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Abstract. This research introduces a novel approach for detecting defects in concrete structures. 
It utilizes the Gramian Angular Difference Field (GADF) in combination with a Convolutional 
Neural Network (CNN) enhanced by depthwise separable convolutions and attention mechanisms. 
The key contribution of this work is the use of GADF to transform one-dimensional impact-echo 
signals into two-dimensional images, thereby improving feature extraction and computational 
efficiency for analysis by the CNN. This advancement offers a new perspective in non-destructive 
testing technologies for concrete infrastructure. Comprehensive evaluation on a varied dataset of 
concrete structural defects reveals that our GADF-CNN model achieves an impressive test 
accuracy of 98.24 %, surpassing conventional models like VGG16, ResNet18, DenseNet, and 
ResNeXt50, and excelling in precision, recall, and F1-score metrics. Ultimately, this study 
enhances the integration of sophisticated image transformation techniques with deep learning, 
contributing to safer and more durable concrete infrastructure, and represents a noteworthy 
development in the field.  
Keywords: concrete structures, defect detection, Gramian angular difference field, convolutional 
neural networks, non-destructive testing. 

1. Introduction 

Concrete structures form a fundamental component of modern infrastructure, underpinning 
urban life through skyscrapers, bridges, and road networks. Their reliability is essential for safety, 
economic operations, and societal convenience [1]. Advances in measurement science are 
imperative for infrastructure safety assessments, as they enable the development of efficient, 
reliable, and non-destructive testing (NDT) methods that are crucial for maintaining the structural 
integrity of concrete structures [2], [3]. Among various NDT methods, the impact-echo technique 
has been widely acknowledged for its proficiency in detecting defects within concrete structures 
[4-7]. This non-invasive method utilizes acoustic resonances to identify structural anomalies, 
facilitating detailed internal assessments without causing damage [5]. 

With the advent of machine learning, there has been a significant shift towards enhancing the 
interpretative capabilities of impact-echo data. Machine learning has substantially improved the 
accuracy and reliability of data interpretation from impact-echo tests [8-11], leading to 
advancements in automating NDT and defect recognition in concrete structures [12], [13]. The 
evolution from machine learning to deep learning, particularly Convolutional Neural Networks 
(CNNs), has further expanded the possibilities in defect detection and classification [14-19]. 
However, conventional CNNs encounter limitations, notably substantial computational demands 
due to extensive convolution operations. To mitigate this, depthwise separable convolutions have 
been introduced, effectively reducing computational complexity without compromising 
performance [20-22]. Additionally, the implementation of attention mechanisms has enhanced the 
interpretative power of models by focusing on pertinent aspects of input data, a technique that has 

https://crossmark.crossref.org/dialog/?doi=10.21595/jme.2024.23829&domain=pdf&date_stamp=2024-04-02


ENHANCING NON-DESTRUCTIVE TESTING IN CONCRETE STRUCTURES: A GADF-CNN APPROACH FOR DEFECT DETECTION.  
MIN FENG, JUNCAI XU 

334 ISSN PRINT 2335-2124, ISSN ONLINE 2424-4635  

shown promise in various domains [23-25] These advancements have shown their potential across 
various fields, including neural machine translation and abstractive sentence summarization [24], 
[26]. 

Exploring the integration of advanced mathematical methods from related fields, could inspire 
novel approaches for defect detection [27], [28]. The Gramian Angular Difference Field (GADF), 
an innovative image transformation technique, stands out. Particularly effective in time-series data 
analysis, GADF excels in converting one-dimensional signals into two-dimensional images for 
subsequent processing through image analysis techniques, including CNNs [29-34]. The efficacy 
of GADF lies in its ability to retain temporal correlation in the transformed images, leveraging 
image recognition technology to enhance analytical capabilities. This study proposes the 
integration of GADF with CNNs, supplemented by depthwise separable convolutions and 
attention mechanisms, to potentially elevate defect detection in concrete structures. The presented 
framework combines GADF with a CNN-based depth network, aiming to refine the interpretation 
of impact-echo data, potentially leading to a more effective defect detection methodology. 

The methodology presented herein is poised to make a substantive contribution to the domain 
of concrete structure defect recognition. It offers a robust, efficient, and resource-conservative 
alternative aimed at bolstering the safety and durability of concrete infrastructure. This novel 
approach is set to redefine benchmarks in Non-Destructive Testing (NDT) and evaluation of 
concrete structures, thereby facilitating the development of safer and more resilient urban 
environments. By integrating advanced mathematical methods with sophisticated machine 
learning algorithms, this research underscores a significant stride towards innovative NDT 
methodologies. The application of this method holds the potential not only to advance the current 
state of concrete defect detection but also to serve as a catalyst for further research in the field, 
offering a promising direction for future exploration. Furthermore, the key contributions of this 
research are summarized as follows: 

1) The integration of GADF and CNN, supplemented by depthwise separable convolutions 
and attention mechanisms, has the potential to significantly enhance defect recognition processes 
in concrete structures. 

2) The proposed methodology offers a robust and efficient tool with the potential to play a 
critical role in ensuring the safety and longevity of concrete infrastructure. 

3) The proposed approach introduces a more accurate, expedient, and less resource-intensive 
method for the non-destructive testing and evaluation of concrete structures. 

