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Abstract. This paper addresses challenges in extracting effective information from rolling bearing 
fault signals and handling strong correlations and information redundancy in high-dimensional 
feature samples post-extraction. A rolling bearing fault diagnosis method is proposed on the basis 
of hierarchical discrete entropy (HDE) combined with semi-supervised local Fisher discriminant 
analysis (SELF). Firstly, hierarchical discrete entropy is extracted from signals preprocessed via 
variational mode decomposition. We assess entropy stability under different parameters using the 
coefficient of variation and select optimal parameters accordingly. Secondly, we employ the SELF 
method to remap the multidimensional feature sample set extracted, performing dimensionality 
reduction. Finally, a fault diagnosis model classifies the dimensionality-reduced feature samples 
for fault identification. Experimental results demonstrate that entropy samples extracted via HDE 
achieve higher diagnostic accuracy after dimensionality reduction with the SELF method. 
Specifically, accuracy rates of 100 % and 98.2 % are achieved for two types of fault samples, 
respectively, validating the feasibility and effectiveness of our approach.  
Keywords: hierarchical discrete entropy, semi-supervised, local fisher discriminant analysis, 
rolling bearing, fault diagnosis. 

1. Introduction 

As a core component of industrial equipment, rolling bearings often cause incalculable losses 
when they fail during operation [1]. Therefore, monitoring the condition and diagnosing faults of 
bearings is of great significance for avoiding safety accidents, and feature extraction of bearing 
vibration signals is the core step of fault diagnosis [2]. Due to the complexity of working 
conditions, fault vibration signals often exhibit non-stationary and nonlinear characteristics [3]. 
Xue et al. [4] extracted the features of various source data from the perspectives of time domain, 
frequency domain, time-frequency domain, etc. and fused them, ultimately improving the feature 
recognition ability of the diagnostic network. For non-stationary and nonlinear fault signals, 
entropy extraction is an effective feature extraction method. The commonly-used entropy 
extraction methods now include fuzzy entropy, sample entropy, range entropy, etc. However, due 
to the lack of relevant quantitative indicators, using only a single entropy value for feature 
extraction of fault signals is not functional enough in practice. Therefore, it is necessary to conduct 
multi-scale and multi-level entropy analysis on it. Wei et al. [5] used multi-scale sample entropy 
combined with EEMD to achieve feature extraction of power curves of switch machines in 
different states, and achieved efficient fault diagnosis results. However, multi-scale entropy only 
considers the low-frequency components of the original sequence and ignores the high-frequency 
components, which cannot fully reflect the characteristics of the fault signal [6]. In order to extract 
fault information of high-frequency components in signals, Jiang et al. [7] proposed the concept 
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of hierarchical entropy. Compared with multi-scale entropy, hierarchical entropy considers both 
low-frequency and high-frequency components in the signal, providing more comprehensive and 
accurate feature information of fault signals. Zhou et al. [8] effectively identified the fault status 
of rolling bearings using an improved multi-level fluctuation dispersion entropy combined with 
maximum correlation minimum redundancy method. Compared with entropy extraction methods 
such as sample entropy and range entropy, discrete entropy solves the mutation problem in 
similarity measurement. In addition, discrete entropy has the advantages of simple and fast 
calculation. Li et al. [9] used an improved discrete entropy to extract key information from bearing 
vibration signals and effectively identified the health status of bearings. Therefore, in order to 
better consider the high-frequency and low-frequency components of fault signals, this paper 
combines the advantages of hierarchical entropy and discrete entropy to propose a method of 
hierarchical discrete entropy, and applies it to signal feature extraction. 

The feature set obtained after entropy extraction of the signal can reflect the characteristics of 
the signal, but due to the high dimensionality of the feature set, a large number of features contain 
a lot of useless information, which has a very adverse impact on subsequent fault recognition. 
Therefore, it is necessary to use data dimensionality reduction methods to reduce the 
dimensionality of the high-dimensional feature set. Li [10] proposed a smooth sparse low-rank 
matrix (SSLRM) method related to asymmetric singular value decomposition (SVD) penalty 
regularizer to distinguish transient fault information in vibration signals. In addition, methods such 
as principal component analysis, kernel principal component analysis, and local linear embedding 
have also been widely applied in feature dimensionality reduction [11]. The above method, as an 
unsupervised dimensionality reduction method, ignores the guidance of class labels when the 
sample contains them, resulting in poor dimensionality reduction effect. Linear discriminant 
analysis [12] constructs intra class and inter class divergence matrices in a supervised manner, 
which can maximize and minimize intra class divergence in the projection space. However, 
supervised dimensionality reduction methods require a large number of labeled samples to achieve 
good generalization performance. In practical applications, especially in the field of fault 
diagnosis, it is very difficult to obtain a large number of labeled samples due to various limitations. 
Therefore, it often occurs that only a small number of labeled samples exist and a large number of 
unlabeled samples remain. The semi supervised dimensionality reduction method, as a 
comprehensive utilization of unlabeled data and a small amount of labeled data, has brought new 
insights to solve this problem [13]. Jiang et al. [14] proposed a bearing fault diagnosis method 
based on semi supervised kernel boundary Fisher discriminant analysis. This method preserves 
local spatial consistency features through the LPP algorithm and uses them as regularization terms 
to guide MFA dimensionality reduction learning. Experimental results show that this method can 
effectively improve fault diagnosis performance. Sugiyama et al. [15] effectively fused LFDA and 
PCA and proposed a semi supervised local Fisher discriminant analysis algorithm. This algorithm 
effectively combines LFDA and PCA together [16], and can simultaneously use the discriminative 
structure learned from label samples and the global structure learned from all samples to find the 
optimal projection vector. 

