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Abstract. Considering the detrimental impact of thermal phenomena on the geometric precision 
of machine tools, a machine tool ball screw’s omni-directional error model is created using the 
LSTM neural network algorithm. Subsequently, the machine tool ball screw's omni-directional 
error compensation module is devised by combining the core functions of the Huazhong numerical 
control system with the visual programming environment of QT and the numerical computation 
capability of Matlab. To enhance the practicality and accuracy of the compensation model, this 
study has employed the Whale Optimization Algorithm (WOA) to optimize the parameters of the 
LSTM model. This has resulted in an improvement in the model's generalization ability and 
prediction performance, making it more effective. During the experimental validation phase, the 𝑍-axis error of the machine tool was practically operated and analyzed using the compensation 
method. Results manifestly show that, after employing the compensation method, the peak 
amplitude of the 𝑍-axis error fluctuations have been notably curtailed to ±0.006 mm – a 
considerable reduction compared to the initial error bandwidth of ±0.0145 mm. These empirical 
findings substantiate the efficacy of the proposed compensation strategy in substantially boosting 
the machining precision of products, thus furnishing a substantial and instructive benchmark for 
future inquiries into CNC machine tool error compensation technologies. 
Keywords: CNC machine, LSTM, Matlab, QT, error compensation, ball screw error. 

1. Introduction 

Ball screws play a critical role in the manufacturing industry, but their reciprocating motion in 
CNC machine tools generates frictional heat, leading to thermal expansion [1]. This expansion 
phenomenon subsequently induces shifts in the relative positioning of the cutting point, ultimately 
impacting the precision of workpiece machining processes [2]. While conventional screw error 
compensation technology in the axial direction is effective, radial compensation still needs 
improvement, especially for the two ends of the fixed screw structure [3]. Against this backdrop, 
the present study focuses its investigative efforts on the development and resolution of the 
multifaceted challenge posed by omni-directional error compensation necessitated by thermal 
effects in dynamically functioning screws.  

In recent times, research on thermal error modeling methods based on the principle model 
(PBM) and empirical model (EBM) [4] has been limited due to their low prediction accuracy. 
Consequently, a range of thermal error modeling techniques have been proposed by scholars both 
domestically and internationally; among these, the application of deep learning to error 
compensation has progressively grown to become a research hotspot in the field. For instance, Li 
Bin et al. [5] harnessed a wavelet neural network optimized via genetic algorithm to build a 
thermal error model for CNC machine tools, which they experimentally validated for its superior 
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attributes, including accuracy, resistance to interference, and robustness. Similarly, the four-layer 
neural network architecture proposed by Pu-Ling Liu et al. [6] showcased commendable precision 
and resilience in predicting thermal errors during machining operations. Moreover, various 
scholars – such as Hu Shi et al. [7], Guo Qianjian et al. [8], Li Guangbao et al. [9], and Li et al. 
[10] – have independently enhanced the predictive and compensatory capabilities of error models 
by implementing different optimization algorithms and neural network architectures. 

Amidst the ongoing evolution of error prediction technologies, a deeper understanding of 
thermal error characteristics becomes increasingly crucial. Li S. S. et al. [11] employed the finite 
element method to scrutinize the thermal attributes, vibrational modes, and natural frequencies of 
a motor spindle in both steady-state and static conditions. Li Yi et al. [12] conceptualized and 
experimentally substantiated an efficient water-cooling system tailored for motor spindles. H. Qu 
et al. [13] systematically reviewed the principal sources of thermal errors and prevailing control 
strategies while envisioning prospective research directions. Parallel to this, advancements in error 
compensation technology significantly contribute to enhancing machining precision. Lu 
Chengwei et al. [14] presented a feature decomposition-based key geometric error analysis and 
compensation strategy applicable to five-axis CNC machine tools, offering detailed analyses and 
efficacious remedies for critical geometric errors. Li et al. [15] developed a thermal error modeling 
and compensation technique for heavy gantry machine tools, demonstrating marked effectiveness, 
with the mean error diminishing from 101 microns to 13.5 microns. Chen Guo-Hua et al. [16] 
constructed a volumetric error model for machine tools grounded in Abbe error theory, 
incorporating it into the system to realize error compensation, which they confirmed by 
contrasting tool accuracy pre- and post-compensation. 

Synthesizing these studies, preventative and compensatory measures constitute the dual 
mainstream strategies for coping with thermal error problems [17]. Nevertheless, preventive 
measures are often costly and are limited by technological constraints. Coupled with the less-
explored issue of errors emanating from the fixed state of CNC machine tool screws’ ends, this 
study innovatively introduces an omni-directional error compensation method targeting the screw 
structure's interaction with heat sources. This novel approach addresses a gap in the literature and 
promises significant improvements in coping with thermal error challenges. 

2. Principle and methods 

2.1. Principle analysis of LSTM  

Deep learning is a widely used machine learning technique that combines underlying features 
to reveal complex patterns [18]. Harnessing high-capacity training algorithms on extensive 
datasets, this technique excels at discerning sophisticated relationships. 

Among its variants, Long Short-Term Memory (LSTM) [19] represents a refined rendition of 
recurrent neural networks, explicitly designed to mitigate the notorious challenges of gradient 
disappearance and explosion inherent in conventional recurrent architectures. The LSTM network 
state is regarded as a dynamic system, where a memory cell and three gate structures (input gate, 
output gate, and forget gate) constitute a long and short-term memory unit. A graphical depiction 
of these gates is provided in Fig. 1, elucidating their operational dynamics within the LSTM 
structure. 