This paper is structured as follows: Section 2 presents our theoretical framework and 
methodology, elucidating on GADF, CNN Depth Network, Depthwise Separable Convolution, 
Attention Mechanisms, and our methodology for concrete structure defect recognition. Section 3 
describes our experimental design, outlining the collection of impact echo data and our design for 
implementing a CNN with Depthwise Separable Convolutions and Attention Mechanisms. 
Section 4 offers our results and analysis, including a presentation of our findings, a comparative 
analysis with traditional and other machine learning methods, and a discussion of our findings. 
Section 5 concludes the paper by summarizing our key findings and suggesting potential future 
research directions in this field. 

2. Theory and methodology 

2.1. Gramian angular difference field  

The GADF is a transformation technique that encodes time-series data into a 2D 
representation. The GADF is derived from the Gramian Angular Field (GAF), which is computed 
by mapping the time-series data into a polar coordinate system. The GAF is then computed as the 
outer product of the transformed data with itself. 

To not bias the inner product towards the maximum observations, the time series  𝑋 = {𝑥ଵ, 𝑥ଶ,⋯ , 𝑥} is scaled into the interval [–1, 1]. This can be achieved by applying the 
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following transformation: 

𝑋′ = 2(𝑋 − min(𝑋))max(𝑋) − min(𝑋) − 1, (1)

where 𝑋′ is the scaled time series, min(𝑋) and max(𝑋) are the minimum and maximum values of 
the time series, respectively. 

The scaled time series is then converted to polar coordinates. The radial coordinate 𝑟 is 
computed as the absolute value of the scaled time series 𝑋′, and the angular coordinate 𝜃 is 
computed as: 𝑟 = |𝑋′|, (2)𝜃 = arccosቆ𝑋ᇱ𝑟 ቇ. (3)

The GAF is computed as the outer product of the angular coordinates with themselves: 𝐺𝐴𝐹 = 𝜃 ⊗ 𝜃, (4)

where ⊗ denotes the outer product operation. 
The Gramian Angular Summation Field (GASF) and the GADF are both image transformation 

techniques that convert one-dimensional time series data into two-dimensional images. While 
GASF captures temporal correlations by using the sum of the phase space, GADF emphasizes 
changes in the data by using the difference of the phase space. The GASF and GADF can be 
computed using the following equations: 𝐺𝐴𝑆𝐹(𝑖, 𝑗) = cos൫𝜃 + 𝜃൯, (5)𝐺𝐴𝐷𝐹(𝑖, 𝑗) = sin൫𝜃 − 𝜃൯, (6)

where 𝜃 and 𝜃 are the angular coordinates of the 𝑖th and 𝑗th data points, 𝐺𝐴𝑆𝐹(𝑖, 𝑗) and 𝐺𝐴𝐷𝐹(𝑖, 𝑗) are the elements of the GASF and GADF, respectively. 
In certain scenarios, the GADF demonstrates superior performance over the GASF, 

attributable to its emphasis on data variation. This attribute is particularly beneficial in 
applications where change detection is critical, such as in the identification of defects in concrete 
structures. Consequently, the GADF technique has been utilized in this research. It effectively 
converts time-series data into a two-dimensional format, thereby augmenting the model's capacity 
to discern and assimilate these pivotal variations. 

2.2. The CNN depth network 

A CNN is composed of several types of layers, each performing a specific operation on the 
input data. These layers include convolutional layers, pooling layers, fully connected layers, and 
a classifier layer [35], [36]. 

Convolutional layers apply a set of learnable filters to the input data. Each filter is convolved 
across the width and height of the input to produce a feature map. This operation can be 
represented mathematically as: 

𝑌,, = 𝑓 ൭𝑌ିଵ,ା,ା, ⋅ 𝑊,, + 𝑏൱, (7)

where 𝑌ିଵ,ା,ା is the input from the (𝑙 − 1)th layer at location (𝑖 + 𝑚, 𝑗 + 𝑛), 𝑊,, and 𝑏 
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are the weights and bias of the 𝑙th layer, ∗ is the convolution operation, 𝑌,, is the output of the 𝑙th layer at location (𝑖, 𝑗), 𝑓 is the activation function of the 𝑙th layer. 
Pooling layers reduce the spatial dimensions of the input, typically using a max or average 

operation. This operation can be represented mathematically as: 𝑌,, = max,∈𝑌ିଵ,ା,ା, (8)

where 𝑃 is the pooling region. 
Fully connected layers, also known as dense layers, connect every neuron in the layer to every 

neuron in the previous layer. This operation can be represented mathematically as: 

𝑌, = 𝑓 ቆ 𝑌ିଵ, ⋅ 𝑊,, + 𝑏,ቇ, (9)

where 𝑌, is the input from (𝑙 − 1)th layer, 𝑊,, and 𝑏, are the weights and bias of the 𝑙th layer, 𝑌, is the output of the 𝑙th layer at location 𝑖, 𝑓 is the activation function of the 𝑙th layer. 
The final layer of the CNN is typically a classifier layer that uses a SoftMax function to output 

a probability distribution over the classes. This operation can be represented mathematically as: 

𝑌, = 𝑒ಽషభ,∑ 𝑒ಽషభ,ೕ , (10)

where 𝑌ିଵ, is the input from the (𝐿 − 1)th layer, 𝑌, is the output of the 𝐿th layer (classifier 
layer) at location 𝑖. 
2.3. Depthwise separable convolution and attention mechanisms 

In the quest to improve the performance of our CNN model for concrete structure defect 
recognition, we incorporate two advanced concepts: Depthwise Separable Convolution and 
Attention Mechanisms. These techniques are aimed at enhancing the model's ability to learn more 
complex and abstract features from the GADF-transformed data, while also improving 
computational efficiency. 