In summary, in order to better extract representative feature vectors from bearing vibration 
signals and perform feature dimensionality reduction on the extracted high-dimensional vectors 
for better fault classification work, this article will use the feature extraction method of 
hierarchical discrete entropy combined with the SELF feature dimensionality reduction method to 
classify and diagnose the fault signals of rolling bearings. The high accuracy of this method has 
been verified through experiments, providing a reliable solution for the field of rolling bearing 
fault diagnosis. 
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2. Basic theory 

2.1. Principle of variational mode decomposition method 

VMD is a new adaptive time-frequency decomposition method. It integrates the concepts of 
Wiener filtering and Hilbert transform, outlier demodulation, frequency mixing and signal 
analysis. Through a series of iterations, the original signal can be decomposed into multiple IMF 
with different center frequencies and bandwidths. The constraint is that the sum of the decomposed 
modal components is equal to the input signal and the sum of the bandwidths of the decomposed 
modal components should be minimized, so the constrained model is shown in Eq. (1): 

⎩⎪⎨
⎪⎧ min{ఓೖ},{ఠೖ} ൝෍ฯ𝜕௧ ൤൬𝛿ሺ𝑡ሻ + 𝑗𝜋𝑡൰ 𝜇௞ሺ𝑡ሻሿ𝑒ି௝ఠೖ௧ฯଶଶ௞ ൡ ,
𝑠. 𝑡.෍𝜇௞ = 𝑓௞ ,  (1)

where, 𝜕௧ is the partial derivative of 𝑡, 𝛿ሺ𝑡ሻ is the impulse function, 𝜇௞ is the 𝑘th modal function, 𝜔௞ is the center frequency of each mode, and 𝑓 is the original signal. 
On this basis, the quadratic penalty factor 𝛼 and the Lagrange multiplication operator 𝜆ሺ𝑡ሻ are 

introduced to transform the above variational model into an unconstrained variational model. The 
transformed Lagrange expression is shown in Eq. (2): 

𝐿ሺ{𝜇௞}, {𝜔௞}, 𝜆ሻ = 𝛼෍ฯ𝜕௧ ൤൬𝛿ሺ𝑡ሻ + 𝑗𝜋𝑡൰ 𝜇௞ሺ𝑡ሻ൨ 𝑒ି௝ఠೖ௧ฯଶଶ௞  
      +ะ𝑓ሺ𝑡ሻ −෍𝜇௞ሺ𝑡ሻ௞ ะଶ

ଶ + ൽ𝜆ሺ𝑡ሻ, 𝑓ሺ𝑡ሻ −෍𝜇௞ሺ𝑡ሻ௞ ඁ, (2)

where, the 𝛼 parameters are used to ensure the accuracy of the reconstructed signal, which 𝜆ሺ𝑡ሻ can 
make the constraints more stringent. 

The Lagrange expression can be solved using the alternating power multiplier algorithm, and 
the saddle point of the Lagrange expression can be solved by alternately updating the 𝜇௞௡ାଵ, 𝜔௞௡ାଵ 
and 𝜆௡ାଵ. Among them, it can be expressed by Eq. (3): 

𝜇௞௡ାଵ = argminఓೖ∈௑ ቊ𝛼 ฯ𝜕௧ ൤൬𝛿ሺ𝑡ሻ + 𝑗𝜋𝑡൰ 𝜇௞ሺ𝑡ሻ൨ 𝑒ି௝ఠೖ௧ฯଶଶ +ብ𝑓ሺ𝑡ሻ −෍ 𝜇௜ሺ𝑡ሻ + 𝜆ሺ𝑡ሻ2௜ ብଶଶൡ. (3)

The specific process of the VMD algorithm is as follows: 
Step 1: Initialize 𝜇௞ଵ, 𝜔௞ଵ, 𝜆௞ଵ  and 𝑛; 
Step 2: Update 𝜇௞: 

𝜇̂௞௡ାଵሺ𝜔ሻ = 𝑓መ(𝜔) − ∑ 𝜇̂௜(𝜔)௜ஷ௞ + 𝜆መ(𝜔)21 + 2𝛼(𝜔 − 𝜔௞)ଶ . (4)

Step 3: Update 𝜔௞: 

𝜔௞௡ାଵ = ׬ 𝜔|𝜇̂௞(𝜔)|ଶ𝑑𝜔ஶ଴׬ |𝜇̂௞(𝜔)|ଶ𝑑𝜔ஶ଴ . (5)
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Step 4: Update 𝜆: 𝜆መ௡ାଵ(𝜔) ← 𝜆መ௡(𝜔) + 𝜏 ൤𝑓መ(𝜔) −෍ 𝜇̂௞௡ାଵ(𝜔)௞ ൨. (6)

Step 5: If: ∑ ‖𝜇̂௞௡ାଵ − 𝜇̂௞௡‖ଶଶ௞ ‖𝜇̂௞௡‖ଶଶ < 𝜀, (7)

(𝜀 > 0, this paper 𝜀 = 1×10-7), then stop the iteration, otherwise return to the second step. 