In LSTM, the update of each state variable follows the following formula: 𝑓௧ = 𝜎൫𝑈௙𝑥௧ + 𝑊௙ℎ௧ିଵ + 𝑏௙൯. (1)

The oblivion gate determines the degree of oblivion of the hidden cell state at the previous 
moment by using Eq. (1), where 𝑓௧ denotes the output of a sigmoid function that proportionally 
“obliviates” the previous hidden state based on the current input 𝑥௧: 



A BALL SCREW ALL-ROUND ERROR COMPENSATION TECHNOLOGY BASED ON NOVEL HYBRID DEEP LEARNING FOR CNC MACHINE TOOL.  
BO ZHOU, GUO-HUA CHEN, JIE MAO, YI LI, SHUAI-WEI ZHANG 

 JOURNAL OF VIBROENGINEERING 3 

𝑖௧ = 𝜎ሺ𝑈௜𝑥௧ + 𝑊௜ℎ௧ିଵ + 𝑏௜ሻ. (2)

The filtering of valid information is indicated by the 𝑖௧ in Eq. (2), and each component is given 
a weight ranging from 0 to 1. The likelihood that a component will be chosen and added to the 
unit state increases with weight: 𝑢௧ = tanhሺ𝑈௨𝑥௧ + 𝑊௨ℎ௧ିଵ + 𝑏௨ሻ. (3)

Eq. (3) delineates the formulation of a candidate state vector 𝑢௧, wherein the utilization of a 
hyperbolic tangent activation function (tanh) plays a pivotal role. This function restricts the output 
spectrum to the interval [–1, 1], a characteristic that fortifies the LSTM's resilience against the 
common issues of vanishing and exploding gradients, thereby preserving the inherent 
expressiveness of the encoded information. 

 
Fig. 1. Schematic diagram of LSTM unit structure 

The activation function (tanh) behaves as: tanhሺ𝑥ሻ = ൫𝑒௫ − 𝑒ሺି௫ሻ൯ ൫𝑒௫ + 𝑒ሺି௫ሻ൯ൗ . (4)

In addition, Eqs. (2) and (3) together form the mechanism for the operation of the input gate 
(memory gate), which determines whether the data at time step 𝑡 is integrated into the cell state. 𝑐௧ = 𝑓௧ ∗ 𝑐௧ିଵ + 𝑖௧ ∗ 𝑢௧ . (5)

At time step 𝑡, the cell state 𝑐௧ undergoes an update governed by Eq. (5), where the retention 
or forgetting of past information is initially modulated by a sigmoid function, utilizing the output ℎ௧ିଵ from the previous time step and the input 𝑥௧ at the current instant. A sigmoid value of 1 
indicates a strong retention of the previous state 𝑐௧ିଵ, while a value of 0 indicates complete 
forgetfulness of the previous state: 𝑜௧ = 𝜎ሺ𝑈௢𝑥௧ + 𝑊௢ℎ௧ିଵ + 𝑏௢ሻ, (6)ℎ௧ = 𝑜௧ ∗ tanhሺ𝑐௧ሻ. (7)

Eqs. (6) and (7) expound upon the operative mechanism of the output gate. First, a sigmoid 
function is engaged to sieve out pertinent information from a composite vector ሾℎ௧ିଵ, 𝑥௧ሿ, which 
consolidates the current input and the output from the immediately preceding time point. 
Subsequent to this, the current cell state is transformed onto the interval (–1, 1) through the 
application of a hyperbolic tangent function tanh, thereby shaping the ultimate output value that 
encapsulates the processed temporal information. 
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In the above equation, at time 𝑡, 𝑥௧ represents the input data, ℎ௧ represents the state of the 
hidden layer, + represents the superposition operation, 𝑈/𝑊 represents the matrix weight, 𝑏 
represents the offset, 𝜎 represents the sigmoid function, and the symbol ∗ represents the vector 
outer product. The usual LSTM network structure is shown in Fig. 2. 

 
Fig. 2. Schematic diagram of long short-term memory network 

2.2. WOA optimization algorithm 

The WOA algorithm is designed to optimize a problem by imitating biological strategies used 
in the hunting behaviour of humpback whales, such as encircling predation and bubble net 
predation. Within this framework, each artificial humpback whale embodies a potential solution, 
and its position iteratively evolves to approach the global optimum: 𝑇 = ห𝐴 • 𝑋ሺ௧ሻ∗ − 𝑋ሺ௧ሻห, (8)𝑋ሺ௧ାଵሻ = 𝑋ሺ௧ሻ∗ − 𝐵 • 𝑇. (9)

The strategic essence of the encircling predation strategy is instantiated in Eq. (8) and (9), 
wherein, once a prevailing global optimum 𝑋ሺ௧ሻ∗  is identified, the remaining members of the 
population progressively converge towards it in accordance with predefined rules. Herein, 𝐴 and 𝐵 denote dynamically tuned coefficient vectors contingent upon the iteration count 𝑡, while 𝑋ሺ௧ሻ 
stands for the present initial position vector of an individual whale agent. The position adjustment 
process is judiciously guided by the utilization of the absolute value operator | | and the Hadamard 
product (element-wise multiplication) operator •, ensuring a systematic movement toward the 
most promising areas of the search space: 𝐴 = 2 ൈ 𝑟ଶ, (10)𝐵 = 2𝑎 ൈ 𝑟ଵ − 𝑎. (11)