Depthwise Separable Convolution is a variant of the standard convolution operation that is 
used in traditional CNN. It involves two separate operations: a depthwise convolution followed 
by a pointwise convolution. This operation can be represented mathematically as: 

𝑌,, = 𝑓 ൭𝑌ିଵ,ା,ା, ⋅ 𝑊,, + 𝑏൱, (11)

where 𝑌ିଵ,ା,ା is the input from the (𝑙 − 1)th layer at location (𝑖 + 𝑚, 𝑗 + 𝑛), 𝑊,, and 𝑏 
are the weights and bias of the 𝑙th layer, ⋅ is the convolution operation, 𝑌,, is the output of the 𝑙th layer at location (𝑖, 𝑗), 𝑓 is the activation function of the 𝑙th layer. The depthwise convolution 
applies a single filter to each input channel. 

The pointwise convolution then applies a 1×1 convolution to combine the outputs of the 
depthwise convolution. This operation reduces the computational cost and model size compared 
to standard convolutions, making the model more efficient and faster to train. 

Attention Mechanisms, on the other hand, allow the model to focus on the most relevant parts 
of the input for making predictions. In the context of our task, this means that the model can learn 
to pay more attention to the parts of the GADF-transformed data that are most indicative of a 
defect in the concrete structure. 
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The attention mechanism can be represented mathematically as: 

𝑌, = 𝑓 ቆ 𝑌ିଵ, ⋅ 𝑊,, + 𝑏,ቇ, (12)

where 𝑌ିଵ, is the input from the (𝑙 − 1)th layer, 𝑊,, and 𝑏, are the weights and bias of the 𝑙th 
layer, 𝑌, is the output of the 𝑙th layer at location 𝑖, 𝑓 is the activation function of the 𝑙th layer. 

The use of Depthwise Separable Convolution and Attention Mechanisms in the CNN depth 
network enhances the network's ability to recognize defects in concrete structures. This dual 
incorporation not only enhances the model's ability to learn complex and abstract features from 
the GADF-transformed data, but also improves computational efficiency, making it a powerful 
tool for concrete structure defect recognition. 

2.4. Developing methodology for concrete structure defect recognition 

In the development of a comprehensive methodology for concrete structure defect recognition, 
the integration of the GADF and the CNN depth network, enhanced with Depthwise Separable 
Convolution and Attention Mechanisms, is crucial. This section outlines the process of integrating 
these components into a cohesive methodology (Fig. 1). 

 
Fig. 1. Methodology for concrete structure defect recognition 

The first step in our methodology is the application of the GADF transformation to the raw 
impact echo data. This transformation, as detailed in Section 2.1, encodes the time-series data into 
a 2D representation. The GADF transformation serves to enhance the spatial-temporal features of 
the data, effectively converting the impact echo data into an image-like format. This conversion 
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is a critical step as it allows the subsequent CNN to process the data effectively. 
Once the data has been transformed using the GADF, it is input into the CNN depth network. 

The CNN, as discussed in Section 2.2, consists of several layers, each performing a specific 
operation on the input data. The convolutional layers apply a set of learnable filters across the 
width and height of the input data, producing a feature map. The pooling layers reduce the spatial 
dimensions of the data, summarizing the extracted features over spatial regions. The fully 
connected layers connect every neuron in one layer to every neuron in the previous layer, learning 
global patterns in the data. The classifier layer outputs a probability distribution over the classes, 
providing the final defect recognition results. 

To optimize the performance and efficiency of the CNN model, this study integrates 
Depthwise Separable Convolution and Attention Mechanisms, as detailed in Section 2.3. 
Depthwise Separable Convolution minimizes computational demands and model dimensions, thus 
enhancing efficiency and expediting the training process. Conversely, Attention Mechanisms 
enable the model to concentrate on the most salient segments of the input for prediction purposes. 
The model is trained to prioritize areas in the GADF-transformed data that most strongly indicate 
defects in concrete structures. 

For the computational implementation, Python version 3.8 and PyTorch were utilized to 
develop and test the neural networks, providing a robust framework for the efficient execution of 
large-scale numerical computations. For benchmarking, the model's performance was evaluated 
against established methods using the Impact Echo dataset, recognized for its relevance in the 
field of non-destructive testing in concrete structures. The experimental design for the Impact 
Echo dataset is detailed in Section 3. 

Summarily, the integration of the GADF transformation, the CNN depth network, and the 
Depthwise Separable Convolution and Attention Mechanisms forms the basis of the methodology 
for concrete structure defect recognition. This integration leverages the strengths of each 
component, resulting in a powerful model capable of accurately recognizing defects in concrete 
structures. 

3. Experimental design 

The experimental design for our research on concrete structure defect recognition is a critical 
aspect of our methodology. It involves studying collecting impact echo data, and designing a CNN 
with Depthwise Separable Convolutions and Attention Mechanisms. This section outlines the 
process involved in each of these stages, drawing on relevant literature to inform our approach. 

