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Abstract. The objective of this study is to investigate the natural vibration of a rectangular plate
made of orthotropic material with circular thickness (two dimensions) and temperature variation
on the plate is parabolic (two dimensions) in nature. The solution to the problem is obtained by
utilizing the Rayleigh-Ritz technique and the first four frequency modes are obtained under
clamped edge conditions. The study aims to provide numerical data that demonstrate how circular
variation in tapering parameters of plate can effectively control and optimized vibrational
frequencies of the plate. Orthotropic rectangular plate, thermal gradient, circular tapering, aspect
ratio.
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1. Introduction

To design structures or understand system characteristics, it becomes vital to investigate the
vibrational properties of plates. Many systems and structures such as bridges, buildings, and
aircraft wings consist of plates of various shapes. The vibration characteristics of a plate are
influenced by plate parameters such as tapering, non-homogeneity (in the case of
nonhomogeneous materials), and thermal gradient. A considerable number of studies in the
literature have focused on various values of plate parameters.

The approach outlined in [1] was utilized to amalgamate solutions for plates with different
geometries (such as circular, annular, circular sector, and annular sector plates) under various
boundary conditions. In [2], the wave-based method (WBM) was utilized to forecast the flexural
vibrations of orthotropic plates. In [3], a solution based on two-variable refined plate theory of
Levy type was developed for free vibration analysis of orthotropic plates. In [4], a new analytical
solution utilizing a double finite sine integral transform technique was introduced for the vibration
response of plates reinforced by orthogonal beams. In [5], the Rayleigh Ritz method was utilized
to determine the frequency of an orthotropic rectangular plate, whereas in [6], the time period of
transverse vibration of a skew plate with different edge conditions was assessed. In [7], the
influence of temperature on the frequencies of a tapered plate was discussed, while [8] investigated
a non-uniform triangular plate subjected to a two-dimensional parabolic temperature distribution.
The investigation of time period of rectangular plates with varying thickness and temperature was
examined in [9]. Time period analysis of isotropic and orthotropic visco skew plate having circular
variation in thickness and density at different edge conditions is discussed in [10] and [11].

It is noticeable from the literature that most of the authors have investigated either linear or
parabolic variations in tapering parameters, but no one has focused on circular variation in tapering
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parameter. This study aims to fill this research gap by exploring the influence of two dimension
circular thickness on the vibrational frequency of an orthotropic rectangular plate under a two
dimension parabolic temperature profile. The circular variation examined in this paper results in
a reduction in the variation in frequency modes, as shown in the numerical results section.

2. Problem geometry and analysis

Taking into account that the nonhomogeneous rectangular plate shown in Fig. 1 with sides a,
b and thickness .

a

Fig. 1. Orthotropic rectangular plate with 2D circular thickness

The formulation of the kinetic energy and strain energy for plate vibration is given below,
similar to the approach presented in [12]:

T, = lwz fafb ld2dpd, (1
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where ¢ is deflection function, w is natural frequency, D; = E§l3 / 12(1 - quw), Dy =
Ey13/12(1 — vzvy), Dgy = E;13/12(1 — v;vy,). Here, D; and Dy, is flexural rigidity in ¢ and 1
directions respectively and D¢y, is torsional rigidity.

In order to address the investigated problem, the Rayleigh-Ritz method is utilized, which
necessitates:

L=6(V,—T,)=0. 3)

Using Egs. (1), (2), we have:

220\’ 220 020 220 \?
f f D((a(2> +D¢<a—lp2> +ZV(D¢6_(26_1/)2+4DQU (_6(61/)> dl/)d(

—szf f d2dyd] = 0.
0 0

Proposing non-dimensional variable as {; = {/a, P, =Y /a along with two dimension
circular thickness as:

l=l0(1+[>’1{1— /1—{3}) 1+8,)1— /1——¢1 ) (5)
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where [ is thickness at origin and ;, 5, < 1 are tapering parameters.
The two-dimensional parabolic temperature distribution, as presented in Eq. (6):

2.2
t=1,1-03) (1 - ablzp1>, (6)

where T and 7, represent the temperature at a given point and at the origin respectively.
For orthotropic materials, modulus of elasticity is evaluated by:

Er=E -y, Ey=E0-yn), Gy =G (1-y1), (7)

where E; and Ey, are the Young’s modulus in ¢ and ¥ directions, Gy, is shear modulus and y is

called slope of variation.
Using Eq. (6), Eq. (7) becomes:

2., 2 240, 2
E, =E 1—a(1—(12)(1—ablf1>, E, = E, 1—a(1—€f)<1—ablf1>,

®)

2
aty
Gy = Go 1—a(1—(12)<1— b21>,

where @ = Y7, (0 < @ < 1) is called thermal gradient.
Using Egs. (5), (8) and non dimensional variable, the functional in Eq. (4) become:

Z%Lfl 1—a(1—¢f)<1—a:f12> <1+ﬁl{1—\/§}>3

3
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1+6,41— 1_ﬁ¢1 d2diy,dd; =0,
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The deflection function that meets all the edge conditions is taken as in [13]:

)

where D, = L (

Yy

(I)((’ ll)) = [((1)6(4)1)"(1 - (1)g (1 — —) 1P1

v {enwna - (1-)] l (10)

where ¥;, i = 0,1,2...n are unknowns and the value of e, f, g, h can be 0, 1 and 2, corresponding
to given edge condition.
Eq. (10) can be minimized by imposing the following condition:
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oL
o,

=0, i=01,...n (11)

Solving Eq. (11), we have frequency equation:
|P—22Q| =0, (12)

where P = [pi]-],

- and Q = [q; f]i,j:o,1,..n are square matrix of order (n + 1).