Throughout the iteration process, the computation of vectors 𝐴 and 𝐵 follows Eqs. (10) and 
(11), where 𝑎 decreases linearly to zero with the number of iterations and 𝑟ଵ and 𝑟ଶ are random 
numbers in the interval [0, 1]: 𝑋ሺ௧ାଵሻ = 𝑇ᇱ ൈ 𝑒௕௟ ൈ cosሺ2𝜋𝑙ሻ + 𝑋ሺ௧ሻ∗ , (12)𝑇ᇱ = ห𝑋ሺ௧ሻ∗ − 𝑋ሺ௧ሻห. (13)

Eqs. (12) and (13) describe the equation of a logarithmic spiral that is used to calculate the 
position update of whales and their prey during bubble net predation. In the equation, 𝑇′ represents 
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the distance between the current individual and the current optimal solution, 𝑏 is the spiral shape 
parameter, and 𝑙 is a random number uniformly distributed between [–1, 1]: 

X(୲ାଵ) = ቊ𝑋∗(௧) − 𝐵 • 𝑇, 𝑃 < 0.5,𝑇ᇱ × 𝑒௕௟ × cos(2𝑝𝑙) + 𝑋(௧)∗ , 𝑃 ≥ 0.5. (14)

Eq. (14) shows the process of WOA selecting different predation strategies based on the 
probability P, which is a random probability in the range of [0, 1]: 𝑇ᇱᇱ = ቚ𝐶 • 𝑋௥௔௡ௗ(௧) − 𝑋(௧)ቚ, (15)𝑋(௧ାଵ) = 𝑋௥௔௡ௗ(௧) − 𝐵 • 𝑇, (16)

In Eqs. (15) and (16), when |𝐴| ≥1, the exploratory agents not only gravitate towards the 
identified optimal solution but also recalibrate their positions in relation to the distances from 
randomly chosen peers, thereby instigating a broader scope of random search. Here, 𝑇′′ denotes 
the distance between the current individual and the random individual, and 𝑋௥௔௡ௗ(௧) is the position 
of the random individual. 

To conclude, the WOA algorithm ingeniously amalgamates a biomimetic heuristic with a 
pliable probabilistic decision-making process, which guides the searching individuals to 
effectively traverse the solution space in the iterative process to find the globally optimal solution. 
The comprehensive workflow of the WOA algorithm is visually depicted in Fig. 3, which lucidly 
illustrates the algorithm’s entire operational sequence. 

 
Fig. 3. Flowchart of WOA algorithm optimization 

2.3. Model framework 

Since the ball screw error data manifest temporal correlations and continuity, and are notably 
influenced by the thermal dynamics of the machine tool, this study adopts an LSTM network to 
examine the data within a dynamic time series framework, aiming to capture their intricate 
spatiotemporal properties and deliver precise thermal error predictions [20]. 
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The construction of the three-dimensional error prediction model for the ball screw 
encompasses several stages: data preprocessing, model architectural setup, hyperparameter 
tuning, and model testing and evaluation. 

During the preprocessing phase, a variety of multivariate data are gathered and meticulously 
organized, concatenated, and normalized, encompassing the running distance, servomotor 
temperature, slider temperature, screw nut temperature, and the three-directional errors (Δ𝑥, Δ𝑦, Δ𝑧). Among them, the preset temperature data includes motor mount temperature, ball screw nut 
temperature, and guideway slider temperature, with weights of 70 %, 20 %, and 10 %, 
respectively. Meanwhile, the running distance, sampling position, and preset temperature data are 
taken as model input parameters, and the three-way error is taken as output parameters. The dataset 
is divided into 70 % as the training set, 10 % as the validation set, and 20 % as the test set. 

The model architecture is depicted in Fig. 4. Its input layer contains the input sequence at time 
t and its previous period, while the output layer represents the value of the three-way error of the 
ball screw predicted by the model at time 𝑡 + 1. Multiple hidden layers are set up inside the model, 
including the FNN layer, LSTM layer, and dropout layer, with a serial connection of two LSTM 
layer-dropout layer pairs culminating in a fully connected FNN layer. Among them, the LSTM 
layer mainly undertakes the task of extracting key features from the input sequence and 
maintaining the internal state. 

 
Fig. 4. Framework diagram of predictive modeling 

In order to obtain optimal performance from the LSTM model during training, it is necessary 
to adjust its configuration and parameter tuning. This involves finding the best combination of 
hyperparameters, such as the learning rate, number of hidden neurons in the LSTM layer, 
regularization coefficient, and number of training rounds, through several iterations. However, 
traditional optimization algorithms may be computationally expensive and inefficient, so this 
study uses the WOA algorithm. It is chosen for its fast convergence and excellent global optimal 
solution search capability. Moreover, to guarantee the gradient stability of the screw’s three-way 
error prediction model, the uniform initialization method [21] is employed to initialize model 
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parameters. The LSTM model adopts the tanh and sigmoid functions as activation functions, 
complemented by the Adam optimization algorithm [22] for parameter adjustment, aimed at 
minimizing the loss function. 