3.1. Collection of impact echo data 

The experimental setup began with the creation of multiple concrete slabs, each incorporating 
a range of potential defects. In a controlled laboratory setting, two concrete model specimens were 
fabricated, designed to simulate four distinct internal defect scenarios: intact structure, 
non-compact areas, voids, and water-filled voids. Each model was constructed with dimensions 
of 150 cm in height, 220 cm in length, and a variable thickness of 60 to 70 cm. Hollow cylinders 
with a diameter of 20 cm were embedded in the specimens to replicate void defects. These 
cylinders were either left vacant to represent air voids or filled with water to simulate water-filled 
voids. For non-compact defect emulation, the cylinders were filled with loosely packed materials. 
The defects were strategically placed at varying depths (10 cm, 20 cm, 30 cm, and 40 cm) within 
the specimens to accurately represent possible real-world defect scenarios. Detailed visual 
documentation of the construction process of these models is presented in Fig. 2. 

The next phase of the research involved acquiring impact echo data. The equipment for these 
tests, including a steel ball array, a handheld transducer, a data acquisition (DAQ) system, and a 
computer with specialized analytical software, was sourced from IEI, LLC in Ithaca, NY, USA. 
Precise adjustment of signal sampling frequency and length was crucial for the success of the 
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impact-echo tests. These parameters were instrumental in accurately capturing the impact-echo 
signal with maximum response frequency, thereby ensuring optimal sampling resolution. Guided 
by the physical properties of the specimens, the sampling frequency was set at 500 kHz and the 
sampling length at 1024. The testing process entailed generating stress waves by striking the 
concrete surface with an impactor, followed by using a sensor to record the reflected waves. This 
procedure was systematically repeated across various points on the concrete structure to amass a 
comprehensive dataset. This approach yielded a total of 830 samples, each categorized into one 
of the four predefined internal defect types: sound, non-compact, voids, and water-filled [18]. 

Following the data collection, the data undergoes several preprocessing steps. These steps are 
integral to the process and include normalization, and segmentation. 

Normalization ensures that the data is in a suitable format for the subsequent steps. This is 
done by scaling the data to have a zero mean and unit variance, which can be represented as: 

𝑋′′(𝑡) = 𝑋′(𝑡) − 𝜇𝜎 , (13)

where 𝜇 and 𝜎 are the mean and standard deviation of the noise-reduced data, respectively, 𝑋′′(𝑡) 
is the normalized data. 

 
a) 

 
b) 

Fig. 2. Preparation of experimental concrete slabs: a) constructing the concrete specimen mold;  
b) the concrete slab specimens after they have been poured 

Segmentation divides the data into manageable chunks that can be processed individually. This 
can be represented as: 𝑋(𝑡) = 𝑋′′(𝑡 + 𝑖 ⋅ 𝑇), (14)

where 𝑖 is the segment index, 𝑇 is the segment length, 𝑋(𝑡) is the 𝑖th segment of the normalized 
data. The collected impact echo data will serve as the input for our CNN model after preprocessing 
steps. 

3.2. Design for implementing CNN with depthwise separable convolutions and attention 
mechanisms 

A pivotal aspect of the experimental design is the deployment of a CNN integrated with 
Depthwise Separable Convolutions and Attention Mechanisms. The CNN is engineered to process 
the impact echo data, which is transformed into a two-dimensional format using the GADF. The 
architecture of the CNN encompasses various layers: convolutional layers augmented with 
Depthwise Separable Convolutions, pooling layers complemented by Attention Mechanisms, 
fully connected layers, and a classifier layer, as depicted in Fig. 3. The construction of the CNN 
adheres to the principles delineated in the methodology section (Section 2). 
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Fig. 3. The architecture of CNN with depthwise separable convolutions and attention mechanisms 

The model architecture is composed of a sequence of layers that sequentially process the input 
data. Initially, a series of DepthwiseSeparableConv layers are applied, each of which is followed 
by batch normalization, a ReLU activation function, and max pooling. These layers are primarily 
responsible for feature extraction from the input data. Subsequently, an AttentionModule is 
incorporated after each max pooling layer. These modules enhance the model's capability to focus 
on the most relevant features. To prevent overfitting during the training phase, a dropout layer is 
included, which randomly sets a fraction of input units to zero at each update. Finally, a fully 
connected (Linear) layer is employed to transform the extracted features into a set of class scores, 
completing the model architecture. Table 1 summarize the parameter settings of each layer in the 
model architecture: 

Table 1. Parameter settings of the proposed CNN model architecture 
Layer Type Parameters 

Depthwise separable conv in_channels = 3, out_channels = 32, kernel_size = 3, padding = 1 
Batch normalization num_features = 32 

ReLU inplace = True 
Max pooling kernel_size = 2 

Attention module in_channels = 32, out_channels = 32, reduction_ratio = 8 
Depthwise separable conv in_channels = 32, out_channels = 64, kernel_size = 3, padding = 1 

Batch normalization num_features = 64 
ReLU inplace = True 

Max pooling kernel_size = 2 
Attentionmodule in_channels = 64, out_channels = 64, reduction_ratio = 8 

Depthwise separable conv in_channels = 64, out_channels = 128, kernel_size = 3, padding = 1 
Batch normalization num_features = 128 

ReLU inplace = True 
Max pooling kernel_size = 2 

Attention module in_channels = 128, out_channels = 128, reduction_ratio = 8 
Dropout p = 0.5 

Fully connected (linear) in_features = 1282828, out_features = num_classes 

In the machine learning model's training process, each category's samples are divided into 
three parts (the training set, the validation set, and the testing set) according to the ratio of 4:1:1. 
The defect samples included: 1200 sound samples, 1200 non-compact samples, 1200 voids 
samples, and 1200 water-filled samples. The dataset is shown in Table 2. 
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Table 2. The distribution of training set, the validation set, and the testing set 
Defect types Label Training set Validation set Testing set 

Sound 0 800 200 200 
Non-compact 1 800 200 200 

Voids 2 800 200 200 
Water filled 3 800 200 200 

 
Fig. 4. Flow chart of GADF-CNN model training and application 

The concrete defect classification steps based on GADF-CNN are shown in Fig. 4. The specific 
steps are as follows: 

1) Use the impact echo instrument to detect different types of concrete structures with defects 
on-site, collect the impact echo vibration signals to form the original dataset for the model, and 
preprocess the raw data. 

