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Abstract. In the process of oil exploitation and transportation, in order to effectively predict and 
control energy consumption for drag reduction of oil flow, in this paper a BP neural network was 
proposed based method for predicting and evaluating the turbulent drag reduction efficiency of 
polymers, which can greatly improve the current situation of relying on empirical formulas and 
low generality in polymer turbulent drag reduction efficiency prediction. Based on the 
experimental data sets of four commercial polymer drag-reducing agents FLOXL, М-Flowtreat, 
Necadd-447, and FLO MXA, obtained at different polymer concentrations, viscosity, density, and 
Reynolds number, a BP neural network has been established and the optimal number of neurons 
in the hidden layer was selected using the root mean square error (RMSE) value to obtain the 
optimal BP neural network prediction model. The BP neural network prediction models for the 
four polymer drag-reducing agents all have a good fit of 0.98 or above, and the 𝑅ଶ of the trained 
BP neural network for the Necadd-447 drag-reducing agents is 0.9949, which is the best among 
the four polymer drag-reducing agents. The BP neural network established in this paper can be 
applied to the turbulent drag reduction transport of long-distance pipelines for oil products to 
achieve the prediction of the drag reduction efficiency of polymer additives. 
Keywords: turbulent drag reduction, polymer, BP neural network, efficiency prediction, pipeline 
transportation. 

1. Introduction 

In the process of long-distance pipeline transport of refined oil products, the flow at a high 
Reynolds number will produce huge turbulence loss, very low concentration (one millionth) of 
polymer drag reducer can significantly reduce turbulence loss and improve pipeline transport 
capacity, so the polymer drag reducer is widely used in long-distance pipeline transport of refined 
oil products [1]. 

At present, there are many types of polymers used in oil pipeline transport, the polymer drag 
reduction efficiency is closely related to the polymer type, concentration (𝑐), viscosity (𝜐), density 
(𝜌), and other basic physical parameters, and at the same time, due to the complexity and 
variability of the operating conditions of the oil pipeline network, resulting in the polymer drag 
reducers show uneven drag reduction performance [2-4]. Therefore, the research on the prediction 
of turbulence drag reduction efficiency of different polymers under different working conditions 
is the key to promoting the optimization of the drag reduction process for oil product pipeline 
transmission. Currently, the prediction of turbulence drag reduction efficiency mainly relies on 
empirical formulas, and there are certain limitations, for example, the Choi model restricts the 
rotational speed conditions, and the Muratova model restricts the type of polymer [5]. It can be 
seen that proposing a comprehensive and reliable prediction method for polymer turbulence drag 
reduction is an important motivation for the development of drag reduction transport technology 
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for refined oil products. 
Methods for building neural network models can characterize arbitrary functions without 

fleshing out the mapping process [6]. Neural networks have been widely used in the fields of 
energy, chemicals, machinery, medicine, etc., but the application in the field of turbulence drag 
reduction is still relatively small [7-10]. Lee et al. in 1997 proposed a novel adaptive controller 
based on artificial neural networks to reduce turbulent drag, which was applied to the numerical 
simulation of turbulent drag reduction in low Reynolds number turbulence, and could reduce wall 
friction by as much as 20 percent [11]. Lorang et al. used a neural network approach to predict the 
velocity field in the plane of the flow field by measuring the flow field wall shear stress data and 
succeeded in obtaining the drag reduction efficiency [12]. Jonghwan Park, Bing-Zheng Han, and 
Kai Fukami have all developed a turbulence drag reduction feedback control model using 
convolutional neural networks (CNNs) and applied it to the field of turbulent drag control to 
successfully reduce wall friction [13-15]. Hossein Moayedi et al. assessed the feasibility of MLP, 
M5R, DT, and TM5P models in predicting polymer drag reduction rates and developed an 
SCA-MLP model for the prediction of polymer drag reduction efficiency in crude oil pipelines 
[16-17]. The above research results show that the neural network method can play a better 
prediction ability in the field of turbulence drag reduction, but for the current polymer variety, 
physicochemical properties of the large differences in the complexity of the operating conditions 
of pipeline networks, have not yet been proposed to predict the efficiency of the drag reduction of 
a reliable and easy to implement scheme. 

To further enhance the universality and accuracy of the prediction of polymer turbulence drag 
reduction efficiency. Based on the experimental results, this paper establishes different polymer 
turbulence reduction efficiency prediction models with the help of the BP neural network using 
MATLAB software. Thus, the accurate prediction of polymer turbulence drag reduction efficiency 
is achieved. It is applied to the long-distance pipeline of refined oil products, to provide technical 
guidance for the turbulence-damping process of refined oil products and further promote the 
development of polymer turbulence-damping technology.  

