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Abstract. Hyperspectral images (HSIs) contain rich spectral information characteristics. Different 
spectral information can be used to classify different types of ground objects. However, the 
classification effect is mainly determined by the quality of spectral characteristic information and 
the performance of the classifier. This paper explores the use of two-dimensional empirical mode 
decomposition (2D-EMD) to first feature extraction of HSIs, then uses 2D-EMD to carry out 
adaptive decomposition of each band of hyperspectral data, and optimally extract the features of 
the sub-band obtained by decomposition. Then, the optimized features are classified in the support 
vector machine (SVM) recognition classifier optimized by grey wolf optimization (GWO) 
algorithm to further improve the effect of network recognition and classification. The simulation 
results show that this scheme can further improve the recognition results of different ground 
objects in HSIs.  
Keywords: hyperspectral images (HSIs), 2D-EMD, feature extraction, SVM, grey wolf 
optimization (GWO). 

1. Introduction 

The development of high-resolution satellite imaging sensors has enhanced the collection of 
remote sensing data and provided a cost-effective method to capture large amounts of feature 
information. Hyperspectral images (HSIs) contain rich one-dimensional (1D) spectral dimension 
information and two-dimensional (2D) spatial domain feature information [1]. By extracting 
useful feature information components of HSIs, different features can be classified, unmixed, 
denoised and compressed. HSIs technology has been widely used in agricultural resource 
management, marine resource monitoring, mineral exploitation and other aspects [2], [3]. 

HSIs acquired by spaceborne or airborne sensors usually record hundreds of spectral 
wavelengths per pixel in the image, which opens up new perspectives for many applications in 
remote sensing. Since subtle differences in ground cover can be picked up by different spectral 
features, HSIs is a technique well suited to distinguishing materials of interest. While the rich 
spectral features can provide useful information for data analysis, the high dimension of HSIs data 
also presents some new challenges. 

In the application of HSIs classification, one of the main factors affecting classification is to 
consider suitable feature extraction methods. However, the types of satellite images provided by 
different imaging sensors vary greatly due to different spatial and spectral resolution, which makes 
the feature extraction process more complicated. According to some literature studies, 2D spatial 
domain feature extraction is more effective than 1D feature extraction [4], [5]. Literature [6] 
proposes an empirical mode decomposition (EMD) method to extract features from hyperspectral 
remote sensing data sets, and also compares the recognition results of 2D decomposition scheme 
and 1D decomposition method. The results show that the 2D scheme is more effective than the 
1D scheme. In addition, according to the characteristics of two-dimensional empirical mode 
decomposition (2D-EMD), each band image of HSIs can be decomposed into a sub-band image 
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from high frequency to low frequency. The high frequency of image contains the high frequency 
detail features of the original image, such as edges, textures and contours. The low frequency 
sub-band image contains the low frequency division of the original image. The results show that 
the low frequency component in the sub-band image is better for classification. 

Spectral classification of HSIs takes pixel vector (spectral feature) as the only feature. In 
pixel-by-pixel classification (spectral classification), we need to classify the extracted feature 
information, and the selection of classifier is another major factor affecting the classification 
effect. Support vector machine (SVM) is an effective HSIs classification method, but the problem 
of parameter allocation poses a challenge to the accurate classification of HSIs [7], [8]. Some 
parameter optimization algorithms can improve the performance of SVM network. For example, 
in literature [9], [10], the Genetic Algorithm (GA) method is used to optimize and then classify 
the recognition network. In literature [11], [12], particle swarm optimization (PSO) was applied 
to the classification of HSIs. Inspired by similar ideas, this paper proposes to use grey wolf 
optimization (GWO) to further improve the SVM network recognition performance of feature 
samples obtained from 2D-EMD, so as to provide better classification effect for HSIs 
classification. In this paper, the data mining of HSIs data is studied. After feature extraction of 
HSIs, the feasibility of the scheme is evaluated by using the classification effect of different 
ground objects [13-15]. The feature extraction and classifier network, two main factors that affect 
the classification effect, are comprehensively considered and analyzed [7], [16]. 

The rest of the article is organized as follows. In Section 2, the 2D-EMD feature extraction 
method and classifier network SVM are briefly described, and the optimization algorithm GWO 
is introduced. Section 3 is the experimental process and results analysis. Section 4 is the 
conclusion of the paper. 