2) Process the preprocessed raw dataset with GADF and label it to generate the sample set for 
the model. 

3) To train the GADF-CNN model, randomly sample all sets of data and divide them into 
training and test sets in an 8:2 ratio. Feed these sets to the model to complete the training process. 
Save the weight file when the classification accuracy reaches its highest point during the training 
process. 

4 After the model training is completed, adjust the model's hyperparameters based on its 
performance on the test set, and retrain the GADF-CNN model until it performs best on the test 
set, i.e., the model reaches the ideal state. 

The following pseudo-code provides a detailed description of the GADF-CNN Processing 
Algorithm, highlighting its key components and operations. 
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Table 3. Algorithm: GADF-CNN processing algorithm 
Input: Image-like GADF-transformed data X 
Output: Defect recognition results Y 
1: procedure GADF-CNN(X) 
2:     // Step 1: Define the Depthwise Separable Convolution 
3:     function DEPTHWISESEPARABLECONV(in_channels, out_channels, kernel_size, 
stride=1, padding=0, dilation=1, bias=False) 
4:         depthwise = Conv2d(in_channels, in_channels, kernel_size, stride, padding, dilation, 
groups=in_channels, bias=bias) 
5:         pointwise = Conv2d(in_channels, out_channels, 1, 1, 0, 1, 1, bias=bias) 
6:         return depthwise, pointwise 
7:     end function 
8:      
9:     // Step 2: Define the Attention Mechanism 
10:    function ATTENTIONMODULE(in_channels, out_channels, reduction_ratio=8) 
11:        avg_pool = AdaptiveAvgPool2d(1) 
12:        fc1 = Linear(in_channels, in_channels // reduction_ratio, bias=False) 
13:        relu = ReLU() 
14:        fc2 = Linear(in_channels // reduction_ratio, out_channels, bias=False) 
15:        sigmoid = Sigmoid() 
16:        return avg_pool, fc1, relu, fc2, sigmoid 
17:    end function 
18:     
19:    // Step 3: Define the GADF-CNN model 
20:    function GADF_CNN(num_classes) 
21:        features = Sequential( 
22:            DEPTHWISESEPARABLECONV(3, 32, 3, padding=1), 
23:            BatchNorm2d(32), 
24:            ReLU(inplace=True), 
25:            MaxPool2d(2), 
26:            ATTENTIONMODULE(32, 32), 
27:            DEPTHWISESEPARABLECONV(32, 64, 3, padding=1), 
28:            BatchNorm2d(64), 
29:            ReLU(inplace=True), 
30:            MaxPool2d(2), 
31:            ATTENTIONMODULE(64, 64), 
32:            DEPTHWISESEPARABLECONV(64, 128, 3, padding=1), 
33:            BatchNorm2d(128), 
34:            ReLU(inplace=True), 
35:            MaxPool2d(2), 
36:            ATTENTIONMODULE(128, 128), 
37:        ) 
38:        classifier = Sequential( 
39:            Dropout(0.5), 
40:            Linear(128 * 28 * 28, num_classes), 
41:        ) 
42:        return features, classifier 
43:    end function 
44:     
45:    // Step 4: Forward propagation 
46:    function FORWARD(X) 
47:        X = features(X) 
48:        X = X.view(X.size(0), -1) 
49:        Y = classifier(X) 
50:        return Y 
51:    end function 
52: end procedure 
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4. Results and analysis 

4.1. Presentation of the results 

In the evaluation of the proposed methodology, several metrics were used to assess the model's 
performance. These include the accuracy rate (Acc), recall rate (Rec), F1 score (F1), and confusion 
matrix (CM). 

The accuracy rate (Acc) is a measure of the proportion of total predictions that are correct. It 
is calculated using the formula: Accuracy = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁, (15)Precision = 𝑇𝑃𝑇𝑃 + 𝐹𝑃, (16)

where TP is the number of true positives, TN is the number of true negatives, FP is the number of 
false positives, FN is the number of false negatives. 

The recall rate (Rec), also known as sensitivity or true positive rate, is the proportion of actual 
positive cases that were correctly identified. It is calculated as: Recall = 𝑇𝑃𝑇𝑃 + 𝐹𝑁. (17)

The F1 score (F1) is the harmonic mean of precision and recall, providing a balance between 
these two metrics. It is calculated as: 

F1 Score = 2 × Precision × RecallPrecision + Recall, (18)

where Precision is the proportion of positive identifications that were actually correct, calculated 
as: 

The confusion matrix (CM) is a robust tool for evaluating classification model performance, 
providing a detailed breakdown of correct and incorrect predictions across different classes. It 
organizes predictions into a tabular format, with rows representing predicted classes and columns 
denoting actual classes. Correct predictions populate the matrix’s diagonal, while off-diagonal 
elements signify errors. Through a comprehensive analysis of the CM, one can discern the error 
types prevalent in the classifier's performance, thereby illuminating potential avenues for model 
improvement. 