In the final stage of model assessment, this study primarily utilizes the root mean square error 
(RMSE) as the primary metric for gauging prediction accuracy, complemented by the mean 
absolute error (MAE) to quantify the magnitude of disparity between the predicted and actual 
values: 

𝑅𝑀𝑆𝐸 = ඨ1𝑚෍ ൫𝑃௜௧ − 𝑃௜௣൯ଶ௠௜ୀଵ , (17)

𝑀𝐴𝐸 = 1𝑚෍ ห𝑃௜௧ − 𝑃௜௣ห௠௜ୀଵ . (18)

2.4. Training of algorithm  

In this study, a ball screw three-way error prediction model is shown in Fig. 5. During the 
training process, the dataset is divided into small batches. In each batch, the model receives a set 
of input sequences and calculates the gradient of the loss function through a backpropagation 
algorithm. These gradients are then used to update the model parameters to minimize the loss 
function. On this basis, the optimizer exploits the computed gradients to refine the model 
parameters, and this iterative training process persists until a convergence criterion is met. Of 
particular note, the Dropout layer is used to prevent overfitting by implementing an early stopping 
strategy.  

 
Fig. 5. Flowchart of Three-way error prediction of ball screws 

Acquisition Of Sample Data For 
Screw Error Compensation

Training Dataset

Backpropagation, 
Hyper-parameter Setting

Hyper-Parameter 
Update

Sample Data Pre-processing  ,
Weight Initialization

Loss Function Meet 
Requirement？

YN

Model Parameter Training

Test Dataset

Testing Using Converged Neural 
Network Models

Generate Error Compensation 
Fitting Curve

Comparative Analysis Of Results

Mathematical Modeling Based On 
Improved LSTM

Validation Dataset



A BALL SCREW ALL-ROUND ERROR COMPENSATION TECHNOLOGY BASED ON NOVEL HYBRID DEEP LEARNING FOR CNC MACHINE TOOL.  
BO ZHOU, GUO-HUA CHEN, JIE MAO, YI LI, SHUAI-WEI ZHANG 

8 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460  

As per the previously discussed Section 2.3, the WOA algorithm is used to optimize the best 
hyper-parameter combination for the experiment. Since the training sets are different, the set 
hyperparameters are also different. Ultimately, following rigorous training and meticulous 
parameter optimization, the high-performing LSTM neural network model was successfully 
integrated into a custom-built screw error compensation module. This integration enables the 
accurate prediction and efficacious compensation of the ball screw's three-directional errors in 
practical application contexts. 

2.5. Training of algorithm  

The error compensation function of the CNC machine tool is a result of integrating various 
technologies such as Fast Ethernet data interaction technology, sensor technology, real-time 
control system, and adaptive control technology. The principle of the error compensation system 
is illustrated in Fig. 6. The error prediction value, computed by the three-way error prediction 
model of the ball screw, is quickly stored in the non-volatile memory of the programmable 
machine controller (PMC) through data interaction. When the machine tool error compensation 
system interacts with the PMC, the data is transferred to the built-in interpolation system. The data 
is then adjusted by an internal interpolation algorithm that converts the compensation value into 
an interpolation step, which is transmitted to the interpolator to correct the interpolation vector. 

 
Fig. 6. Schematic diagram of ball screw error compensation 

This study aims to address the issues of cumbersome testing and low efficiency of CNC 
systems by developing a ball screw error compensation module. The module is designed to be 
highly stable, personalized, and user-friendly, with a high degree of human-computer interaction. 
It is developed using the secondary development of QT software and is designed, developed and 
debugged in a Win environment, which includes: module function definition, interface design, 
operation logic processing, parameter configuration, motion control, etc. The module interface is 
shown in Fig. 7. 

QT introduces the signal and slot mechanism to enhance the communication function between 
the system and interpolator, making the interaction between system components more convenient 
and flexible. The signal and slot mechanism allows communication and interaction between 
components through a reaction-slot (slot) approach, making it easy to communicate between 
different threads and achieve real-time data transfer and synchronization. This improves the 
response speed and efficiency of the system. In the secondary development of the ball screw error 
compensation module, the sensor data can be sent as a signal and then connected to the slot 
function of the interpolator to realize real-time data interaction and control. 

2.6. Construction of Omni-directional error compensation method 

The omni-directional error compensation method is to address the issue of thermal error 
resulting from thermal deformation when the ball screw’s two ends are fixed. The detailed 
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implementation process is illustrated in Fig. 8. To accomplish this, the method employs both QT 
and MATLAB software for secondary development of the CNC system, as well as to establish a 
three-way error prediction model for the ball screw. 

 
Fig. 7. Ball screws error compensation module interface 

During this process, data about the ball screw's movement is collected, including its real-time 
position, feed speed, running time, running distance, and temperature at the sensitive point. These 
data are then fed into a WOA-LSTM prediction model, which has already been established. After 
performing mathematical calculations and fitting the model, the system obtains the three-way 
errors (Δ𝑥, Δ𝑦, Δ𝑧) at the real-time position of the machining platform. These errors are then sent 
to the interpolator, which uses the values to generate control signals and adjust the servo motors 
accordingly. The main goal of this method is to use feedback control to ensure that the tool or 
workpiece moves as close as possible to the desired trajectory, thereby improving machining 
quality and accuracy. By using real-time error data, interpolation is achieved through the 
interpolators in the compensation system. This system ensures that the machine is stable when 
handling complex workpieces.  

For data acquisition, it is necessary to preset an experimental program for the acquisition 
process and use the control variable method. The experimental program must include adjustments 
to motor speed and machining platform feed speed, presetting segmented measurement points, 
and developing a temperature rise test program. The segmented measurement points are preset by 
dividing the feed ball screw of the CNC machine tool into multiple parts according to the same 
spacing (Δ𝐿), and dividing them into different three-way error measurement areas. In each region, 
the point at Δ𝐿/2 is set as the measurement point. The temperature rise test program involves 
writing G-code to control the reciprocating motion of the measuring platform feed system within 
a given distance (S) to mimic the actual machining state of the CNC machine tool and generate 
localized high temperatures. During this process, the feed axis ball screw of the CNC machine 
tool deforms due to thermal expansion. 