2. Methodology 

2.1. 2D-EMD 

The 2D-EMD is a 2D extended version of 1D-EMD. The EMD can decompose the nonlinear 
non-stationary signal into several natural mode components (IMFs). The first decomposed 
component is the high frequency component of the original signal, and the last screened natural 
mode component is the low frequency component of the original signal. This method has good 
adaptive characteristics. According to this characteristic, the method is often used in different 
fields of signal denoising, feature extraction and so on. The process of obtaining IMF functions is 
called screening, and it is an iterative process. Typical threshold difference (SD) ranges from 0.2 
to 0.3.  

2D extension form is mainly used in image processing. Image decomposition by 2D-EMD is 
a scale decomposition process from small to large. Firstly, the edge details of the image are 
extracted, and then the smoothing region is gradually screened. 2D-EMD can set stop criteria and 
boundary conditions without setting basis function, and can easily decompose images from small 
to large scale. The last pattern component to be filtered is also known as the remainder. After 
screening, surface information of different scales can be further extracted. The decomposition 
component can be obtained through the decomposition process of narrowband filter, so there is a 
strong correlation between pixel components, which can be regarded as a complete process of 
image fusion. 

Assuming that HSIs is represented as 𝑅ሼௐ×ு×௄ሽ, 𝑊 is the width of the spatial band, 𝐻 is the 
height of the spatial band, and 𝐾 is the total number of bands in the data set. each band of HSI can 
be represented by the following expression after being decomposed by 2D-EMD: 

2𝐷𝐸𝑀𝐷 ቄ𝐵௞ሺ௜,௝ሻቅ = ෍𝐼𝑀𝐹௡௄
௞ୀଵ + 𝑟𝑒𝑠, (1)
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where 𝐵(௜,௝) represents the spatial position of each band of HSI data. The 𝑘 is the 𝑘th band image 
(𝑘 = 1,2,⋯ ,𝐾). The 𝑛 is the number of natural IMFs obtained by decomposition of each band of 
HSI data (𝑛 = 1,2,⋯ ,𝑁). Res represents the residual component obtained by decomposition. In 
some applications you can think of this component as the last proper IMF component. 

2.2. GWO 

The GWO Algorithm is a new meta heuristic optimization algorithm proposed by Mirjalili S 
et al., which has good convergence speed and optimization accuracy and has been widely applied 
in multiple research fields [17]. 

The GWO algorithm simulates the hierarchical leadership mechanism of the social 
organization of the grey wolf population, which involves the collective hunting behavior from 
searching for prey, surrounding prey to hunting, and continuously iteratively optimizing to obtain 
the optimal solution location. The GWO algorithm simulates the behavior of wolf packs in three 
main steps: surround, hunt, and attack. The specific process is as follows: During the optimization 
process, the population will search for the best hunting route by surrounding the prey. The target 
position and optimal population position during the orbit stage can be determined by Eqs. (2) and 
(3): 𝐃 = ห𝐂 ∙ 𝐗௣(𝑡) − 𝐗(𝑡)ห, (2)𝐗(𝑡 + 1) = 𝐗௣(𝑡) − 𝐀 ∙ 𝐃, (3)

where the 𝑡 is the current number of iterations, 𝐀, 𝐂 and 𝐃 are the coefficient vectors, 𝐗௣(𝑡) is the 
target optimal solution vector (the location of prey), 𝐗(𝑡) is the current position vector of a search 
individual, and 𝐗(𝑡 + 1) is the next moving direction vector. 𝐀 and 𝐂 can be represented as 
follows: 𝐚(𝑡) = 2 ∙ 𝑀 − 𝑡𝑀 , (4)𝐀 = 2𝐚 ∙ 𝐫ଵ − 𝐚, (5)𝐂 = 2𝐫ଶ, (6)

where the 𝑀 is the maximum number of iterations, a linearly decreases from 2 to 0 as the number 
of iterations 𝑡 increases, 𝑟ଵ and 𝑟ଶ are the random vectors between [0,1]. According to Eqs. (5-6), 
the location of the points around the optimal solution can be searched by adjusting the size of the 
coefficient vectors of 𝐀 and 𝐂 to ensure the local optimization ability of the algorithm. 𝑟ଵ and 𝑟ଶ 
are random numbers between [0, 1], so the optimization population can find all the paths of the 
attacking target, while ensuring the global search ability of the algorithm. 