Throughout the model training process, performance metrics were evaluated on a training 
dataset at the completion of each epoch. The training utilized a batch size of 32, allowing for 
efficient processing and model weight updates. The Adam optimizer, with a learning rate of 
0.0001, facilitated gradual and stable improvements in model performance. To prevent overfitting, 
a regularization strategy involving a dropout rate of 0.5 was applied within the classifier. This 
approach was chosen based on its proven effectiveness in enhancing generalizability while 
maintaining model simplicity. 

As training progressed over 20 epochs, the model demonstrated improved accuracy and 
reduced loss, as depicted in Fig. 5. This iterative process allowed for continuous refinement of the 
model’s weights, ensuring that each epoch contributed to the model's ability to discern intricate 
patterns within the dataset. The training was implemented on a T4 GPU and took 30.748 seconds, 
further supporting that the proposed model is a less resource-intensive method for concrete 
structure defect recognition. The combination of strategic parameter selection and advanced 
hardware utilization underscores the model's efficiency and effectiveness in identifying defects 
within concrete structures. 
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Fig. 5. Illustration of loss value and accuracy curves over time 

The final performance of the model on the testing set for each of the four categories of concrete 
defects is summarized in Table 4. 

Table 4. Performance of the model on the testing set 
Defect category Precision Recall F1 score Accuracy 

Sound 0.9607 1.0000 0.9800 0.9824 
Non-compact 1.0000 1.0000 1.0000  

Voids 1.0000 0.9500 0.9743  
Water filled 0.9743 0.9500 0.9620  

Table 4 presents the performance metrics of the proposed model for four categories of concrete 
defects. The model exhibits high precision, recall, and F1 scores across all categories, indicating 
its effectiveness in accurately identifying and classifying defects. For instance, the “Sound” 
category achieved a precision of 0.9607 and a perfect recall of 1.0000. The “Non-compact” 
category achieved perfect scores across all metrics. Despite slightly lower recall rates in the 'Voids' 
and “Water filled” categories, the overall accuracy of the model remains high, affirming the 
model's robustness in concrete structure defect recognition. 

The corresponding confusion matrix for the model’s predictions on the testing set is provided 
in Fig. 6. 

 
Fig. 6. The confusion matrix of four category’s internal defects 

The confusion matrix offers a visual insight into the model’s performance. Each row signifies 
the instances in a predicted class, while each column represents the instances in an actual class. 
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The diagonal elements indicate correct predictions, while off-diagonal elements represent 
misclassifications. The matrix reveals a high degree of accuracy, with most misclassifications 
occurring between the “Voids” and “Water filled” categories. 

4.2. Evaluation of statistical indicators 

Evaluating the performance and reliability of the GADF-CNN approach for defect detection 
necessitates a comprehensive assessment of statistical indicators such as uncertainty, sensitivity, 
and confidence intervals. These metrics are essential for understanding the limitations and 
potential issues related to the model's measurements, which can be influenced by factors like input 
data noise, defect characteristic variations, and model architecture limitations. Sensitivity analysis 
identifies the impact of these factors on the model's outputs, while confidence intervals provide a 
statistical range for the true performance metrics, considering the inherent variability in the 
measurements. 

Monte Carlo Dropout (MCD) is a technique for estimating prediction uncertainty in CNN 
models. It involves performing multiple forward passes through the network with dropout enabled 
during inference. The dropout layers randomly set a fraction of the neurons to zero, creating an 
ensemble of subnetworks. The prediction uncertainty is estimated by calculating the mean and 
variance of the outputs across the ensemble. The formula for MCD is: 

𝑦ො = 1𝑇𝑦ො௧்
௧ୀଵ , (19)

𝜎ොଶ = 1𝑇(𝑦ො௧ − 𝑦ො)ଶ்
௧ୀଵ , (20)

where 𝑦ො is the mean prediction, 𝜎ොଶ is the variance, 𝑇 is the number of forward passes, and 𝑦ො௧ is 
the prediction of the 𝑡th subnetwork. 

Estimating prediction uncertainty in GADF-CNN models using Monte Carlo Dropout 
involves performing multiple forward passes with dropout enabled. The mean and standard 
deviation of the predictions across the passes are calculated to obtain the expected output and the 
uncertainty associated with each prediction. In this example, the average uncertainty of 0.0072 
indicates that the model has a high level of confidence in its predictions, with low variability across 
the multiple forward passes. This low average uncertainty value suggests that the model's 
predictions are consistent and reliable. 

To estimate the confidence interval of the GADF-CNN model's performance metrics, 
bootstrap sampling can be employed. The process involves randomly sampling the dataset with 
replacement to create multiple bootstrap samples, training the model on each sample, and 
calculating the performance metrics for each trained model. The formula for the confidence 
interval is: 𝐶𝐼 = 𝜇 − 𝑧∗ 𝜎√𝑛 , 𝜇 + 𝑧∗ 𝜎√𝑛൨, (21)

where 𝜇 is the mean of the performance metric across all bootstrap samples, 𝜎 is the standard 
deviation, 𝑛 is the number of bootstrap samples, and 𝑧∗ is the critical value from the standard 
normal distribution corresponding to the desired confidence level. 