During data acquisition, the CNC machine's three axes were run without any load and stopped 
for 3 seconds at 1/2 of each pitch, Δ𝐿/2, in accordance with the ISO international standard [23]. 
During the halt period, a laser interferometer was used to measure the three-way error data of the 
current segmented position of the ball screw, while a temperature sensor collected data on the ball 
screw's temperature during operation, including the temperature of the servo motor, slide, and ball 
screw nut. After collecting the data, they were preprocessed and integrated into the dataset 
required for the model. 
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Fig. 8. Flowchart of Omni-directional error compensation method 

3. Thermal error measurement experiment  

3.1. Construction of experimental environment 

This study zeroes in on the thermal error issue pertaining to the feed screw within the S7H 
composite machining center, employing high-precision instruments such as PT100 temperature 
sensors, an HS-P9-E-R temperature acquisition device, and a Renishaw XL-80 laser 
interferometer for experimental execution. Notably, the detailed layout arrangement of the 𝑌-axis 
is graphically depicted in Fig. 9, whereas the positioning of the laser interferometer for the 𝑋- and 𝑍-axis screws is tailored according to the experimental requisites. 

Concurrently, in pursuit of obtaining a representative ambient temperature, two additional 
temperature measurement points, T4 and T5, are symmetrically installed on both the inner and 
outer surfaces of the machine, with their mean value serving as the ambient temperature reference. 
The initial positioning error of the machine is accurately measured by a laser interferometer [24]. 
Given that the total length of the screw measures 𝐿 = 600 mm, it is uniformly divided into thirty 
sections, each segment of length Δ𝐿 = 20 mm, with an error detection point established at the 
midpoint of every segment for meticulous error analysis. 

In light of the heat dissipation patterns intrinsic to the ball screw, temperature sensors are 
strategically positioned in thermally sensitive regions such as the screw nut, guideway slide, and 
servo motor, designated as monitoring points T1, T2, and T3, respectively. These PT100 
resistance temperature sensors [25] boast a ±0.3 °C high-precision measurement capability and 
operate across a wide temperature range from –200 °C to 300 °C. 

The configuration of the laser interferometer system at the ball screw is elucidated in Fig. 10, 
comprising elements such as the interference head, refractor, reflector, stable tripod, and other 
components. Initially, the robust tripod is stationed atop a dedicated support pedestal, facilitating 
the mounting of the laser interferometer's main apparatus to ensure that the interference head is 
aligned in the zero-coordinate horizontal plane of the machine tool's working platform, thus 

START

END

To analyze the structure of the machine tool feed 
axis and identify temperature-sensitive points, a 
pre-determined experimental program on the 
measurement platform is employed.

Installation of the temperature sensor and setting 
up of the laser interferometer in the axial direction 
of the inspection platform.

Acquisition of temperature sensor signals and 
laser interferometer data

Development of mathematical models for real-time 
calculation of three-way errors at various segment 
positions along the silk rod under different preset 
temperatures.

The compensation system performs interpolation 
based on real-time error data using an interpolator.

S1

S2

S4

S5

S6

Running a CNC machine to perform a screw 
temperature rise test

S3
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guaranteeing the precision of the measurement reference point. Subsequently, an adjustable 
support rod is affixed to the 𝑍-axis column using a magnetic base, allowing it to ascend and 
descend in unison with the 𝑍-axis motion. Upon this rod, a reflector is securely attached, which 
tracks the vertical displacement of the 𝑍-axis and fundamentally serves to receive and redirect the 
laser beam horizontally from the laser interferometer. 

 
Fig. 9. Schematic diagram of thermal error measurement setup 

Simultaneously, a refractor mirror is prescriptively positioned on a support bar, its exact 
placement lying at the geometric intersection of the laser interferometer’s 𝑋-axis extension line 
and the principal axis of the machine tool – this position remains invariant with the worktable’s 
movements. The refractor's function is to collect the horizontally emitted laser beam from the 
interferometer, refract it towards the reflector, and thereafter intercept the laser beam returning 
from the reflector, thereby ensuring it is vertically impinged upon the receiver aperture for 
meticulous optical analysis and measurement. 

 
Fig. 10. Arrangement of laser interferometer 

3.2. Protocol for measurement experiment 

The experimental protocol unfolds in the following sequential phases: 



A BALL SCREW ALL-ROUND ERROR COMPENSATION TECHNOLOGY BASED ON NOVEL HYBRID DEEP LEARNING FOR CNC MACHINE TOOL.  
BO ZHOU, GUO-HUA CHEN, JIE MAO, YI LI, SHUAI-WEI ZHANG 

12 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460  

1) Precise temperature sensors are strategically placed in zones of the machine tool apparatus 
that are susceptible to significant temperature fluctuations. At the same time, key error detection 
points are marked, and the distribution of positioning errors at each point is accurately quantified 
using a laser interferometer. 

2) Proceeding to the temperature rise experiment, the feed system of the machining center was 
operated with its cooling mechanism deactivated, while the worktable executes reciprocating 
motions along the feed axes at a steady speed of 10 meters per minute. The temperature data from 
the sensors are recorded in real-time. When the temperature approaches a predetermined 
threshold, the feed rate is reduced, and there is a mandatory pause of 5 seconds at each error 
detection point to collect relevant data. 