When hunting and attacking prey, 𝜔 moves in the next step according to the signals sent by 𝛼, 𝛽 and 𝛿 to judge whether it is close to the target or far away. The specific process can be expressed 
by Eq. (7-9): 

ቐ𝐃ఈ = |𝐂ଵ ∙ 𝐗ఈ − 𝐗|𝐃ఉ = ห𝐂ଶ ∙ 𝐗ఉ − 𝐗ห𝐃ఋ = |𝐂ଷ ∙ 𝐗ఋ − 𝐗|, (7)

ቐ𝐗ଵ = |𝐗ఈ − 𝐀ଵ ∙ (𝐃ఈ)|𝐗ଶ = ห𝐗ఉ − 𝐀ଶ ∙ (𝐃ఉ)ห𝐗ଷ = |𝐗ఋ − 𝐀ଷ ∙ (𝐃ఋ)|, (8)

𝐗(𝑡 + 1) = 𝐗ଵ + 𝐗ଶ + 𝐗ଷ3 , (9)
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where 𝐃ఈ, 𝐃ఉ and 𝐃ఋ are the direction vectors between 𝛼, 𝛽, 𝛿 and 𝜔, respectively. The 𝐗ଵ, 𝐗ଶ 
and 𝐗ଷ are respectively 𝛼, 𝛽 and 𝛿 to determine the direction vector of 𝜔 next move. 

2.3. GWO-SVM 

When network identification is carried out on sample data, network parameters should be 
selected appropriately. Here we select radial basis kernel function which is widely used for 
classification training. In network training, the penalty factor parameter 𝑐 and the radial basis 
kernel function’s gamma parameter are two very important parameters that affect the classification 
results. 

In this paper, the GWO algorithm is applied to different training and test samples of 
hyperspectral data sets, and the SVM network classifier performs parameter optimization, which 
can further improve the classification results of SVM and further improve the separable 
performance of the features extracted from 2D-EMD. 

3. Experimental analysis 

The introduction of Section 3 mainly includes three parts. Section 3.1 mainly introduces the 
whole experimental procedure. Section 3.2 mainly introduces the characteristics of the data set 
used in the experiment. In Section 3.3, the experimental results are shown in graphs and tables, 
and the experimental results and phenomena are analyzed in detail. 

3.1. Experimental procedure 

The whole process of the experiment mainly includes six main steps. The experimental flow 
scheme is shown in Fig. 1.  

 
Fig. 1. Flow chart of experimental scheme 

The first step of the experiment is to select the object of analysis, that is, to determine the 
application scenario of the research. Preprocess the selected data set and select the band data we 
need to analyze, because some of the bands have a lot of noise effect. In step 2, perform 2D-EMD 
decomposition for each band of the data set to obtain sub-band images of different frequency 
bands. In step 3, the sub-band image obtained from each band decomposition is reconstructed, and 
a new cube feature data set is obtained for each sub-band image. In step 4, conduct SVM 
classification on the obtained new cube data set, and compare the classification effect of different 
frequency bands respectively. In step 5, select the band cube data set with the best classification 
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effect. In step 6, introduce the optimal frequency band cube data set into the network optimized 
by GWO-SVM for classification operation.  

Thus, further improve the analysis effect of different types of ground objects. The two main 
factors that affect the recognition and classification results, feature extraction and classifier, are 
considered. 

3.2. Datasets 

3.2.1. Datasets introduction 

The data set used in the experiment consists of three types of scenarios. The selected HSIs data 
is widely used as the main validation data set for studying HSIs classification. Experimental 
simulation data download link address: 
https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes. 