2.2. Principle of hierarchical discrete entropy feature extraction method 

Based on the advantages of hierarchical entropy and the definition of discrete entropy, the 
calculation process of hierarchical discrete entropy (HDE) is as follows [17]: 

1) Given a time series {𝑢(𝑖), 𝑖 = 1,2, . . .𝑁}, the hierarchical operators 𝑄଴ and 𝑄ଵ are defined as: 

𝑄଴(𝑢) = 𝑢(2𝑗) + 𝑢(2𝑗 + 1)2 ,     𝑗 = 0,1,2, … , 2௡ିଵ, (8)𝑄ଵ(𝑢) = 𝑢(2𝑗) − 𝑢(2𝑗 + 1)2 ,     𝑗 = 0,1,2, … , 2௡ିଵ. (9)

Among them, 𝑁 = 2௡ is a positive integer, and the length of operators 𝑄଴ and 𝑄ଵ is 2௡ିଵ. 
According to operators 𝑄଴ and 𝑄ଵ, the original sequence can be reconstructed as: 

ቊ𝑢 = ൛൫𝑄଴(𝑢)௝ + 𝑄ଵ(𝑢)௝൯, ൫𝑄଴(𝑢)௝ − 𝑄ଵ(𝑢)௝൯ൟ,𝑗 = 0,1,2, … , 2௡ିଵ.  (10)

When 𝑗 = 0 or 𝑗 = 1, the matrix operator 𝑄௝ can be defined as: 

𝑄௝(𝑢) = ⎣⎢⎢
⎢⎡12 ൬−12൰௝ . . . 0 0. . . . . . . . . . . . . . .0 0 . . . 12 ൬−12൰௝⎦⎥⎥

⎥⎤
ଶ೙షభ×ଶ೙

. (11)

2) Construct a dimension vector ሾ𝛾ଵ, 𝛾ଶ, . . . , 𝛾௡ሿ ∈ {0,1} that corresponds to a positive integer 𝑒. 
3) For vector ሾ𝛾ଵ, 𝛾ଶ, . . . , 𝛾௡ሿ, the node components 𝑢(𝑖) decomposed at each level are defined 

as: 𝑢௞,௘ = 𝑄ఊೖ × 𝑄ఊೖషభ × ⋯× 𝑄ఊభ(𝑢), (12)

where 𝑢௞,଴ and 𝑢௞,ଵ are the low-frequency and high-frequency parts of the original time series under 
the decomposition layers of layer 𝑘. 

4) The hierarchical sequence 𝑢௞,௘ is mapped to ൣ𝑦ଵ,𝑦ଶ, . . . ,𝑦ଶೖ൧ through a normal cumulative 

distribution function 𝑦௜ = ଵఙ√ଶగ ׬ 𝑒ష(೟షೠ)మమ഑మ௫೔ିஶ 𝑑𝑡, where 𝑦௜ ∈ (0,1). 
5) 𝑦௜ is assigned to integer 1~𝑐 through function 𝑧௜௖ = 𝑟𝑜𝑢𝑛𝑑(𝑐 ∗ 𝑦௜ + 0.5). 𝑐 is the number of 

categories. 𝑧௜௖ is reconstructed as 𝑧௝௠,௖ by embedding dimension 𝑚 and delay parameter 𝑑: 𝑧௝௠,௖ = ൛𝑧௝௖ , 𝑧௝ାௗ௖ , . . . , 𝑧௝ା(௠ିଵ)ௗ௖ ൟ,     𝑗 = 1,2, … ,𝑁 − (𝑚 − 1)𝑑. (13)
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6) Construct all possible discrete models 𝜋௩భ...௩೎೘  by embedding dimension 𝑚 and number of 
categories 𝑐. 𝑧௝௠,௖ matches the discrete model 𝜋௩భ...௩೎೘  one by one, and Eq. (14) is used to calculate 
the frequency of each discrete model 𝜋௩భ...௩೎೘  in the reconstruction sequence 𝑧௝௠,௖: 
𝑝 ቀ𝜋௩భ...௩೎೘ቁ = 𝑁𝑢𝑚𝑏𝑒𝑟 ቄ𝑗 ቚ𝑗 ≤ 𝑁 − (𝑚 − 1)𝑑, 𝑧௝௠,௖ = 𝜋௩భ...௩೎೘ቅ𝑁 − (𝑚 − 1)𝑑 . (14)

7) A single discrete entropy can be expressed as: 

𝑒(𝑢,𝑚, 𝑐,𝑑) = −෍ 𝑝ቀ𝜋௩భ...௩೎೘ቁ௖೘గୀଵ ⋅ ln ൬𝑝 ቀ𝜋௩భ...௩೎೘ቁ൰. (15)

8) Finally, 𝐻𝐷𝐸 can be expressed as: 𝐻𝐷𝐸 = 𝐸൫𝑢௞,௘ ,𝑚, 𝑐,𝑑൯ = ൣ𝑒ଵ, 𝑒ଶ, … , 𝑒ଶೖ൧. (16)

2.3. Principle of semi-supervised local fisher discriminant analysis feature dimensionality 
reduction method 

Assuming a given sample set contains 𝐷-dimensional features, 𝐶 categories, denoted as  𝑋 = {𝑥௜ ∈ 𝑅஽(𝑖 = 1,2, . . . ,𝑛ᇱ, . . . ,𝑛)}, with labeled sample 𝑥௜ ( 𝑖 = 1,2, … ,𝑛ᇱ) and category labels 
denoted as 𝑙௜ ∈ {1,2, . . . ,𝐶} (𝑖 = 1,2, … ,𝑛ᇱ), the global divergence matrix of PCA is defined as [15]: 

𝑆(௧) = 12෍ 𝑊௜,௝(௧)൫𝑥௜ − 𝑥௝൯൫𝑥௜ − 𝑥௝൯்௡௜,௝ୀଵ . (17)

The weight 𝑊௜,௝(௧) = 1/𝑛, then the optimization objective function of PCA is: 

𝐽(௉஼஺) = argmaxு∈௑,ுஷ଴ ቊ𝐻்𝑆(௧)𝐻𝐻்𝑙௜𝐻 ቋ. (18)

The local inter class divergence matrix 𝑆(௟௕) and local intra class divergence matrix 𝑆௟௪ of 
LFDA can be defined as: 

𝑆(௟௕) = 12෍ 𝑊௜,௝(௟௕)൫𝑥௜ − 𝑥௝൯൫𝑥௜ − 𝑥௝൯்௡ᇲ௜,௝ୀଵ , (19)𝑆(௟௪) = 12෍ 𝑊௜,௝(௟௪)൫𝑥௜ − 𝑥௝൯൫𝑥௜ − 𝑥௝൯்௡ᇲ௜,௝ୀଵ . (20)