3) Throughout each pause interval, the three-dimensional error data were meticulously 
captured at each segment along the ball screw's length using a laser interferometer. 
Simultaneously, a continuous surveillance and logging of the comprehensive temperature data 
took place, encompassing the servo motor, slider, and screw nut temperatures. 

4) To examine the impact of varying feed speeds on error magnitudes and temperature changes, 
the experiment includes a stepped increase in feed rates, starting from 5 meters per minute up to 
25 meters per minute. The previous experimental procedures are repeated rigorously at each feed 
speed to ensure comprehensive data collection and credibility. 

3.3. Data analysis 

Under ambient room temperature conditions, the ball screw is driven to reach thermal 
equilibrium status at a feeding velocity of 10 m/min, which is considered achieved when the 
temperature increase approximates around 95 %. The perusal of experimental data reveals that the 
internal and external ambient temperatures of the machine tool stabilize at approximately 20 °C. 
The 𝑌-axis feeding system exhibits a characteristic pattern of rapid initial temperature escalation 
followed by a gradual slowdown and eventual stabilization. Specifically, the temperature escalates 
swiftly during the initial 70 minutes before plateauing around 110 minutes later. The temperature 
variation curves for the three temperature-sensitive points and the measuring points on the inner 
and outer surfaces of the machine tool are presented in Fig. 11. Owing to the semi-enclosed nature 
of the motor end, which leads to relatively inferior heat dissipation conditions, the temperature at 
measurement point T1 (the motor) peaks and stabilizes at around 36 °C. Following this, the screw 
nut at measurement point T2 attains a steady-state temperature of about 27 °C, and the slider at 
measurement point T3 records the lowest temperature, stabilizing at approximately 24 °C. This 
disparity is attributed to the slider's mobility with the feeding system and larger air contact surface 
area, resulting in more efficient heat dissipation. The elevated temperature of the screw nut 
compared to the slider is mainly due to the heat generation from the nut-pair interaction. 
Ultimately, all temperature data were collated, and the temperatures at T1, T2, and T3 are preset 
to the temperature record value according to the weights of 70 %, 20 %, and 10 %, respectively. 

Once the temperature within the monitoring system reaches the pre-established threshold, a 
laser interferometer is utilized to quantify the thermal error, which is calculated as the difference 
between the measured values at each time interval and the initial positioning error. 

The radial offsets and expansion deformations caused by mechanical forces and thermal 
influences manifest positively along the positive direction of the system coordinates. Fig. 12 
illustrates the variations in thermal error at a representative error detection point under different 
feed speeds, effectively demonstrating the substantial correlation between feed speed and the 
thermal error of the ball screw – specifically, an increase in feed speed results in a commensurate 
rise in thermal error. Hence, a judicious decrease in feed speed can be instrumental in mitigating 
thermal error. 

Table 1 encapsulates select experimental error data, indicating that the three-way error at the 
ball screw measurement points closer to the motor end is substantial, particularly beyond point 
P26, where the maximum error can reach up to ±14.59 μm. It is noteworthy that the initial 
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positioning error registers negatively and veers in both positive and negative directions, which can 
be attributed to the fixed mounting of the screw’s two ends.  

 
Fig. 11. Temperature variation curves at various 

positions under a feed rate of 10 m/min 

 
Fig. 12. Thermal error variation curve under 

different feed speeds at the same position 

Table 1. Three-axis errors at varying inspection points (mm) 
Feed  
speed 

Points of error 
identification 

𝑋-Axis 𝑌-Axis 𝑍-Axis 𝑋, 𝑌, 𝑍 𝑋, 𝑌, 𝑍 𝑋, 𝑌, 𝑍 

5 m/min 

P1 –0.0026, –0.0018, 
 –0.0025 

0.0041, –0.0029,  
–0.0036 

–0.0044, –0.0035,  
–0.0015 

P2 0.0018, –0.0038, 
–0.0042 

0.0013, 0.0005, 
0.0048 

–0.0045, –0.0021,  
–0.0012 

… … … … 

P30 0.0038, –0.0068, 
0.0063 

–0.0054, 0.0029, 
0.0064 

0.0024, -0.0038,  
–0.0021 

… … … … … 

20 
m/min 

P1 –0.0016, –0.0029, 
0.0043 

0.0023, –0.0006, –
0.0016 

0.0031, –0.0043, 
–0.0025 

P2 0.0020, –0.0028, 
–0.0053 

0.0023, 0.0011, 
0.0023 

0.0008, –0.0040,  
–0.0026 

… … … … 

P30 0.0061, –0.0108, 
0.0086 

–0.0086, 0.0056, 
0.0075 

0.0091, –0.0084,  
–0.0036 

25 
m/min 

P1 0.0005, –0.0051, 
0.0059 

0.0017, 0.0016, 
0.0020 

0.0055, –0.0050,  
–0.0029 

P2 0.0035, 0.0012, 
–0.0048 

–0.0013, 0.0021, 
0.0023 

0.0062, –0.0036, 
–0.0020 

… … … … 

P30 0.0083, –0.0141, 
0.0124 

–0.0118, 0.0076, 
0.0124 

0.0145, –0.0104, 
–0.0050 

4. Experimental results analysis and model validation 

4.1. Experimental analysis of predictive modeling 

In the present study, a series of error measurement experiments were systematically conducted 
on an S7H composite machining center under diverse preestablished temperature and feed rate 
scenarios, thereby generating datasets essential for model training and validation purposes. 