The first Indian Pine scene was collected by AVIRIS sensor at Indian Pine Proving ground in 
northwest Indiana. It consisted of 145 × 145 pixels and 224 spectral reflection bands. After 
removing noise bands, 200 bands were left for further analysis. The Indian Pine dataset contains 
a total of 16 feature categories. Detailed references to the data are shown in Table 1 and Fig. 2. 

 
a) False composite image 

 
b) Ground truth map 

Fig. 2. Indian Pine dataset 

Table 1. Number of samples (NoS) for each class of the Indian Pine dataset 
Class Color Class name NoS 

1  Alfalfa 46 
2  Corn-notill 1428 
3  Corn-mintill 830 
4  Corn 237 
5  Grass-pasture 483 
6  Grass-trees 730 
7  Grass-pasture-mowed 28 
8  Hay-windrowed 478 
9  Oats 20 

10  Soybean-notill 972 
11  Soybean-mintill 2455 
12  Soybean-clean 593 
13  Wheat 205 
14  Woods 1265 
15  Buildings-Grass-Trees-Drives 386 
16  Stone-Steel-Towers 93 
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The second Salinas scene data was captured by a 224-band AVIRIS sensor over the Salinas 
Valley in California and features high spatial resolution. After removing the noise bands, 204 
bands were left for further analysis. The space size of each band is 512×217. The Salinas dataset 
contains a total of 16 feature categories. Detailed references to the data are shown in Table 2 and 
Fig. 3. 

Table 2. Number of samples (NoS) for each class of the Salinas dataset 
Class Color Class name NoS 

1  Brocoli_green_weeds_1 2009 
2  Brocoli_green_weeds_2 3726 
3  Fallow 1976 
4  Fallow_rough_plow 1394 
5  Fallow_smooth 2678 
6  Stubble 3959 
7  Celery 3579 
8  Grapes_untrained 11271 
9  Soil_vinyard_develop 6203 
10  Corn_senesced_green_weeds 3278 
11  Lettuce_romaine_4wk 1068 
12  Lettuce_romaine_5wk 1927 
13  Lettuce_romaine_6wk 916 
14  Lettuce_romaine_7wk 1070 
15  Vinyard_untrained 7268 
16  Vinyard_vertical_trellis 1807 

 

 
a) False composite image 

 
b) Ground truth map 

Fig. 3. Salinas dataset 

The third scenario data is from the Kennedy Space Center (KSC). The KSC dataset was 
acquired by NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over the 
Kennedy Space Center in Florida. AVIRIS obtained data for 224 bands, which were analyzed 
using 176 bands after removing water absorption and low signal-to-noise ratio bands. The space 
size of each band is 512×614. Recognition of land cover in this environment is difficult due to the 
similar spectral characteristics of some vegetation types. For classification purposes, 13 categories 
were defined for the site, representing the various land cover types occurring in the environment. 
Detailed references to the data are shown in Table 3 and Fig. 4. 
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Table 3. Number of samples (NoS) for each class of the KSC dataset 
Class Color Class name NoS 

1  Scrub 761 
2  Willow swamp 243 
3  Cabbage palm hammock 256 

4  Cabbage palm/oak 
hammock 252 

5  Slash pine 161 
6  Oak/broadleaf hammock 229 
7  Hardwood swamp 105 
8  Graminoid marsh 431 
9  Spartina marsh 520 
10  Cattail marsh 404 
11  Salt marsh 419 
12  Mud flats 503 
13  Wate 927 

 

 
a) False composite image 

 
b) Ground truth map 

Fig. 4. KSC dataset 

3.2.2. Spectral characteristics of the datasets 

In Fig. 5-7 respectively shows the spectral values of the three data sets in different categories 
of ground objects. The abscissa in the figure represents the number of bands and the ordinate 
represents the spectral value.  

The Indian Pine dataset was preprocessed to contain 200 spectral bands for analysis. As can 
be seen from Fig. 5, spectral curves of the first 6 types of ground objects have different spectral 
values in different bands. In the first 80 bands, the spectral values of different ground objects are 
highly distinguishable. The Salinas dataset, after being preprocessed, contains 204 spectral bands 
for analysis. As can be seen from Fig. 6, in the first 100 bands, the spectral values of different 
ground objects are highly differentiated. In Fig. 7, KSC contains 176 bands after pretreatment for 
analysis. It can be clearly seen in Fig. 7 that the spectral values of the first 6 different types of 
ground objects are highly distinguishable when the band interval is between 40 and 100. Different 
features of spectral curves can be used to classify different types of ground objects. The spectral 
values of Indian Pine and Salinas data sets are much larger than those of KSC. However, it can 
also be seen from the spectral curves of the two types of data that the spectral curves overlap, 
which often leads to low feature differentiation of different categories of ground objects, which 
will affect the effect of classification. Therefore, in the classification, it is necessary to carry out 
effective feature extraction for spectral features, and also put forward higher requirements for 
classifier network. 
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Fig. 5. Spectral values of ground objects from categories 1 to 6 in the Indian Pine dataset 

