspension respectively. 

Comparison of simulation results between suspension conventional LQR control and 
suspension LQR control optimized based on improved differential evolutionary algorithm can be 
seen by inputting the same road excitation. The suspension conventional LQR control optimizes 
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the three performance indexes of BA, SWS, and DTD by 0.8 %, 26.75 %, and 3.80 %, respectively, 
compared with those of the passive suspension, and the active suspension LQR control optimized 
based on the improved differential evolution algorithm optimizes the three performance indexes 
by 1.6 %, 27.1 %, and 6.6 %, respectively, compared with those of the passive suspension. 

5.2. Frequency domain analysis 

The frequency response characteristics of vehicle body, suspension and wheels affect vehicle 
ride comfort. In order to further analyze and improve differential evolution algorithm to optimize 
the performance improvement of LQR suspension, frequency domain analysis of various 
performance indicators of suspension was carried out in MATLAB Simulink, and the analysis 
results are shown in Figs. 9-11. 

In Figs. 9-11, frequency domain analysis is carried out on passive suspension, LQR controlled 
suspension and LQR controlled suspension optimized by improved differential evolution 
algorithm respectively. The vertical acceleration, dynamic travel of suspension and peak power 
spectrum density of tire dynamic displacement of suspension optimized by improved differential 
evolution algorithm are all reduced to a certain extent compared with LQR controlled suspension. 
The suspension body vertical acceleration decreased by 19.9 %, the suspension dynamic travel 
decreased by 1.47 %, and the tire dynamic displacement decreased by 11.2 %. 

 
Fig. 9. Comparison of power spectral density of body vertical acceleration under different controls 

 
Fig. 10. Comparison of dynamic stroke power spectral density of suspension under different controls 
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Fig. 11. Comparison of tire dynamic displacement power spectral density under different controls 

6. Conclusions 

In order to overcome the subjective interference of the traditional LQR control in the vehicle 
active suspension, it is generally necessary to try to put together through the prophet’s experience, 
and it is easy to appear that it is difficult to obtain the optimal solution for the values of the 
weighting matrices 𝑄 and 𝑅. Therefore, the intelligent control algorithm is used to optimize and 
improve the algorithm, so as to make the LQR controller have a better control effect. 

Aiming at the deficiencies, a specific improved differential evolutionary algorithm is 
proposed, which improves the convergence speed and searching ability and realizes the 
improvement of the algorithm through the adaptive and self-adaptive adjustment of the scaling 
factor and crossover rate of the two candidate mutation strategies, and the validity of the improved 
algorithm is verified by using the test function. This paper builds a 1/4 active suspension 
simulation model, designs the adaptivity function, and optimizes the value of weight coefficients 
in the LQR control using the improved differential evolutionary algorithm, so that the LQR 
controller achieves a more ideal control effect and realizes the fastest speed to solve the global 
optimal solution of the theory. Simulation studies show that, comparing the simulation results of 
passive suspension, LQR control suspension, and optimized LQR suspension in the C-class road 
speed of 20 m/s conditions, it can be seen that the improved differential evolution algorithm has 
good convergence speed and search ability, which helps to quickly determine the weight matrix, 
and it is effective to apply it to the active suspension control. Under the time-domain analysis, the 
LQR control of the traditional suspension makes the BA, SWS, and DTD, which are the 3 
performance indexes are optimized by 0.8 %, 26.75 %, and 3.80 %, respectively, compared with 
those of passive suspension, and the active suspension LQR control optimized based on the 
improved differential evolutionary algorithm optimizes 1.6 %, 27.1 %, and 6.6%, respectively, 
compared with the three performance indexes of passive suspension. The peak power spectral 
density of the frequency domain analysis shows that the improved differential evolutionary 
algorithm optimized LQR suspension body vertical acceleration is reduced by 19.9 %, suspension 
dynamic travel is reduced by 1.47 %, and tire dynamic displacement is reduced by 11.2 %. The 
three performance indexes of the optimized LQR control suspension are all improved to some 
extent, which ensures the safety of the vehicle and improves the smoothness and ride comfort.  
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