Subsequent to this, the determination of model parameters was executed by identifying the 
most optimal loss function on the validation dataset. The efficacy of the model was further 
substantiated through its testing phase, wherein the performance of the proposed WOA-LSTM 
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model was juxtaposed against conventional LSTM and GRU models. As evidenced in Table 2, 
the WOA-LSTM model consistently excels in all predictive metrics, demonstrating superior 
performance compared to its counterparts. Remarkably, the loss function values yielded by the 
WOA-LSTM model on both the validation and test sets meet the expected thresholds, indicative 
of its commendable accuracy in predicting the three-directional error of the screw. 

Table 2. Evaluation result of each model 
Model Different axes RMSE MAE / mm 

LSTM 
𝑋 0.0062, 0.0064, 0.0079 0.0044, 0.0045, 0.0055 𝑌 0.0057, 0.0051, 0.0069 0.0038, 0.0035, 0.0048 𝑍 0.0062, 0.0053, 0.0064 0.0044, 0.0039, 0.0044 

GRU 
𝑋 0.0100, 0.0087, 0.0119 0.0079, 0.0060, 0.0089 𝑌 0.0115, 0.0098, 0.0134 0.0090, 0.0068, 0.0105 𝑍 0.0105, 0.0139, 0.0114 0.0078, 0.0112, 0.0083 

WOA-LSTM 
𝑋 0.0030, 0.0033, 0.0041 0.0017, 0.0016, 0.0020 𝑌 0.0040, 0.0051, 0.0045 0.0013, 0.0021, 0.023 𝑍 0.0033, 0.0041, 0.0043 0.0020, 0.0026, 0.0025 

To validate the efficacy of the Dropout technique in mitigating overfitting, an LSTM network 
model bereft of the Dropout layer was trained on the identical dataset. As illustrated in Fig. 13, 
the validation and training set's loss function trajectories exhibit a discernible divergence 
throughout the model training progression, clearly suggesting that the absence of the Dropout 
layer engenders overfitting tendencies within the model structure. In contrast, when incorporating 
the Dropout technique, the loss function values display a convergent behavior as the number of 
iterations increases, settling in the range between 0.2 to 0.4. This outcome underscores the 
significance of Dropout in maintaining a balance between model complexity and generalizability. 

 
a) With dropout layer 

 
b) No dropout layer 

Fig. 13. Effect of model training without dropout layer 

The prediction outcomes for the three-axis errors, namely the 𝑋-axis, 𝑌-axis, and 𝑍-axis, are 
graphically depicted in Figs. 14, 15, and 16 respectively. A comparative analysis reveals that the 
WOA-LSTM model yields improved predictions over the LSTM and GRU models. Specifically, 
concerning the 𝑋-axis error, the mean root mean square error (RMSE) of the WOA-LSTM model 
decreases by 49.19 % and 65.98 % relative to the LSTM and GRU models. Similarly, for the  𝑌-axis error prediction, the WOA-LSTM model achieves a decrease in average RMSE of 23.17 % 
and 60.82 %, while in predicting the 𝑍-axis error, the average RMSE drops by 34.63 % and 
67.31 %. In order to authenticate the accuracy and robustness of the WOA-LSTM model, an 
extensive examination of the ball screw error measurement and prediction under a variety of 
experimental conditions was undertaken. As Table 2 manifests, under equivalent sample sizes, the 
WOA-LSTM model exhibits notably enhanced prediction accuracy and efficiency vis-à-vis the 
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LSTM and GRU models, with the maximum absolute residuals being 0.0194 mm, 0.0213 mm, 
and 0.0202 mm for the 𝑋, 𝑌, and 𝑍 axes respectively. 

  

Fig. 14. Comparison of 𝑋-axis three-way error prediction 

  

 
Fig. 15. Comparison of 𝑌-axis three-way error prediction 
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Fig. 16. Comparison of 𝑍-axis three-way error prediction 

Based on Figs. 14-16, it is evident that the WOA-LSTM model provides the most accurate 
predictions for the 𝑋-axis on various axes. Therefore, the prediction is fitted for the 𝑋-axis. 
Additionally, Fig. 17 shows that the WOA-LSTM model has a higher R-squared value, indicating 
a more significant and statistically relevant fitting effect compared to the LSTM model. 

 
a) LSTM 

 
b) WOA-LSTM 

Fig. 17. Fitting impact of the 𝑋-axis forecasts 

Additionally, considering the superior prediction performance on the 𝑋-axis, the KDE method 
was employed to fit the error distribution based on the 𝑋-axis data. Fig. 18 shows that the 
normalized average width of the prediction intervals becomes narrower with the change in sample 
data. However, at peak and valley error values, these intervals widen considerably, possibly due 
to the influence of uncertainty factors on the error data at these extremes. 