 
Fig. 6. Spectral values of ground objects from categories 1 to 6 in the Salinas dataset 

 
Fig. 7. Spectral values of ground objects from categories 1 to 6 in the KSC dataset 

4. Experimental result 

Table 4 shows the comparison of recognition results of three sets of scene data under different 
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natural pattern components. Here, the training samples and tests are directly imported into the 
SVM network for classification, and radial basis kernel functions with good performance are 
adopted. In order to avoid randomness brought by experiments, we take the mean and standard 
deviation of 10 experiments as statistical results. Here, the evaluation indexes OA and Kappa are 
adopted for measurement [7, 14-16]. Raw is the benchmark reference value for our comparison. 
It can be seen from Table 4 that the reference value of the second group of Salinas data set is 
higher, indicating that the difficulty of feature extraction is less, and the spectral curve features 
are more conducive to classification. The first Indian Pine dataset had the lowest reference value, 
indicating the greatest difficulty in feature extraction. According to the classification results of the 
three groups of data, the effect of the lower component is the best, indicating that the low 
frequency component is more conducive to classification. 

Table 4. Classification results of three data sets in different IMFs 
Feature Evaluation Indian Pine Salinas KSC 

Raw OA 73.50±1.05 89.94±0.40 79.53±1.05 
Kappa×100 70.40±1.89 88.77±0.46 77.15±1.18 

IMF1 OA 53.65±0.72 39.50±0.84 48.03±3.20 
Kappa×100 45.61±1.00 91.09±1.18 41.52±3.33 

IMF2 OA 86.54±0.86 59.94±1.09 57.62±3.24 
Kappa×100 84.50±0.99 54.71±1.26 52.10±3.83 

IMF3 OA 95.06±0.48 92.23±1.08 74.21±2.23 
Kappa×100 94.36±0.55 91.31±1.22 70.90±2.63 

IMF4 OA 93.63±1.03 97.01±0.67 81.74±2.69 
Kappa×100 92.74±1.17 96.67±0.75 79.50±3.03 

In the first part of the introduction, we mentioned that there are two key factors affecting 
classification, the first is the choice of feature extraction scheme, and the other is the quality of 
classifier. According to these two characteristics, we select the best mode component of the three 
data sets for the second optimization. Kernel function parameters and penalty factor parameters 
in SVM training network were optimized, and GWO algorithm was used to find the best parameter 
values under different training and test samples, so as to further improve the classification results 
of different ground object categories. 

Table 5. Identification results of the optimal features of the three groups  
of data sets under the SVM optimization network 

Feature Evaluation Indian Pine Salinas KSC 

GA-SVM OA 94.86±0.58 93.17±3.91 85.86±2.26 
Kappa×100 94.13±0.67 92.43±4.31 84.21±2.54 

PSO-SVM OA 95.14±0.49 95.24±1.67 87.66±2.59 
Kappa×100 94.45±0.56 94.69±1.87 86.23±2.90 

BO-SVM OA 95.36±0.44 97.08±0.52 88.03±1.51 
Kappa×100 94.89±0.52 96.42±0.62 87.87±1.62 

GWO-SVM OA 95.91±0.48 98.23±0.18 89.92±1.21 
Kappa×100 95.33±0.55 98.03±0.20 88.78±1.31 

In Table 5, we give the classification of different spectral values under the optimization of 
different intelligent methods. In the Indian Pine data, we selected 5 % training samples for training 
and the remaining 95 % for testing. In KSC, we selected 1 % of the training samples for training 
and the remaining 99 % for testing. Also in Salinas, we selected 1 % of the training samples for 
training and the remaining 99 % for testing. In order to avoid randomness brought by experiments, 
we take the mean and standard deviation of 10 experiments as statistical results. From the 
recognition effect of OA value and Kappa value, we can see that the GMO-SVM method is more 
effective in small sample training. In addition, it can be seen from the standard deviation of 
recognition results that the adoption of GMO-SVM is smaller than that of GA-SVM, PSO-SVM, 



FEATURE EXTRACTION OF HYPERSPECTRAL IMAGES BASED ON SVM OPTIMIZATION OF 2D-EMD AND GWO.  
JIAN TANG, DAN LI, LEI ZHANG, XIANGTONG NAN, XIN LI, DAN LUO, QIANLIANG XIAO 

10 ISSN PRINT 2335-2124, ISSN ONLINE 2424-4635  

and Bayesian Optimization (BO)-SVM indicating better robustness in the case of small sample 
training. 