3. Numerical results and discussion

In this study, the first four natural frequencies of a clamped orthotropic rectangular plate with
two dimension circular thickness and two dimension parabolic temperature variations are
investigated corresponding to various plate parameters aspect ratio a/b, tapering parameters f8;
and f,, and thermal gradient @. The numerical calculations are based on the subsequent parameter
values:

E=004, E; =1, E,=032, G=009 p=280103kg/m?, v =0.345.

Table 1. Modes of frequency of clamped orthotropic rectangular plate corresponding to

B, a=0.2 a=04 a=0.6

M Ay A3 Ay A Ay Az Ay A Ay Az Ay
0.0/17.002|65.265|146.471335.76117.085|64.734 | 145.409 |344.526|17.173|64.058|144.568353.913
0.2117.747(67.704|151.913|351.645|17.848|67.198 | 151.149|359.343 17.951|66.545|150.178372.482
0.4]18.548|70.301157.829|367.708 | 18.665|69.815|156.993 |378.568 | 18.782|69.169|156.353/390.070
0.6/19.400(73.032|163.844 388.06619.531|72.556|163.396|397.071|19.660|71.918|162.620|412.912
0.8/20.295|75.877/170.500|405.95120.439|75.414|169.982417.520|20.579|74.769|169.561 |432.019
1.0/21.228|78.822|177.057430.02421.385|78.367176.579 | 443.749 |21.534|77.713 | 176.455|457.574

Table 2. Modes of frequency of clamped orthotropic rectangular plate corresponding to 3,
a Bi=p,=02 B1=p,=04 Bi =P, =06
0.0]18.539(70.998|159.217|364.788/20.306|76.727|172.199 | 403.590 | 22.244 |82.942 | 186.104 449.270
0.2]17.747/67.705|151.912|351.64519.507|73.367 | 164.790391.249 |21.429|79.480| 178.659|437.433
0.4/16.91264.226,144.209|338.017|18.665|69.816|156.984 |378.585|20.571|75.821|170.826425.369
0.6/16.027/60.520|136.028 323.885|17.772|66.023 | 148.867365.26219.660|71.917|162.636|412.879
0.8]/15.079/56.527|127.337/309.053/16.816|61.942|140.183|351.597|18.684|67.710|153.955|400.094
1.0/14.050/52.161|118.026293.397|15.777|57.482|130.883|337.433]17.620/63.109|144.730/386.914

Table 3. Modes of frequency of clamped orthotropic rectangular plate corresponding to &

a B1=p,=02 B1=P,=04 B1=p,=06

A Az Az A Ay Az A Ay A3 A Az A3
0.0/18.539(70.998159.217|364.78820.306|76.727|172.199 |403.590 | 22.244 | 82.942 | 186.104 | 449.270
0.2]17.747|67.705|151.912|351.64519.507|73.367 | 164.790391.249 |21.429|79.480| 178.659|437.433
0.4/16.912|64.226/144.209/338.01718.665|69.816|156.984 |378.585|20.571|75.821|170.826425.369
0.6/16.027/60.520136.028 |323.885|17.772|66.023 | 148.867 |365.262|19.660|71.917|162.636|412.879
0.8]15.079/56.527|127.337/309.053/16.816|61.942|140.183351.597 | 18.684|67.710|153.955|400.094

Table 1 presents the modes of frequency (first four modes) corresponding to ;. Specifically,
the values of §, = a chosen were 0.2, 0.4, and 0.6 respectively. Based on the results presented in
Table 1, it can be inferred that:

1. The frequency modes increase in all four modes as £5; rises from 0.0 to 1.0.

2. As both §; and «a increase from 0.2 to 0.6 (i.e., f, = a = 0.2 to §, = a@ = 0.6), the modes
of frequency also show an increment.
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3. The modes of frequency (rate of increment) are predominantly influenced by £, as opposed
to the a and 3,.

Table 2 presents the modes of frequency (first four modes) corresponding to f,, with fixed
values of tapering parameter 5; and thermal gradient « i.e., f; =a =0.2, f; = a =04, and
b1 = a = 0.6, respectively. Based on the findings in Table 2, it is evident that:

1. The modes of frequency exhibit an increase as 3, varies from 0.0 to 1.0.

2. The modes of frequency decrease as §; and « increase from 0.2 to 0.6 (i.e., f; = a = 0.2
to f; = a = 0.6), when 3, changes from 0.0 to 0.6. However, the modes of frequency increase as
B, and a increase from 0.2 to 0.6 (i.e., f; = @ = 0.2 to §; = a = 0.6), when [, varies from 0.8
to 1.0.

3. In terms of the rate of change in modes of frequency, S, exerts a stronger influence
compared to a and f3;.

4. The tables 1 and 2 indicate that the modes of frequency are primarily influenced by S, as
compared to f3;.

Table 3 presents the modes of frequency (first four modes) for various values of a, while
keeping both B, and f, fixed at 0.2, 0.4, and 0.6, respectively. By examining Table 3, the
subsequent key findings can be observed:

1. The frequency modes also increase with an increase in §; and 5, from 0.0 to 1.0, while the
modes of frequency decrease with an increase in the value of a from 0.0 to 1.0.

2. Compared to B, and f,, a has a greater influence on the modes of frequency (i.e., rate of
change in the modes of frequency).

4. Conclusions

The above observation suggests that the plate parameters have a significant impact on the
frequency modes of the plate. The selection of appropriate plate parameters can enable the
manipulation of frequency modes and their variations as per the system requirements. Thus, it can
be inferred that circular variation in plate parameters can be effective in minimizing and regulating
frequency modes and their variations.
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