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Abstract. Analytical equations that describe the dynamic behavior of beams with a soft clamped 
end are very little treated in the literature. The paper aims to solve this problem by introducing a 
stiffness in the hinged end of the beam, respectively by comparing the bending moment in the 
clamped end with the slope in the hinge of the same end of the beam. The other end of the beam 
is permanently hinged. The characteristic equation for determining the eigenvalues and the modal 
function is deduced. The results show the first four vibration modes for seven stiffness values and 
the eigenvalues for eleven cases of soft clamped end.  
Keywords: soft clamped, mode shape, eigenvalue. 

1. Introduction 

Different types of failures can be occurred in structures. They can be caused by a lot of factors. 
It can be mentioned: improper manufacturing conditions, loosening of joints due to shocks and 
excessive vibrations, degradation caused by environmental conditions, material fatigue and 
exceeding the expected operating demands [1]. In the literature, there are a limited number of 
analytical equations to calculate the dynamic behavior of a soft clamped-type support for the 
beams. A new approach to soft clamping exploiting the vibrations from the perimeter of polygon-
shaped resonators bonded to their tips has been demonstrated in [2]. In [3], the authors applied the 
theory of a doubly clamped non-uniform beam and analytically demonstrated how the dissipation 
dilution can be improved by modifying the beam shape to implement soft clamping.  

In the paper [4], the authors present a weak solution for free vibration of multi-span beams 
subjected to general elastic boundary and coupling conditions. The general elastic boundary and 
coupling constraints of the multi-span beams are realized by applying the artificial stiffness-like 
spring technique. Other authors considered that for a doubly clamped beam the nonlinearities are 
weak, the beam is slender and elastic, shear deformations, longitudinal and rotational inertia, and 
gravity are neglected, and cross-sectional rotations and damping are small [5]. 

From a static or dynamic point of view, the analysis of beams with fixed ends involves the 
consideration of displacements and slopes perfect boundary conditions. Most researchers use 
measurement of natural frequencies to characterize imperfect boundary conditions, while others 
consider modal shapes to detect deviation from ideal conditions [4, 6]. 

An analytical model by using a negative stiffness resonator prototype to obtain the 
eigenfrequency for a compressed Euler beam clamped at both ends was analyzed in [7]. Lee [8] 
proposed an analytical model to distinguish the effects of axial and bending displacements and 
shear deformation on the natural frequencies of three‐layered beams using the transfer matrix 
method. Vibration and buckling of rotating composite cantilever beam with clamped-off the 
rotation axis was analyzed in [9] by using the Ritz method. 

In this paper, the authors propose an analytical method regarding the dynamic behavior of a 
beam for which one of the hinge is considered to be an ideal spring with variable stiffness 𝑘, so 
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that for the zero value of 𝑘 the support is considered the hinge, and for the 1 value of 𝑘, the support 
becomes clamped. 

The analytical model proposed in this paper is important for comparing the results obtained 
analytically, with ideal contour conditions, with the experimentally measured values and to 
establish the degree of soft clamped-type support. 

2. Soft clamped-type on the left support 

In order to analyze the dynamic behavior of a normalized beam (𝐿 ൌ 1) under the action of its 
dead weight (𝑞) and constant cross section, we considered the case of a simply supported beam 
(Fig. 1) where on the left hinge we introduced a bending moment equal to the bending moment of 
a clamped end [10, 11] multiplied by a stiffness coefficient 𝑘ଵ. 

It is considered that for 𝑘ଵ ൌ 0, the support is a hinge (Fig. 1(a)) and for 𝑘ଵ ൌ 1, the support 
becomes fix, or clamped (Fig. 1(b)). Any other value of 𝑘ଵ ∈ ሾ0, … ,1ሿ is considered to be a soft 
clamped. 

It is known from the strength of materials that for a hinge support located at 𝑥 ൌ 0, the 
boundary conditions for a beam loaded with its dead weight are: the deflection (𝑊ுሺ0ሻ ൌ 0) and 
the bending moment (𝑊ுᇱᇱሺ0ሻ ൌ 0) are equals to zero, and the slope has the expression: 

𝑊ுᇱ ሺ0ሻ ൌ 𝑞 ∙ 𝐿ଷ24𝐸 ∙ 𝐼, (1)

where, 𝑞 [N/m] – is the load per unit of length (dead load); 𝐿 [m] – is the beam length; 𝐸 [N/m2] 
– is the Young’s modulus; 𝐼 [m4] – is the moment of the inertia of the cross section of the beam. 
and for the clamped end at 𝑥 ൌ 0, the deflection (𝑊஼ሺ0ሻ ൌ 0) and the slope (𝑊஼ᇱሺ0ሻ ൌ 0) are equals 
to zero, and the bending moment can be written as: 

𝑊஼ᇱᇱሺ0ሻ ൌ − 𝑞 ∙ 𝐿ଶ8𝐸 ∙ 𝐼. (2)