2. Experiments and methods 

Four types of polymer drag reducers were used in the experiment, namely FLOXL, 
М-Flowtreat, Necadd-447, and FLOMXA, and the properties of each type of drag reducer are 
shown in Table 1. They were dissolved in diesel solvent and formulated into 5, 10, 20, 40, and 60 
ppm polymer drag reducer diesel solution reagents. The density of the oil was obtained by taking 
the average of three measurements with a liquid densitometer at the temperature 𝑇ఘ = 20 °C. The 
viscosity of the oil was tested using a Russian viscometer VPZh-4 at the temperatures  𝑇ଵ = 14.8 °C and 𝑇ଶ = 38.8 °C. The viscosity of the oil was measured using a liquid densitometer. 
The oil viscosity-temperature equation was then calculated according to the Vogel-Fulcher-
Tammann viscosity-temperature equation [21], and its specific computational expression was: 𝑣் = 10ଵ(ಲశಳౢౝ(శమళయ.భఱ)) − 0.8. (1)

In the formula: 

𝐵 = lg ൬lg(𝑣ଶ + 0.8)lg(𝑣ଵ + 0.8)൰lg(𝑇ଶ + 273.15) − lg(𝑇ଵ + 273.15) ,     𝐴 = lglg(𝑣ଵ + 0.8) − 𝐵lg(𝑇ଵ + 273.15). 
Turbulent drag reduction efficiency testing of different polymer drag reducer diesel solutions 

was carried out based on a flat plate rheological device, the geometry of the device is shown in 
Fig. 1(a), and the specific physical object is shown in Fig. 1(b). The frictional resistance coefficient 𝑓, and thus the drag reduction efficiency 𝐷𝑅, was obtained by measuring the anti-torque value 
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𝑀 produced by the discs on the polymer oil solution, and then the specific computational 
expression was calculated as follows: 

𝑓 = 2𝜋𝜏𝜌்𝑢ଶ = 2𝜋𝜌்𝜔ଶ𝑅ଶ ⋅ 𝑀2𝜋𝑅ଷ = 𝑀𝜌்𝜔ଶ𝑅ହ, (2)𝐷𝑅୮ = ቆ1 − 𝑓୮𝑓୮ቇ × 100 %, (3)

where 𝑓, 𝑓 – Fanning’s friction coefficients on the upper and lower surfaces of the discs with 
and without polymer additive, respectively; 𝑀 – anti-torque (N-m); 𝐷𝑅 – turbulence reduction 
efficiency (%) obtained from the tests in the flat plate rheostat.  

 
a) Structural diagram 

 
b) Physical drawings 

Fig. 1. Flat plate rheostat: 1 – a tripod with a lifting mechanism; 2 – thermostatic bath; 3 – measuring 
chamber; 4 – rotating disk; 5 – measuring module; 6 – thermometer; 7 – torque sensor;  
8 – servomotor; 9 – control and data processing unit; 10 – computer; 11 – thermostat 

Table 1. Properties of polymer resistance reducers by type 

Polymer 
Model Appearances Ingredient Density 

(kg/m3) 
Viscosity 
(mPa·s) 

flash 
point 
(℃) 

pour 
point 
(℃) 

FLOXL Grey suspension Poly (alpha hexene), poly (alpha 
octene), poly (alpha dodecane) 

860-890 
(22 ℃) 

≥ 100  
(23 ℃) > 62 –30 

FLOМXA Light white 
opaque liquid 

Poly (alpha hexene), poly (alpha 
octene), poly (alpha dodecane), 

alkyl alcohol, 2-methyl-2,4-
pentanediol 

839 
(20 ℃) 

800-1000  
(20 ℃) 68.89 –30 

Necadd-
447 

Yellow color 
suspension Polyalphaoctene 840-900 

(20 ℃) 
30000-40000  

(23 ℃) > 61 – 

М-
Flowtreat 

Yellowish white 
suspension Poly alpha Hexene 840-930 

(20 ℃) 
1000 (20 ℃); 
50000 (40 ℃) > 63 –50 

EP 
Pale greyish-

white 
suspension 

Polyolefin synthetic rubber, 
polyacrylamide wax, diethylene 

glycol butyl ether 

850 
(20 ℃) 

1000  
(20 ℃) > 65 – 

The polymer turbulence drag reduction efficiency (DR) under different polymer types, 
concentrations (𝑐), viscosities (𝜐), densities (𝜌), and Reynolds numbers (𝑅𝑒) were obtained based 
on real-time measurements. Recorded and organized as a data set, the experimental data situation 
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of the four polymer drag-reducing agents is shown in Table 3, and the specific part of the 
experimental results are shown in Table 2, taking FLOXL as an example.  