Among them, the weight matrices 𝑊(௟௕) and 𝑊(௟௪) are defined as: 

𝑊௜,௝(௟௕) = ቐ𝐴௜,௝൫1/𝑛ᇱ − 1/𝑛௟೔ᇱ ൯,     𝑙௜ = 𝑙௝ ,1𝑛ᇱ ,     𝑙௜ ≠ 𝑙௝ ,  (21)

𝑊௜,௝(௟௪) = ቊ𝐴௜,௝൫1/𝑛௟೔ᇱ ൯,     𝑙௜ = 𝑙௝ ,0,     𝑙௜ ≠ 𝑙௝ .  (22)

Among them, 𝑛௟೔ᇱ  represents the number of Class 𝑙௜ ∈ {1,2, . . . ,𝐶} (𝑖 = 1,2, . . . ,𝑛ᇱ) samples; 
The (𝑖, 𝑗)th element 𝐴௜,௝ ∈ ሾ0,1ሿ of the similarity matrix 𝐴 is used to describe the similarity between 
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two samples 𝑥௜ and 𝑥௝, defined as 𝐴௜,௝ = expቆ− ฮ௫೔ି௫ೕฮమఙ೔ఙೕ ቇ, where 𝜎௜ is the local scale of sample 

point 𝑥௜, defined as 𝜎௜ = ฮ𝑥௜ − 𝑥௜(௞)ฮ, and 𝑥௜(௞) is the 𝑘th nearest neighbor of 𝑥௜. 
The inter class divergence matrix and intra class divergence matrix of SELF can be defined by 

Eqs. (17) to (22) as: 𝑆(௕) = (1 − 𝛽)𝑆(௟௕) + 𝛽𝑆(௧), (23)𝑆(௪) = (1 − 𝛽)𝑆(௟௪) + 𝛽𝐼ௗ . (24)

Among them, the weight coefficients 𝛽 ∈ ሾ0,1ሿ and 𝐼ௗ are the standard matrices. When 𝛽 = 0, 
SLEF is equivalent to LFDA, and when 𝛽 = 1, SELF is equivalent to PCA. Find the optimal 
projection transformation matrix 𝑇, that is, solve the problem of maximizing the objective function 
as follows: 𝑇 = argmax்∈ோ೏×ೝ ቂtr𝑇்𝑆(௕)𝑇൫𝑇்𝑆(௪)𝑇൯ିଵቃ. (25)

The solution of the transformation matrix in the above equation is equivalent to the problem of 
obtaining the generalized eigenvectors of 𝑆(௕)𝛼 = 𝜆𝑆(௪)𝛼. The transformation matrix 𝑇 is 
composed of the generalized eigenvectors (𝛼ଵ,𝛼ଶ, … ,𝛼ௗ) corresponding to the first 𝑑 maximum 
generalized eigenvalues. 

3. Fault diagnosis process 

In order to diagnose bearing fault signals under different sample categories, a fault diagnosis 
method combining HDE and SELF is proposed. The detailed steps are as follows: 

Step 1: Obtain vibration signals of bearings under different fault states and divide them into 
training and testing sets. Due to the complexity of vibration signals, the variational modal 
decomposition method is used to preprocess the signals and obtain several intrinsic mode functions 
after processing. 

Step 2: By comparing the size of the hierarchical discrete entropy under different parameters and 
judging the stability of the entropy value based on the coefficient of variation, the relevant parameters 
of HDE are determined, including input sample length 𝑁, embedding dimension 𝑚, number of 
categories 𝑐, and extraction entropy sample length parametern. The hierarchical discrete entropy of 
the decomposed intrinsic mode components is extracted to obtain a multidimensional feature vector 
with a length of 2௡. 

Step 3: Use the SELF dimensionality reduction method to obtain the inter class divergence matrix 𝑆(௕) and intraclass divergence matrix 𝑆(௪) of the feature vector, where the weight coefficient  𝛽 = 0.5. Set the length 𝑑 of the reduced vector, obtain the transformation matrix 𝑇, and multiply the 
transformation matrix with the original eigenvector to obtain a new reduced vector. 

Step 4: Input the training set and test set samples obtained after dimensionality reduction into the 
least squares support vector machine optimized by particle swarm optimization algorithm. Use 
particle swarm optimization algorithm to find the optimal parameter combination of regularization 
parameters and kernel parameters in LSSVM, and perform fault diagnosis on the feature samples 
internally through multiple cross validation methods to obtain the final accuracy. 

4. Example verification analysis 

4.1. Case Western Reserve University (CWRU) dataset 

The CWRU bearing dataset was collected from the experimental platform in Fig. 1 [18]. The 
collected bearing vibration signal was conducted at a motor speed of 1797 r/min and a sampling 
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frequency of 12000 Hz. The fault sample at the fan end was selected for analysis. Firstly, establish 
fault category labels based on different fault sizes and locations, as shown in Table 1. Taking the 
bearing signal with a fault size of 0.1778 mm as an example, the waveform is shown in Fig. 2. 