From the classification effect of the three sets of data, the scheme using GWO-SVM has the 
best effect, while the scheme using GA-SVM has the worst effect. In addition, it can be seen from 
the three groups of recognition results that compared with the direct classification by SVM, GWO 
network optimization has the best effect. 

In Fig. 8 to Fig. 10, feature classification effects extracted by different schemes are given. Each 
color in the figure represents a feature category, and the classification of different features can be 
intuitively seen from the color figure. 

 
a) Color map 

 
b) IMF1 

 
c) IMF2 

 
d) IMF3 

 
e) IMF4 

 
f) Raw 

 
g) GA-IMF3 

 
h) PSO-IMF3 

 
i) BO-IMF3 

 
j) GWO-IMF3 

Fig. 8. Color diagram of Indian Pine classification 

 
a) Color map 

 
b) IMF1 

 
c) IMF2 

 
d) IMF3 

 
e) IMF4 

 
f) Raw 

 
g) GA-IMF4 

 
h) PSO-IMF4 

 
i) BO-IMF4 

 
j) GWO-IMF4 

Fig. 9. Color diagram of Salians classification 

In Fig. 11 to Fig. 13, we increase the classification OA values of three datasets under different 
training samples. The results of each experiment were the mean after 10 times. According to the 
sample quantity of different data sets, 5 %, 8 %, 10 % and 15 % of the Indian Pine data set were 
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taken as training samples respectively, and the rest were taken as test sets. For Salinas, 1 %, 2 %, 
3 % and 5 % were taken as training sets. Take 1 %, 3 %, 5 % and 10 % of the KSC data set as the 
training set respectively.  

 
a) Color map 

 
b) IMF1 

 
c) IMF2 

 
d) IMF3 

 
e) IMF4 

 
f) Raw 

 
g) GA-IMF4 

 
h) PSO-IMF4 

 
i) BO-IMF4 

 
j) GWO-IMF4 

Fig. 10. Color diagram of KSC classification 

92

94

96

98

100

5% 8% 10% 15%

GA-SVM PSO-SVM BO-SVM GWO-SVM  
Fig. 11. Classification OA values of Indian Pine under different training sample datasets 

88
90
92
94
96
98

100

1% 2% 3% 5%

GA-SVM PSO-SVM BO-SVM GWO-SVM  
Fig. 12. Classification OA values of Salinas under different training sample datasets 

There was no overlap between the training and test samples in the three datasets. From the OA 
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values of the classification effects of different training samples, we can intuitively see that the 
recognition accuracy of the three methods is constantly increasing with the increase of training 
samples. In Salinas data set, it can be seen that when the training sample is 2 %, the accuracy of 
OA classification has reached a better effect than that of GA-SVM, PSO-SVM and BO-SVM. 
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Fig. 13. Classification OA values of KSC under different training sample datasets 

5. Conclusions 

This paper explores two main factors that affect the classification of HSIs. These two factors 
mainly include feature extraction and classifier network performance. Firstly, each band of the 
original HSIs data is processed by the feature extraction method of the spatial domain scheme. 
The optimal feature sample is found from the constructed new cube data set, and the best data 
sample is introduced into the optimized classifier network for new test. Through the recognition 
results of different ground object categories, it is found that the comprehensive consideration of 
the two factors of feature extraction and classifier recognition network optimization is more 
reasonable. It provides a feasible reference for further exploring the performance of HSIs 
classification. 

Acknowledgements 

This work is funded partly by Natural Science Foundation of Hunan Province of China under 
Grant No. 2021JJ60068, and partly by Hunan Province vocational college education and teaching 
reform research project under Grant No. ZJGB2022339, and partly by Hunan Province education 
science “14th Five-Year Plan” project under Grant No. XJK23CZY009. 