The confidence interval of the GADF-CNN model's performance metrics can be implemented 
using bootstrap resampling. It randomly samples the dataset, trains the model on each sample, and 
calculates precision. The 95 % confidence interval is then computed using the 2.5th and 97.5th 
percentiles of the bootstrap results. In this case, the accuracy confidence interval is (0.950, 0.994), 
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indicating that the true accuracy of the model is to fall within this range with 95 % confidence. 
Sensitivity analysis of the GADF-CNN model involves evaluating its performance when the 

testing dataset is subjected to varying levels of noise, measured by Signal-to-Noise Ratio (SNR). 
The model's sensitivity to noise is assessed by calculating the performance metrics, such as 
accuracy, precision, recall, and F1 score, at different SNR values. The SNR is defined as: 

𝑆𝑁𝑅 = 10logଵ 𝑃௦𝑃௦ , (22)

where 𝑃௦ is the power of the original signal and 𝑃௦ is the power of the added noise. The 
noise can be generated using a Gaussian distribution with zero mean and a specified standard 
deviation, determined by the desired SNR. The model's performance is then evaluated at each 
SNR level to assess its sensitivity to noise. 

 
Fig. 7. Signal quality vs. detection accuracy 

The sensitivity analysis of the GADF-CNN model evaluates its performance under different 
Signal-to-Noise Ratio (SNR) levels. Gaussian noise is added to the input data based on the 
specified SNR, and the model’s accuracy is calculated for each SNR level. The results show that 
the model's accuracy improves as the SNR increases, demonstrating its sensitivity to noise (Fig. 7). 
At an SNR of 30 dB, the model achieves an accuracy of 0.9708, indicating its robustness to 
high-quality signals. 

In summary, evaluating statistical indicators is crucial for assessing the GADF-CNN 
approach’s performance and reliability in defect detection. Uncertainty quantification, confidence 
interval estimation, and sensitivity analysis provide insights into the model’s confidence, accuracy 
range, and robustness to noise. These indicators collectively offer a comprehensive understanding 
of the model’s performance, limitations, and potential issues, enabling informed decision-making 
for real-world applications. The results demonstrate the model’s high consistency, reliability, and 
accuracy, particularly in high-quality signal scenarios. 

4.3. Comparative evaluation of defect recognition models 

In this study, a comprehensive comparative analysis was conducted to evaluate five distinct 
models designed for detecting defects in concrete structures. These models encompass the 
established architectures of vgg16, resnet18, densenet, resnext50, and the newly developed 
GADF-CNN model. To ensure equitable comparison, all conventional models – vgg16, resnet18, 
densenet, and resnext50 – were initialized with pre-trained parameters, utilizing transfer learning 
from the dataset in question. The training and testing of all models were performed on the NVIDIA 
Tesla T4 GPU. The results of the defect detection models are illustrated in Fig. 8 and 9. 

The initial model evaluated was vgg16, which recorded a training duration of 112.37 seconds 
and achieved a test accuracy of 92.40 %. Despite its high accuracy, vgg16 exhibited the longest 
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training time among the models evaluated. Subsequently, the resnet18 model underwent training 
and testing, requiring 31.43 seconds. While faster in training compared to vgg16, it also 
demonstrated a notable increase in test accuracy to 97.66 %. The densenet and resnext50_32x4d 
models were next in the sequence of evaluation. The densenet model required 84.45 seconds for 
training and attained a test accuracy of 95.91 %. In comparison, the resnext50_32x4d model took 
a marginally longer training time of 110.66 seconds, achieving an identical test accuracy of 
95.91 %. Lastly, the newly developed GADF-CNN model was assessed. Its training time was 
30.75 seconds, slightly quicker than resnet18 and significantly faster than the other models. 
Notably, the GADF-CNN model surpassed all other models in test accuracy, reaching 98.24 %. 

 
Fig. 8. Training time of vgg16, resnet18, densenet, resnext50, and GADF-CNN 

 
Fig. 9. Recognition accuracy of vgg16, resnet18, densenet, resnext50, and GADF-CNN 

The results indicate that the GADF-CNN model surpasses other models in terms of accuracy 
and achieves this enhanced performance within a shorter training duration. Consequently, 
GADF-CNN demonstrates a commendable synergy between computational efficiency and 
predictive accuracy, establishing its potential as an effective and efficient tool for detecting defects 
in concrete structures. These findings bolster the assertion that the amalgamation of GADF with 
a CNN-based depth network, enhanced by Depthwise Separable Convolutions and Attention 
Mechanisms, leads to a more advanced, precise, and efficient approach for non-destructive testing 
and evaluation of concrete structures. 

To provide additional context for the performance of the GADF-CNN model, a comparative 
analysis was conducted against a range of methods documented in existing literature. Table 5 
presents a summary of the performance metrics of these methods applied to various datasets. The 
table includes a comparative evaluation of different defect recognition methods for concrete 
structures, assessed using accuracy, recall, precision, and F1-score metrics. The methods 
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evaluated encompass the Naive Bayes classifier, Support Vector Machines (SVM), standard 
Convolutional Neural Networks, 1D Convolutional Neural Networks, and the GADF-CNN. 