 
Fig. 1. Case Western Reserve University bearing test bench 

 
Fig. 2. Fault waveform diagram 

Table 1. Description of CWRU bearing fault samples 
Fault size / mm State 

0.1778 Rolling element failure 
0.1778 Inner ring failure 
0.1778 Normal 
0.1778 Outer ring failure 
0.3556 Rolling element failure 
0.3556 Inner ring failure 
0.3556 Outer ring failure 
0.5334 Rolling element failure 
0.5334 Inner ring failure 
0.5334 Outer ring failure 

Divide ten different types of bearing fault signals into 50 sets of test set samples and 50 sets 
of training set samples. Due to the complexity of the vibration signal, the sample is preprocessed 
using VMD method, and several intrinsic mode components are obtained after decomposition. 
Taking the rolling element fault signal as an example, different pre-decomposition modes 𝑘 are 
selected for VMD, in which the penalty factor a takes the default value 2000. The main difference 
of different modes lies in the difference of the central frequency. According to the VMD 
algorithm, the central frequency of each IMF component obtained from the VMD of the vibration 
signal will be distributed from low frequency to high frequency. If you want to obtain the optimal 
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preset scale 𝑘, the center frequency of the last order IMF component should be the maximum for 
the first time. Table 2 shows the central frequencies of each IMF component under different 
modes. 

As can be seen from Table 2, the minimum value of the central frequency is taken from the 
initial preset scale 𝑘 = 2, and the maximum value of the central frequency tends to be stable when 𝑘 = 4 and 𝑘 = 7. In order to prevent the mode number𝑘of VMD from being too large and 
over-decomposing, the𝑘value selected in this paper is 4.  

Table 2. Center frequency after VMD when taking different 𝑘 values 

Preset scale Center frequency 
IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 𝑘 = 2 25 545       𝑘 = 3 25 250 720      𝑘 = 4 25 250 545 940     𝑘 = 5 25 250 545 720 940    𝑘 = 6 25 250 350 545 720 940   𝑘 = 7 25 250 350 545 720 940 1165  k = 8 25 250 350 545 570 720 940 1165 

Taking the rolling element fault signal with a fault size of 0.1778mm as an example, the 
decomposed time-domain and frequency spectrum are shown in Fig. 3. From the time-domain 
graph, it can be seen that the VMD algorithm can decompose the original signal into multiple 
intrinsic mode components with different amplitudes through its built-in filtering algorithm. 
Observing the spectrum graph, it can be seen that the spectra of each component have obvious 
peaks, and there is no situation where multiple peaks appear simultaneously, avoiding mode 
mixing and boundary effects. From this, it can be seen that the VMD algorithm can effectively 
preprocess signals and improve the accuracy of subsequent work. 

 
a) Time domain diagram after VMD 

 
b) Spectrum after VMD 

Fig. 3. Time domain and frequency spectrum after VMD 

Use the HDE method to extract features from the decomposed multiple intrinsic mode 
components. The parameters in HDE affect the size of the extracted entropy and the overall effect. 
In order to determine the sensitivity of HDE to the original signal under different parameters, the 
average and standard deviation at different levels are calculated, and the coefficient of variation 
is introduced to determine the degree of node dispersion. The coefficient of variation is equal to 
the standard deviation/mean. As defined, the smaller the coefficient of variation, the higher the 
stability of the signal [18]. Fig. 4 shows the size of HDE entropy values under different parameters, 
while Tables 3 to 6 provide the coefficient of variation of HDE entropy values under different 
parameters. 

Due to the characteristics of the HDE algorithm, the final extracted sample length is 2௡. If the 
length parameter 𝑛 is set too small, the extracted entropy value is too small to be meaningful for 
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discussion. If it is set too large, it will lead to excessive extraction, resulting in an invalid entropy 
value. Therefore, when discussing the sample length parameter 𝑛, setting the range to [4, 7] will 
result in extracted entropy sample lengths of 16, 32, 64, and 128. From Fig. 4(a), it can be seen 
that when the sample length is 16 and 32, the entropy values are distributed within the [1.2, 1.4] 
range, while larger sample lengths only cause the entropy value to fluctuate and increase. From 
Table 3, it can be seen that the coefficient of variation is the smallest when the sample length 
parameter is 5, which also represents that the signal is most stable when the extracted sample 
length is 32. From Fig. 4(b), it can be seen that different lengths of original samples also affect 
the size and stability of the final extracted entropy. When the length of the original sample is  𝑁 ≥ 512, HDE tends to stabilize. Combined with Table 4, it can be seen that when the length of 
the original sample is 1024, the coefficient of variation is the smallest and the entropy value is 
also the most stable. 

The different embedding dimensions 𝑚 and category 𝑐 also affect the performance of HDE. 
From Fig. 4(c), it can be seen that as 𝑚 increases, the fluctuation of entropy value increases. From 
Table 5, it can also be seen that when 𝑚 = 2, the coefficient of variation is the smallest and the 
entropy value is the most stable. Therefore, the optimal embedding dimension 𝑚 = 2 is chosen; 
Similarly, by observing Fig. 4(d) and Table 6, the optimal number of categories 𝑐 = 2 can be 
obtained. 

 
a) Different entropy extraction sample lengthsn 

 
b) Different original sample lengths 𝑁 

 
c) Different embedding dimensionsm 

 
d) Different categoriesc 

Fig. 4. Entropy values under different conditions 

In order to improve the accuracy of extraction, first extract the entropy information sample 
from the signal that has not been decomposed by VMD, and then use this sample as a benchmark 
to perform secondary extraction on the decomposed intrinsic mode components. The HDE 
parameters selected in this article are: original sample length 𝑁 = 1024, embedding dimension 
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𝑚 = 2, number of categories 𝑐 = 2, and sample length parameter 𝑛 = 5. Due to secondary 
extraction, the length of each extracted sample increased from 32 to 64. The feature sample set 
extracted under this parameter is 100×64. In order to compare the effectiveness of the HDE 
method, the hierarchical range entropy (HRE) and hierarchical sample entropy (HSE) under the 
same parameters were also used for feature sample extraction. HDE is similar to HRE and HSE, 
which integrates range entropy and sample entropy on the basis of hierarchical entropy. The 
difference lies in the different calculation methods for signal sequences, resulting in different sets 
of extracted feature data. Taking the rolling element fault signal with a fault size of 0.1778 mm as 
an example, Fig. 5 shows a comparison of three entropy values. 