 
Fig. 1. A schematic diagram of a soft clamped-type on the left support 

Thus, if the bending moment from relation Eq. (2) is applied to the hinged at 𝑥 ൌ 0 (Fig. 1(a)), 
it becomes a clamped end, and the slope from Eq. (1) depending on the bending moment from 
Eq. (2) can be written: 

𝑊ுᇱ ሺ0ሻ ൌ − 𝑞 ∙ 𝐿ଷ24𝐸 ∙ 𝐼 ൌ −𝐿3ቆ𝑞 ∙ 𝐿ଶ8𝐸 ∙ 𝐼ቇ ൌ −𝐿3 ൫−𝑊஼ᇱᇱሺ0ሻ൯ ൌ 𝐿3𝑊஼ᇱᇱሺ0ሻ, (3)

or, expressing the bending moment from Eq. (3) and taking into account the stiffness 𝑘ଵ, we have: 𝑘ଵ𝑊஼ᇱᇱሺ0ሻ ൌ 𝑘ଵ 3𝐿𝑊ுᇱ ሺ0ሻ. (4)

To satisfy the boundary conditions for 𝑥 ൌ 0 and 𝑘ଵ ∈ ሾ0, … ,1ሿ, so that the left support to be a 
soft clamped end, we will obtain the relation: 
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ሺ1 − 𝑘ଵሻ𝑊ுᇱᇱሺ0ሻ − 𝑘ଵ𝑊஼ᇱᇱሺ0ሻ = ሺ1 − 𝑘ଵሻ𝑊ுᇱᇱሺ0ሻ − 𝑘ଵ 3𝐿𝑊ுᇱ ሺ0ሻ = 0. (5)

From Eq. (5) it can be seen that for 𝑘ଵ = 0, the bending moment is zero (𝑊ுᇱᇱሺ0ሻ = 0), so in 𝑥 = 0 we have a hinge, and for 𝑘ଵ = 1, the slope is zero (𝑊ுᇱ ሺ0ሻ = 0), so we have a clamped end. 
For any other values of 𝑘ଵ ∈ ሾ0, … ,1ሿ, in the left support we will find both bending moment and 
slope. 

3. Modal analysis 

For the Euler-Bernoulli model, it can be started from the spatial solution of the differential 
equation of bending vibrations, free and undamped: 𝑊ሺ𝑥ሻ = 𝐴sinሺ𝛼𝑥ሻ + 𝐵cosሺ𝛼𝑥ሻ + 𝐶sinhሺ𝛼𝑥ሻ + 𝐷coshሺ𝛼𝑥ሻ, (6)

where, 𝑊ሺ𝑥ሻ – is the modal motion function; 𝐴, 𝐵, 𝐶, 𝐷 – are integration constants that are 
obtained from the boundary conditions; 𝛼 – is the eigenvalue; 𝑥 – is the variable length of the 
normalized beam. 

For clamped end and hinged end, at 𝑥 = 0, the deflection is zero. Substituting 𝑥 = 0 in Eq. (6), 
we get: 𝑊ሺ0ሻ = 0 = 𝐵 + 𝐷 ⇒ 𝐷 = −𝐵. (7)

Entering the result from Eq. (7) in the relation Eq. (6), the slope and the bending moment 
become: ൜𝑊ᇱሺ0ሻ = 𝛼ሺ𝐴 + 𝐶ሻ,𝑊′′ሺ0ሻ = −2𝛼ଶ𝐵.    (8)

At the right end, for 𝑥 = 𝐿 = 1, on the hinge support, considering Eq. (7) in Eq. (6), the 
deflection and the bending moment are equals to zero: ൜𝑊ሺ1ሻ = 0 = 𝐴sin𝛼 + 𝐵ሺcos𝛼 − cosh𝛼ሻ + 𝐶sinh𝛼,     𝑊′′ሺ1ሻ = 0 = −𝐴sin𝛼 − 𝐵ሺcos𝛼 + cosh𝛼ሻ + 𝐶sinh𝛼. (9)

The constants 𝐵 and 𝐶 are obtained from system Eq. (9): 

൞𝐵 = −𝐴 sin𝛼cos𝛼,              𝐶 = −𝐴 sin𝛼 ∙ cosh𝛼cos𝛼 ∙ sinh𝛼 . (10)

By introducing the constants 𝐵, 𝐶 and 𝐷 in relation Eq. (5), the characteristic Eq. (11) is 
obtained whose solutions give us the eigenvalues for each vibration mode and the modal function 
is presented in Eq. (12): 2𝛼ሺ1 − 𝑘ଵሻsin𝛼 ∙ sinh𝛼 + 𝑘ଵ 3𝐿 ሺsin𝛼 ∙ cosh𝛼 − cos𝛼 ∙ sinh𝛼ሻ = 0, (11)𝑊ሺ𝑥ሻ = 𝐴 ൤sinሺ𝛼𝑥ሻ − sin𝛼cos𝛼 ሺcosሺ𝛼𝑥ሻ − coshሺ𝛼𝑥ሻሻ − sin𝛼 ∙ cosh𝛼cos𝛼 ∙ sinh𝛼 sinhሺ𝛼𝑥ሻ൨. (12)
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4. Results 

The eigenvalues 𝛼 for the first six vibration modes (𝑛 = 6) and different values of 𝑘ଵ, solutions 
of Eq. (11), can be found in Table 1. 