Table 5. Performance comparison of different methods  
for concrete structure defect recognition using impact echo data 

Method Accuracy Recall Precision F1-score 
Naive Bayes classifier [10] 0.92 0.91 0.92 0.92 

SVM [13] 0.88 – – – 
Convolutional neural networks [14] 0.94 – – – 
Convolutional neural networks [16] 0.96 – – – 

1D Convolutional neural networks [18] 0.91 0.92 0.91 0.91 
GADF-CNN 0.98 0.97 0.97 0.98 

Analysis of Table 5 reveals that the Naive Bayes classifier, as investigated by Jafari et al. [10], 
demonstrates robust performance with an overall score of 0.92. However, its foundational 
assumption of feature independence may limit its applicability to more intricate datasets. The 
SVM application by Dorafshan et al. [13] yields an accuracy of 0.88, but the absence of additional 
metrics precludes a comprehensive assessment. SVM’s effectiveness is notably dependent on 
kernel selection and may be less suitable for large, multi-class datasets. Convolutional Neural 
Network approaches, as reported in studies [14] and [16], achieve accuracies of 0.94 and 0.96, 
respectively, illustrating the potential of deep learning in this field. However, the lack of complete 
metric evaluation hinders a full appraisal of these models. The 1D Convolutional Neural Network 
implemented by Xu et al. [18] exhibits consistent results across metrics, achieving 0.91, which 
highlights the efficacy of CNNs in processing 1D data. The GADF-CNN model, in contrast, 
surpasses these with an accuracy of 0.98 and high recall, precision, and F1-score metrics (0.97, 
0.97, and 0.98, respectively). This model adeptly merges GADF image transformation with CNN, 
enhancing defect detection in impact-echo data. 

The incorporation of the GADF alongside CNN represents a notable advancement in the realm 
of non-destructive testing and measurement science at large. By merging sophisticated image 
transformation techniques with the capabilities of deep learning, this method has demonstrated 
exceptional efficacy in identifying defects within concrete structures, evidenced by its exemplary 
performance across accuracy, precision, recall, and F1 score metrics. These outcomes not only 
highlight the synergy between mathematical methodologies and machine learning in elevating the 
precision and reliability of engineering measurements but also suggest a promising direction for 
future research in this interdisciplinary field. 

Moreover, the implications of the GADF-CNN technique extend considerably beyond the 
realm of detecting concrete imperfections. Its validated efficacy establishes a foundation for the 
adoption of analogous approaches within diverse sectors of measurement science and technology, 
especially for the intricate data analysis required in the upkeep of essential infrastructure elements 
like bridges, tunnels, and pavements. Such broad applicability signals the method’s potential to 
fundamentally transform the methodologies employed in the critical inspection and maintenance 
of infrastructure. In addition, the model's computational efficiency, achieved through the use of 
depthwise separable convolutions, is in line with the ongoing objective to devise analytical tools 
that are both less resource-intensive and highly effective, particularly pertinent for extensive or 
real-time monitoring endeavors. This strategy not only propels the field of measurement science 
forward by facilitating quicker and more scalable monitoring solutions but also underscores the 
significance of sensitivity analysis in ascertaining the robustness and dependability of these 
measurement systems. Consequently, while the GADF-CNN model has established a new 
benchmark in concrete defect detection, its contribution to the evolution of measurement tools is 
profound, fostering the development of safer, more enduring, and resilient infrastructural 
frameworks. 
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5. Conclusions 

This research introduces a novel approach for defect detection in concrete structures, 
employing a synergistic combination of the GADF and a CNN enhanced with depthwise separable 
convolutions and attention mechanisms. The GADF method is utilized to transform impact echo 
data into a 2D representation, which is then processed by the CNN. This integration notably 
improves feature extraction and increases computational efficiency. The proposed model 
undergoes a thorough evaluation on a diverse dataset, comprising impact echo data from various 
types of concrete structures with defects. It is also comparatively analyzed against several 
established methodologies. Key conclusions drawn from this study include: 

1) The integration of the Gramian Angular Difference Field (GADF) with a Convolutional 
Neural Network (CNN), enhanced by depthwise separable convolutions and attention 
mechanisms, exhibits a significant improvement in detecting defects in concrete structures. 

2) The developed model emerges as a potent and efficient tool, potentially contributing to the 
preservation and extension of the lifespan of concrete infrastructures. 

3) The method presents a swift, accurate, and less resource-intensive alternative for non-
destructive testing and evaluation of concrete structures, representing a notable advancement in 
the field. 

4) The established framework outperforms various existing methods in accuracy, recall, 
precision, F1-score, and training time, as evidenced by testing on a dataset comprising impact 
echo data from diverse types of defective concrete structures. 

Looking ahead, the field of research in concrete structure defect detection presents a wealth of 
diverse and promising opportunities. Future empirical studies, incorporating a variety of 
challenging datasets, are expected to shed light on the full capabilities and potential limitations of 
the proposed model. Expanding the dataset with more diverse defect types and conditions could 
further validate and improve the model's robustness. Investigating the integration of GADF-CNN 
with other non-destructive testing methods could offer a more comprehensive defect detection 
approach. Additionally, the application of advanced deep learning techniques, such as transfer 
learning or generative adversarial networks, could potentially enhance the model's performance 
further. Exploring advanced deep learning techniques like transfer learning and generative 
adversarial networks might enhance adaptability and performance across different concrete 
structures and defects. Integrating other non-destructive testing methods with the proposed 
approach may lead to a more comprehensive solution for defect detection in concrete structures. 
This research underscores the significant potential of combining advanced image transformation 
techniques with deep learning models for the crucial task of identifying defects in concrete 
structures. While the current methodology shows promising results, ongoing refinement is 
essential to fully exploit its potential in the field of non-destructive testing and evaluation, 
ultimately contributing to the safety and durability of built infrastructures. 
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