Table 3. Coefficient of variation for different entropy extracted sample lengths 𝑛 
Sample length parameter 𝑛 Coefficient of variation 

4 0.0043 
5 0.0023 
6 0.0396 
7 0.0376 

Table 4. Coefficient of variation for different original sample lengths 𝑁 
Original sample lengths parameter 𝑁 Coefficient of variation 

128 0.1154 
256 0.0286 
512 0.0134 
1024 0.0023 
2048 0.0029 
4096 0.0027 

Table 5. Coefficient of variation for different embedding dimensions 𝑚 
Embedding dimensions parameter 𝑚 Coefficient of variation 

2 0.0023 
3 0.0053 
4 0.0135 
5 0.0146 
6 0.0113 

Table 6. Coefficient of variation for different categories 𝑐 
Categories parameter 𝑐 Coefficient of variation 

2 0.0023 
3 0.0079 
4 0.0054 
5 0.0044 
6 0.0071 

The entropy value can reflect the complexity of the bearing vibration signal, and the larger the 
entropy value, the higher the complexity of the vibration signal it represents. From the figure, it 
can be seen that after taking the mean of the extracted 100×64 feature samples, although the 
samples extracted by the HRE method have stability, their entropy values are between [0, 0.5], 
which cannot reflect the characteristics of the original fault signal well; The entropy value 
extracted by HSE method has increased compared to HRE, but its entropy value exhibits 
significant volatility, which is not conducive to the final fault classification; The entropy value 
extracted by the HDE method has high stationarity, and the entropy value is also larger than the 
other two extraction methods, indicating that this method can better demonstrate the complexity 
of signal features, which is beneficial for subsequent signal processing. To further demonstrate 
the effectiveness of the HDE method, Pearson correlation coefficient analysis was performed on 
the feature samples extracted by the three entropy extraction methods under four fault states with 
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a fault size of 0.1778 mm. The results are shown in Fig. 6. 

 
Fig. 5. Comparison chart of three entropy values 

The Pearson correlation coefficient measures the correlation between the two, with a value 
range of [–1, 1]. After taking the absolute value of the correlation coefficient, the larger the value, 
the more relevant the two are. Comparing Fig. 6(a) and Fig. 6(b), it can be seen that the features 
extracted by HDE and HRE have a high correlation with both inner-outer faults, reaching above 
0.6. However, for other types of faults, such as normal-ball faults, inner-ball faults, HDE Pearson 
correlation coefficients are much smaller than those of the HRE method, with only 0.02998 and 
0.01139, while the HRE method only shows a small correlation when comparing ball-outer faults, 
and the correlation between other faults is not much different from that of the HDE method; 
Comparing three figures, it can be seen that the correlation between HSE and the extracted samples 
of inner-outer faults reaches 0.8227, which is much higher than the other two types of entropy 
values, indicating that the entropy values extracted by HSE for these two types of faults are highly 
correlated, which is not conducive to the final fault classification. The samples extracted by HSE 
showed good non correlation between normal-outer faults, as well as between outer-ball faults, 
but the non correlation between other faults was far inferior to the other two entropy values. In 
summary, the entropy extracted by HDE has better non correlation between each fault type 
compared to the other two methods, which can make the final fault diagnosis more accurate. 

After feature extraction of the fault signal, the semi-supervised local fisher discriminant 
analysis (SELF) method was used to reduce its dimensionality. The weight coefficient 𝛽 = 0.5 of 
the SELF method, the reduced vector length 𝑑 = 32, and the vector length obtained after SELF 
processing were reduced from 100×64 to 100×32. For comparative analysis, the entropy data 
extracted by HRE was also subjected to dimensionality reduction using LLE, KPCA combined 
with LDA, and PCA combined with LDA. Taking the feature samples under four fault states with 
a fault size of 0.1778 mm as an example, the t-SNE scatter plots of the reduced samples are shown 
in Fig. 7. 

Although the four types of fault samples in Fig. 7(a) have a certain distribution pattern after 
dimension reduction using the LLE method, their various fault sample points are relatively 
scattered, and there is no clear boundary between different types of faults. The samples in 
Fig. 7(b), after dimensionality reduction using the KPCA-LDA method, although the sample 
points of various types of faults have a certain degree of aggregation compared to the LLE method, 
there is a mixture of different lengths in the four types of fault samples, and there is a significant 
separation phenomenon between the outer ring fault and rolling element fault samples, which 
greatly affects the accuracy of the final fault classification. From Fig. 7(c), it can be seen that the 
data after dimensionality reduction using PCA-LDA method has a clear boundary for four 
different types of faults, and there is no mixing of feature samples for each type; The four fault 
categories in Fig. 7(d) are similar to those in Fig. 7(c), with clear boundaries. However, the 
clustering degree of the data samples in Fig. 7(d) is closer than that in Fig. 7(c), indicating that the 
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data samples after SELF dimensionality reduction can effectively distinguish different types of 
fault sample types, and the numerical values of different types of samples are divided into a certain 
range, resulting in higher discrimination between different types of samples and better fault 
diagnosis classification. 

 
a) HDE Pearson correlation coefficient 

 
b) HRE Pearson correlation coefficient 

 
c) HSE Pearson correlation coefficient 

Fig. 6. Pearson correlation coefficient chart 

Input the training and testing sets with a length of 100×32 obtained after dimensionality 
reduction into the least squares support vector machine optimized by particle swarm optimization 
for training and recognition. The optimization range of the regularization parameters and kernel 
parameters in the least squares support vector machine is set to [1, 200], the number of iterations 
is 10, and the maximum and minimum velocities of the particle swarm are 10 and –10. The least 
squares support vector machine performs 50 internal cross validations during fault classification 
of samples. The optimal parameter combination and accuracy obtained after training and testing 
the classification model are shown in Table 7. In order to demonstrate the effectiveness of this 
method, three entropy extraction methods and three data dimensionality reduction methods were 
combined to form a total of 12 methods for fault diagnosis. Table 7 also shows the classification 
accuracy of feature sample sets extracted by other methods in the model. 