Data availability 

The datasets generated during and/or analyzed during the current study are available from the 
corresponding author on reasonable request. 

Author contributions 

Jian Tang, major contributions are included the paper Conceptualization, Methodology and 
Writing. Dan Li, major contributions are included the paper Formal Analysis and Supervision. Lei 
Zhang, major contributions are included the paper Formal Analysis and Funding Acquisition. 
Xiangtong Nan, major contributions are included the paper Formal Analysis and Data Curation. 
Xin Li, major contributions include the paper Resources and Software. Dan Luo and Qianliang 
Xiao major contribution included the paper Funding Acquisition. 



FEATURE EXTRACTION OF HYPERSPECTRAL IMAGES BASED ON SVM OPTIMIZATION OF 2D-EMD AND GWO.  
JIAN TANG, DAN LI, LEI ZHANG, XIANGTONG NAN, XIN LI, DAN LUO, QIANLIANG XIAO 

 JOURNAL OF MEASUREMENTS IN ENGINEERING 13 

Conflict of interest 

The authors declare that they have no conflict of interest. 

References 

[1] M. P. Uddin, M. A. Mamun, and M. A. Hossain, “PCA-based feature reduction for hyperspectral 
remote sensing image classification,” IETE Technical Review, Vol. 38, No. 4, pp. 377–396, Jul. 2021, 
https://doi.org/10.1080/02564602.2020.1740615 

[2] D. M. Varade, A. K. Maurya, and O. Dikshit, “Development of spectral indexes in hyperspectral 
imagery for land cover assessment,” IETE Technical Review, Vol. 36, No. 5, pp. 475–483, Sep. 2019, 
https://doi.org/10.1080/02564602.2018.1503569 

[3] H. Wang, W. Li, X. Chen, and J. Niu, “Hyperspectral classification based on coupling multiscale super-
pixels and spatial spectral features,” IEEE Geoscience and Remote Sensing Letters, Vol. 19, pp. 1–5, 
Jan. 2022, https://doi.org/10.1109/lgrs.2021.3086796 

[4] C. Zhao, C. Li, and S. Feng, “A spectral-spatial method based on fractional Fourier transform and 
collaborative representation for hyperspectral anomaly detection,” IEEE Geoscience and Remote 
Sensing Letters, Vol. 18, No. 7, pp. 1259–1263, Jul. 2021, https://doi.org/10.1109/lgrs.2020.2998576 

[5] H. Sun, X. Zheng, X. Lu, and S. Wu, “Spectral-spatial attention network for hyperspectral image 
classification,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 58, No. 5, pp. 3232–3245, 
May 2020, https://doi.org/10.1109/tgrs.2019.2951160 

[6] B. Demir and S. Erturk, “Empirical mode decomposition of hyperspectral images for support vector 
machine classification,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 11, 
pp. 4071–4084, Nov. 2010, https://doi.org/10.1109/tgrs.2010.2070510 

[7] M. A. Shafaey et al., “Pixel-wise classification of hyperspectral images with 1D convolutional SVM 
networks,” IEEE Access, Vol. 10, pp. 133174–133185, Jan. 2022, 
https://doi.org/10.1109/access.2022.3231579 

[8] Y. Guo, X. Yin, X. Zhao, D. Yang, and Y. Bai, “Hyperspectral image classification with SVM and 
guided filter,” EURASIP Journal on Wireless Communications and Networking, Vol. 2019, No. 1, 
p. 56, Mar. 2019, https://doi.org/10.1186/s13638-019-1346-z 

[9] S. Zhang, H. Huang, Y. Huang, D. Cheng, and J. Huang, “A GA and SVM classification model for 
pine wilt disease detection using UAV-based hyperspectral imagery,” Applied Sciences, Vol. 12, 
No. 13, p. 6676, Jul. 2022, https://doi.org/10.3390/app12136676 

[10] A. Das and S. Patra, “A rough-GA based optimal feature selection in attribute profiles for classification 
of hyperspectral imagery,” Soft Computing, Vol. 24, No. 16, pp. 12569–12585, Jan. 2020, 
https://doi.org/10.1007/s00500-020-04697-y 

[11] Z. Xue, P. Du, and H. Su, “Harmonic analysis for hyperspectral image classification integrated with 
PSO optimized SVM,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote 
Sensing, Vol. 7, No. 6, pp. 2131–2146, Jun. 2014, https://doi.org/10.1109/jstars.2014.2307091 