In an effort to appraise the efficacy of model interval prediction, this paper incorporates two 
key evaluation indices: Prediction Interval Coverage Probability (PICP) and Normalized 



A BALL SCREW ALL-ROUND ERROR COMPENSATION TECHNOLOGY BASED ON NOVEL HYBRID DEEP LEARNING FOR CNC MACHINE TOOL.  
BO ZHOU, GUO-HUA CHEN, JIE MAO, YI LI, SHUAI-WEI ZHANG 

 JOURNAL OF VIBROENGINEERING 17 

Prediction Interval Average Width (PINAW), with their respective calculation formulas given 
below: 

𝐼௉ூ஼௉ = 1𝑁෍ 𝜆௜ே௜ୀଵ , (19)𝐼௉ூே஺ௐ = 1𝑁𝑅෍ ൣ𝜃௞భ∗ (𝑖) − 𝜃௞మ∗ (𝑖)൧ே௜ୀଵ . (20)

 

 
a) 𝑋-direction 

 
b) 𝑌-direction 

 
c) 𝑍-direction 

 
Fig. 18. 𝑋-axis interval forecasting effectiveness 

Table 3 consolidates the findings related to the 𝑋-axis prediction interval coverage (PICP) and 
normalized prediction interval average width (PINAW) for the three models across varied 
confidence levels.  

The PINAW values of the WOA-LSTM model show a decrease between 53.81 % to 73.56 % 
compared to the LSTM and GRU models at the 95% confidence level. This trend continues at 
90 %, 75 %, and 50 % confidence levels, where the WOA-LSTM model consistently outperforms 
the other models in both metrics. 

To summarize, the WOA-LSTM model not only improves prediction accuracy but also 
significantly reduces the width of the prediction interval, indicating its superior predictive 
capabilities. This highlights the significant impact of the Whale Optimization Algorithm (WOA) 
in optimizing the LSTM model, making the WOA-LSTM model the best choice for precise and 
efficient prediction of the three-axis screw errors. 
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Table 3. Comparative evaluation of interval estimates under different levels of confidence 

Confidence level Model PICP (%) PINAW 𝑋, 𝑌, 𝑍 𝑋, 𝑌, 𝑍 

95 % 
LSTM 93.15 %, 87.67 %, 93.15 % 0.9498, 0.9958, 1.1712 
GRU 93.15 %, 90.41 %, 86.30 % 1.4428, 1.3645, 1.5889 

WOA-LSTM 93.15 %, 93.15 %, 93.15 % 0.4387, 0.4508, 0.4201 

90 % 
LSTM 87.67 %, 84.93 %, 86.30 % 0.8172, 0.8066, 1.0228 
GRU 90.41 %, 83.56 %, 80.82 % 1.2759, 0.9862, 1.4157 

WOA-LSTM 89.04 %, 87.67 %, 90.41 % 0.3077, 0.1996, 0.2922 

75 % 
LSTM 71.23 %, 73.97 %, 73.97 % 0.5424, 0.3881, 0.6709 
GRU 72.60 %, 75.34 %, 69.86 % 0.9222, 0.4608, 0.9873 

WOA-LSTM 72.60 %, 79.45 %, 76.71 % 0.0873, 0.0941, 0.1028 

50 % 
LSTM 47.95 %, 54.79 %, 52.05 % 0.1634, 0.1916, 0.1540 
GRU 52.05 %, 49.31 %, 50.68 % 0.5173, 0.2582, 0.4302 

WOA-LSTM 49.31 %, 49.31 %, 49.32 % 0.0573, 0.0650, 0.0690 

4.2. Experimental verification of error compensation  

The 𝑍-axis of the S7H composite machining center was studied to compensate for machining 
errors. The three-way error of the 𝑍-axis before and after the compensation was compared. As 
shown in Fig. 19, the maximum error of the three-way error of the 𝑍-axis was significantly reduced 
from ±0.0145 mm to ±0.006 mm after the compensation. At the same time, the average three-way 
error was also significantly improved from –0.00486, –0.00325, –0.00209 to –0.00197, –0.00049, 
–0.00038, –0.00197, –0.00049, –0.00038, and –0.00209, respectively. This means that the average 
three-way error was improved from –0.00209 to –0.00197, –0.00049 and -0.00038 after the 
compensation. 

  

 
Fig. 19. Comparison of three-way error before and after compensation 
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5. Conclusions 

The objective of this study is to investigate the implications of dual-end constraints on the 
precision of ball screw calibration during error compensation procedures and to propose a 
comprehensive approach for screw error mitigation. Focusing on the feed screws of the 𝑋𝑌𝑍 axes 
within the S7H composite machining center, the following salient points emerge from the 
conducted research: 

1) This investigation employs the Whale Optimization Algorithm (WOA) to fine-tune the 
hyperparameters of the Long Short-Term Memory (LSTM) model, thereby addressing the issues 
surrounding substantial computational overhead and low search efficiency typically associated 
with the adjustment of hyperparameters in the three-axis error prediction model for screws. 

2) Comparative analysis of the three modeling techniques vis-à-vis experimental 
measurements of screw errors reveals that the three-axis error prediction model constructed by 
integrating the WOA with the LSTM neural network demonstrates superior fitting performance. 
This validates the efficacy of the proposed screw's three-axis error prediction model in accurately 
forecasting the actual screw errors and enhancing the machining precision of the machine tool. 

3) Using QT software and Matlab software for the secondary development of the CNC system, 
the ball screw error compensation module communicates more effectively with the interpolator to 
achieve real-time 3-axis error compensation. 

4) The empirical outcomes highlight that the radial screw error exerts a significantly greater 
influence on the machine's practical machining accuracy relative to the axial screw error. Thus, 
an all-encompassing screw error compensation methodology is devised to cater to different 
mounting configurations. The effectiveness of this holistic approach is corroborated through error 
compensation machining experiments, demonstrating an improvement in machining accuracy by 
approximately 59 %. 
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