From the classification accuracy of LSSVM, we can see that for the three different entropy 
extraction methods, the correlation between the feature samples of different fault types is smaller 
under the HDE entropy extraction method, so it is easier to distinguish different fault types. From 
the final accuracy, we can see that after different dimensionality reduction methods, HDE method 
has higher accuracy than the other two entropy extraction methods; for different dimensionality 
reduction methods, the accuracy of SELF method is higher than that of the other three methods, 
which also proves the superiority of the semi-supervised local Fisher discrimination method 
proposed in this paper. 

In order to further demonstrate the effectiveness of the method proposed in this paper, the deep 
learning classifier of deep extreme learning machine (DELM) is selected to compare again. This 
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method effectively combines autoencoder with extreme learning machine to form a deep neural 
network structure. It combines the advantages of autoencoder and extreme learning machine, and 
makes use of the feature learning ability of autoencoder and the fast training characteristics of 
extreme learning machine, it can better extract the advanced features of data in depth structure, so 
as to improve the modeling ability of complex data, and can overcome some shortcomings of 
traditional deep neural network training, such as long-time training, gradient disappearance and 
so on. Thus, the training efficiency and the generalization ability of the model are improved. 

 
a) t-SNE graph after LLE 

 
b) t-SNE graph after KPCA-LDA 

 
c) t-SNE graph after PCA-LDA 

 
d) t-SNE graph after SELF 

Fig. 7. t-SNE visualization diagram 

Table 7. CWRU data classification accuracy of LSSVM 
Entropy 

extraction method 
Dimension 

reduction method 
Regularization 

parameter 
Kernel 

parameter 
Classification 
accuracy (%) 

HDE 

SELF 80.33 9.84 100 
PCA-LDA 84.43 1.14 96.8 

KPCA-LDA 9.64 0.43 90.8 
LLE 6.31 2.36 81.4 

HRE 

SELF 10.66 4.31 100 
PCA-LDA 28.55 0.14 95 

KPCA-LDA 46.78 0.10 86.8 
LLE 5.64 9.21 65 

HSE 

SELF 3.26 6.44 99.6 
PCA-LDA 47.67 0.10 93.2 

KPCA-LDA 81.73 1.45 84.8 
LLE 69.98 9.68 79.2 

Similarly, the reduced samples are input into the depth extreme learning machine optimized 
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by the optimization algorithm for training and recognition. The optimization range of weight 
parameters of depth extreme learning machine is set to [–10, 10], the number of iterations is 50, 
and the number of iterative populations is 20. The deep extreme learning machine performs 50 
internal cross-validation in the process of sample fault classification. The diagnostic accuracy of 
12 fault diagnosis methods in the optimized DELM model is shown in Table 8. As can be seen 
from Table 8, the accuracy of three different entropy extraction methods after dimensionality 
reduction by SELF method has reached 100 %, indicating the advantage of SELF method in data 
dimensionality reduction. For the same dimensionality reduction method, the accuracy of HDE 
entropy extraction method is also higher than that of other entropy extraction methods, which 
shows the accuracy of the proposed method. Overall, the optimized DELM method has higher 
classification accuracy than LSSVM method, and can better classify samples. 

Table 8. CWRU data classification accuracy of DELM 
Entropy extraction 

method 
Dimension reduction 

method 
Weight 

parameter 
Classification accuracy 

(%) 

HDE 

SELF 0.4520 100 
PCA-LDA 0.2680 97.4 

KPCA-LDA 1.3260 92.6 
LLE 0.5640 85.8 

HRE 

SELF 0.4660 100 
PCA-LDA 0.4340 96.8 

KPCA-LDA 1.3320 88.2 
LLE 0.8860 68.4 

HSE 

SELF 0.4420 100 
PCA-LDA 0.4380 94.2 

KPCA-LDA 1.2460 86.4 
LLE 0.4180 82.6 

4.2. Southeast University (SEU) dataset 

Due to the fact that the Case Western Reserve University bearing dataset achieved high 
accuracy in extracting feature vectors using three entropy extraction methods and then reducing 
the dimensionality through SELF, both HRE-SELF and HDE-SELF achieved 100 % accuracy. 
Therefore, in order to better demonstrate the accuracy of the method proposed in this article, 
further experiments will be conducted on the dataset of Southeast University. The Southeast 
University (SEU) dataset is a gearbox dataset provided by Southeast University [19], and the fault 
test bench is shown in Fig. 8. This dataset consists of two sub datasets, including the bearing 
dataset and the gear dataset. The bearing dataset simulates five bearing operating states under two 
different operating conditions, namely 20 Hz (1200 r/min) - unloaded 0 V (0 N/m) and 30 Hz 
(1800 r/min) - loaded 2 V (7.32 N/m). The specific fault types are shown in Table 9, and the fault 
wave-forms are shown in Fig. 9. 