[12] C. Qi, Z. Zhou, Y. Sun, H. Song, L. Hu, and Q. Wang, “Feature selection and multiple kernel boosting 
framework based on PSO with mutation mechanism for hyperspectral classification,” 
Neurocomputing, Vol. 220, pp. 181–190, Jan. 2017, https://doi.org/10.1016/j.neucom.2016.05.103 

[13] X. Cao, J. Yao, X. Fu, H. Bi, and D. Hong, “An enhanced 3-D discrete wavelet transform for 
hyperspectral image classification,” IEEE Geoscience and Remote Sensing Letters, Vol. 18, No. 6, 
pp. 1104–1108, Jun. 2021, https://doi.org/10.1109/lgrs.2020.2990407 

[14] A. Ben Hamida, A. Benoit, P. Lambert, and C. Ben Amar, “3-D deep learning approach for remote 
sensing image classification,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 56, No. 8, 
pp. 4420–4434, Aug. 2018, https://doi.org/10.1109/tgrs.2018.2818945 

[15] J. Xu, J. Zhao, and C. Liu, “An effective hyperspectral image classification approach based on discrete 
wavelet transform and dense CNN,” IEEE Geoscience and Remote Sensing Letters, Vol. 19, pp. 1–5, 
Jan. 2022, https://doi.org/10.1109/lgrs.2022.3181627 

[16] C. Yu, R. Han, M. Song, C. Liu, and C.-I. Chang, “A simplified 2D-3D CNN architecture for 
hyperspectral image classification based on spatial-spectral fusion,” IEEE Journal of Selected Topics 
in Applied Earth Observations and Remote Sensing, Vol. 13, pp. 2485–2501, Jan. 2020, 
https://doi.org/10.1109/jstars.2020.2983224 

[17] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf optimizer,” Advances in Engineering Software, 
Vol. 69, pp. 46–61, Mar. 2014, https://doi.org/10.1016/j.advengsoft.2013.12.007 



FEATURE EXTRACTION OF HYPERSPECTRAL IMAGES BASED ON SVM OPTIMIZATION OF 2D-EMD AND GWO.  
JIAN TANG, DAN LI, LEI ZHANG, XIANGTONG NAN, XIN LI, DAN LUO, QIANLIANG XIAO 

14 ISSN PRINT 2335-2124, ISSN ONLINE 2424-4635  

 

Jian Tang received master’s degree from University of South China, Hengyang, China, in 
2017. Now he works at Hunan Railway Professional Technology College. His current 
research interests include machine learning and data mining. 

 

Dan Li in 2016, obtained a master’s degree in electrical engineering from Hunan 
University of technology. At present, she is a full-time teacher majoring in electrical 
automation. In 2016, she worked as a professional technician in Hunan Xiangdian test and 
Research Institute Co., Ltd. since 2018, she has been a Lecturer and intermediate engineer 
in Hunan Railway Professional Technology College. Her research interests include 
machine learning, cooperative control and application, and distribution network state 
analysis. 

 

Lei Zhang received the M.S. degree from Control theory and control engineering, 
Zhongyuan University of Technology, Zhengzhou, China, in 2013. She is mainly engaged 
in teaching and scientific research in the fields of electrical engineering and automation 
control, industrial robots, vocational education and so on in Hunan Railway Professional 
Technology College after graduation. 

 

Xiangtong Nan received master’s degree from Lanzhou Jiaotong University, Lanzhou, 
China, in 2016. Now she works at Hunan Railway Professional Technology College. Her 
current research interests include industrial robot and system dynamics. 

 

Xin Li received master’s degree from Hunan University of Science and Technology, 
XiangTan, Hunan, China, in 2011. Now he works at Hunan Railway Professional 
Technology College. 

 

Dan Luo received Master of Engineering degree. Engaged in intelligent optimization 
algorithms and wind power system optimization research. 

 

Qianliang Xiao received a bachelor’s degree in mechanical and electrical integration 
engineering from Hunan University in 2014. Now he is working in CRRC Times Electric 
Vehicle Co., LTD., mainly researching electrical automation, and new energy vehicle 
manufacturing process and equipment. 

 