The first 4 (four) vibration modes for the following values of 𝑘ଵ = 0.0, 0.25, 0.50, 0.75, 0.85, 
0.95 and 1.00 are illustrated in Figs. 2-5. 

 
Fig. 2. Normalized mode shapes for the first vibration mode 

 
Fig. 3. Normalized mode shapes for the second vibration mode 

 
Fig. 4. Normalized mode shapes for the third vibration mode 

5. Conclusions 

From the analysis of the figures from Figs. 2-5, for the first 4 vibration modes, it can be 
observed that for stiffness values 𝑘ଵ < 0.5, from the point of view of dynamic behavior, the soft 
clamped end has a behavior very close to that of a hinged support. 

For stiffness values 𝑘ଵ > 0.5, the dynamic behavior of the beam is significantly affected and 
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although the Eq. (5) that describes the soft clamped end of the beam is a linear expression of 𝑘ଵ, 
the effect of 𝑘ଵ in the modal function does not have a linear behavior. 

 
Fig. 5. Normalized mode shapes for the fourth vibration mode 

Table 1. Eigenvalues for the first six vibration modes 𝑘ଵ 
Vibration mode (n) 

1 2 3 4 5 6 
0.0 𝜋 2𝜋 3𝜋 4𝜋 5𝜋 6𝜋 
0.1 3.1911786 6.308917 9.442121 12.57945 15.71845 18.85832 
0.2 3.2447892 6.338981 9.462877 12.59527 15.73124 18.86904 
0.3 3.3030223 6.374539 9.488147 12.61482 15.74717 18.88247 
0.4 3.3666027 6.417199 9.519554 12.63956 15.76753 18.89977 
0.5 3.4364156 6.469232 9.559584 12.67182 15.79448 18.92287 
0.6 3.5135476 6.533943 9.612229 12.71560 15.83176 18.95527 
0.7 3.5993353 6.616272 9.684261 12.77816 15.88658 19.00385 
0.8 3.6954150 6.723820 9.787957 12.87416 15.97451 19.08434 
0.9 3.8037534 6.868497 9.947185 13.03697 16.13541 19.24065 
1.0 3.9266023 7.068583 10.21018 13.35177 16.49336 19.63495 

For this reason, the Figs. 2-5 show modal shapes with the stiffness 𝑘ଵ with values of 0.75, 
0.85, 0.95. 

For the extreme cases: 𝑘ଵ = 0, the eigenvalues (Table 1) were obtained from the simply 
supported beam (hinged at both ends); respectively for 𝑘ଵ = 1, we find the eigenvalues for the 
beam clamped at one end and hinged at the other. 

The procedure presented by the authors in this issue can also be applied for the soft clamped 
end at the right end of the beam (left end hinged) with the specification that Eq. (5) becomes: ሺ1 − 𝑘ଶሻ𝑊ுᇱᇱሺ𝐿ሻ − 𝑘ଶ𝑊஼ᇱᇱሺ𝐿ሻ = ሺ1 − 𝑘ଶሻ𝑊ுᇱᇱሺ𝐿ሻ + 𝑘ଶ 3𝐿𝑊ுᇱ ሺ𝐿ሻ = 0, (13)

because the slope has negative values. 
The characteristic equation is identical to Eq. (11), so the eigenvalues are the same as the 

values from Table 1, and the modal function has the expression: 𝑊ሺ𝑥ሻ = 𝐴 ൤sinሺ𝛼𝑥ሻ − sin𝛼sinh𝛼 sinhሺ𝛼𝑥ሻ൨. (14)

Mode shapes obtained in this case will be the mirror image of those presented in Figs. 2-5. 
With relation Eq. (11) the eigenvalues can be determined for very small deviations from the 

ideal conditions of the fix or hinge type support. From the analysis of the relative deviations of 
the eigenvalues (Table 1) by 10 % (𝑘ଵ = 0.1) compared to the ideal conditions (𝑘ଵ = 0), 
respectively in the case of a hinge, for first vibration mode 1, it obtains: 𝑘ଵ = 1.55 % and for the 
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sixth vibration mode: 𝑘଺ = 0.046 %. Also, the relative deviations of the eigenvalues for the 
clamped support from 𝑘ଵ = 1 to 𝑘ଵ = 0.9: 𝑘ଵ = 3.13 % and 𝑘଺ = 2.01 %. These relative 
deviations are very small and they decrease as the number of the vibration mode increases. 

By introducing the stiffness coefficient 𝑘ଵ, relation Eq. (11) allows us to calibrate analytically 
calculated values taking into account the results of experimental measurements on real structures, 
respectively to determine how soft the real clamped-type support is. 
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