 
Fig. 8. Southeast University bearing test bench 
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Table 9. Description of SEU bearing fault samples 
Speed load situation Fault Type Fault description 

20 Hz-0 V 

Ball Cracks appear on the ball bearings 
Combination Cracks appear on the inner and outer rings 

Normal Healthy operation status 
Inner Cracks appear in the inner ring 
Outer Cracks appear on the outer ring 

30 Hz-2 V 

Ball Cracks appear on the ball bearings 
Combination Cracks appear on the inner and outer rings 

Normal Healthy operation status 
Inner Cracks appear in the inner ring 
Outer Cracks appear on the outer ring 

 

 
a) 20 Hz-0 V fault signal 

 
b) 30 Hz-2 V fault signal 

Fig. 9. Fault waveform diagram 

Similar to the previous text, ten different types of fault signals are divided into training and 
testing sets, preprocessed through VMD decomposition, and their HDE entropy values are 
extracted. The HDE parameter settings are the same as the previous text, but will not be further 
elaborated here. Further perform dimensionality reduction on the extracted 100×64 entropy 
samples. Taking 5 types of fault samples with a speed load condition of 20 Hz-0 V as an example, 
Fig. 10 show the t-SNE scatter plots of four dimensionality reduction methods under HDE method. 

From Fig. 10(a) and 10(b), it can be seen that the feature samples after dimensionality 
reduction using LLE and KPCA-LDA methods still exhibit hybridization, and various types of 
fault samples are relatively scattered without good discrimination; The PCA-LDA method in 
Fig. 10(c) performs much better in reducing the dimensionality of the samples compared to the 
previous two methods, but there is still a situation of mixed sample points in the dimensionality 
reduction of the first three types of fault samples; From Fig. 10(d), it can be seen that the sample 
points of each fault type in the data after dimensionality reduction using the SELF method are 
mapped to separate regions, with good discrimination. 

Input the dimensionality reduced data samples into the least squares support vector machine 
optimized by particle swarm optimization for training and testing. Table 10 shows the optimal 
parameter combinations and classification accuracy of 12 methods. From the previous analysis 
and the data in the table, it can be seen that the HDE entropy extraction method has a smaller 
correlation between the extracted samples compared to the other two entropy extraction methods, 
which makes its accuracy higher than the other two entropy values after the same method of 
dimensionality reduction, verifying the previous analysis; From the previous analysis, it can be 
seen that among the four dimensionality reduction methods, the discrimination between datasets 
under SELF dimensionality reduction is higher, which is also reflected by the final classification 
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accuracy. The accuracy of the HDE combined with SELF dimensionality reduction method 
reached 98.2 %, verifying the effectiveness of the HDE-SELF method proposed in this paper. 

 
a) t-SNE graph after LLE 

 
b) t-SNE graph after KPCA-LDA 

 
c) t-SNE graph after PCA-LDA 

 
d) t-SNE graph after SELF 

Fig. 10. t-SNE visualization diagram 

Table 10. SEU data classification accuracy 
Entropy extraction 

method 
Dimension 

reduction method 
Regularization 

parameter 
Kernel 

parameter 
Classification 

accuracy 

HDE 

SELF 58.04 18.56 98.2 
PCA-LDA 75.50 1.67 96.4 

KPCA-LDA 73.78 1.33 89.2 
LLE 25.47 9.15 93.2 

HRE 

SELF 96.86 11.36 93.8 
PCA-LDA 77.51 0.1 91.8 

KPCA-LDA 76.48 0.1 87.6 
LLE 23.62 8.41 86 

HSE 

SELF 58.59 76.20 95.8 
PCA-LDA 30.54 0.1 93.2 

KPCA-LDA 83.57 1.01 86.6 
LLE 97.27 6.71 93 

As mentioned above, the DELM method is used to classify SEU fault samples. As can be seen 
from Table 11, the final fault diagnosis accuracy of the samples processed by HDE and SELF is 
the highest, reaching 99.6 %. The other two entropy extraction methods also achieve high accuracy 
in the case of SELF processing, which once again proves the effectiveness of the SELF method. 
For different entropy extraction methods, the accuracy of HDE method is also higher than that of 
the other two methods. Generally speaking, the data processed by the HDE-SELF method 
proposed in this paper has high classification accuracy, which also shows the effectiveness of the 
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method. 

Table 11. SEU data classification accuracy of DELM 
Entropy extraction 

method 
Dimension reduction 

method 
Weight 

parameter 
Classification accuracy 

(%) 

HDE 

SELF 0.4740 99.6 
PCA-LDA 0.1620 97.2 

KPCA-LDA 1.1660 90.2 
LLE 0.2880 94.6 

HRE 

SELF 0.4420 98 
PCA-LDA 0.6080 92.4 

KPCA-LDA 1.0300 88 
LLE 0.3560 87.8 

HSE 

SELF 0.4580 98.4 
PCA-LDA 0.4780 94.2 

KPCA-LDA 1.0440 88.6 
LLE 0.1920 93.8 

5. Conclusions 

This article proposes a bearing fault diagnosis method that combines Hierarchical Discrete 
Entropy (HDE) with Semi Supervised Local Fisher Discriminant Analysis (SELF) dimensionality 
reduction. The conclusions are as follows: 

1) Compared to the other two entropy extraction methods, the HDE method extracts feature 
samples with lower correlation, which enables the HDE method to achieve higher accuracy in 
classifying feature samples. 

However, the parameter selection problem in entropy extraction methods has always been a 
problem that needs to be solved. This article only uses the method of comparing the entropy values 
obtained after setting different parameters to determine the optimal parameters. However, 
different parameter combinations can also affect the size and stationarity of entropy extraction 
samples. Therefore, whether an optimization algorithm can be found to optimize its parameters 
and find the optimal parameter combination is a new research point. 

2) The SELF dimensionality reduction method uses a semi supervised approach to reduce the 
dimensionality of labeled samples. Compared to supervised dimensionality reduction methods 
such as LDA and unsupervised dimensionality reduction method LLE, the discrimination between 
data samples after SELF dimensionality reduction is higher, resulting in higher accuracy. 

For the Case Western Reserve University dataset and Southeast University dataset, the final 
accuracy of the HDE-SELF method proposed in this paper is the highest, which proves the 
effectiveness of this method. In future research, we will also incorporate deep learning methods 
into the dimensionality reduction process to achieve better results. 
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