Table 2. Experimental data range and results of four polymer drag-reducing agents 
Types of 
polymers 

Concentrations 𝑐 
(ppm) 

Viscosities 𝑣 
(mm2/s) 

Densities 𝜌 
(kg/m3) 

Reynolds 
numbers 𝑅𝑒 

Number of 
experimental results 

FLOXL 0-60 3.67-4.51 825.8-831.5 98199-601961 106 
M-Flowtreat 0-60 3.28-4.42 822.3-830.9 112294-675302 113 
Necadd-447 0-60 3.23-3.94 821.9-827.8 112294-684223 106 
FLO MXA 0-60 3.6-4.42 825.1-831 100114-614575 105 

Table 3. Results of experimental data for FLOXL drag reducer 
Types of 
polymers 

Concentrations 𝑐 
(ppm) 

Viscosities 𝑣 
(mm2/s) 

Densities 𝜌 
(kg/m3) 

Reynolds 
numbers 𝑅𝑒 

DR 
(%) 

FLOXL 0 4.51 831.5 137331 0 
FLOXL 0 4.51 831.5 157030 0 
FLOXL 5 4.43 831 239789 4 
FLOXL 5 4.41 830.9 261086 5.75 
FLOXL 10 4.39 830.8 241744 3.4 
FLOXL 10 4.37 830.6 263260 5.19 
FLOXL 20 4.38 830.7 242706 2.54 
FLOXL 20 4.35 830.5 264272 3.95 
FLOXL 40 4.4 830.8 241562 2.57 
FLOXL 40 4.37 830.7 263208 3.72 
FLOXL 60 4.4 830.8 241461 2.61 
FLOXL 60 4.39 830.8 262057 4.32 

3. BP neural network structure and result prediction 

3.1. BP neural network structure 

BP Neural Network (Backpropagation Neural Network) is a common artificial neural network 
model used to solve problems such as pattern recognition and function approximation. It consists 
of an input layer, a hidden layer and an output layer, each of which consists of multiple neurons 
(nodes). Each neuron receives input signals and produces output signals, while the connections 
between them are also given different weights. Through continuous iterative training, BP Neural 
Networks can learn complex mapping relationships between inputs and outputs and can be used 
to predict or classify new inputs. 

In this paper, a total of four polymer drag reducers are selected, to avoid the data differences 
caused by the final model accuracy error, while allowing the trained neural network to converge 
quickly, the data normalization process needs to be carried out on all the data before the training, 
the data is normalized to the range of the interval of [-1,1], and its computational expression is 
shown in Eq. (4), and at the same time randomly dividing the dataset into 70 % of the training set 
and 30 % of the test set: 

𝑋 = (𝑎 − 𝑏) × (𝑥 − 𝑥୫୧୬)𝑥୫ୟ୶ − 𝑥୫୧୬ + 𝑏, (4)

where 𝑥 is the parameter variables within the data set, i.e., polymer concentration, viscosity, 
density, Reynolds number, and drag reduction efficiency; 𝑥௫, 𝑥 are the maximum and 
minimum values of the data for this experimental sample, respectively; 𝑎 and 𝑏 are constants that 
are taken to be 1 and –1, respectively; and 𝑋 is the normalized value of the data set. 

The BP neural network prediction model established in this paper is a three-layer structure, 
which consists of the input layer, hidden layer, and output layer. The input layer is polymer 
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concentration, viscosity, density, and Reynolds number, and the output layer is polymer drag 
reduction efficiency. The Tanh function was chosen as the activation function between the input 
layer and the implied layer, and its computational expression is given in Eq. (5). Between the 
implied layer and the input layer, the linear function is chosen as the activation function, and its 
calculation expression is shown in Eq. (6): 

𝑓(𝑥) = 𝑒௫ − 𝑒ି௫𝑒௫ + 𝑒ି௫ , (5)𝑓(𝑥) = 𝑥. (6)

The whole BP neural network selects the trainlm as the training function, and the specific BP 
neural network structure and parameters are shown in Table 4.  

Table 4. BP neural network parameters 
Project title Relevant parameters 

Number of nodes in the input layer 4 
Number of nodes in the output layer 1 

Learning rate 0.01 
Number of training sessions 1000 

Training target accuracy 1.00E-05 

In this paper, we set the input parameters of the input layer to be polymer drag reducer 
concentration (𝑐), viscosity (𝜐), density (𝜌), Reynolds number (𝑅𝑒), and the output parameter of 
the output layer to be polymer turbulence drag reduction efficiency (DR), respectively, and the 
execution process between the input layer and the implied layer is: 𝑚 = 𝜑 ൬ ∑ୀଵସ 𝜔𝑥 + 𝛼൰, (7)

where 𝑗 is the optimal number of hidden layers; 𝛼 is the fitting parameter; 𝜑 the activation 
function determined; 𝜔 is the connection weight between the input layer and the hidden layer.  

The specific execution process between the implicit and output layers is: 

𝑦 = 𝜑ቆ ∑ୀଵ 𝜔𝑚 + 𝛽ቇ, (8)

where 𝑦 is the normalized drag reduction efficiency predicted by the neural network; 𝛽 is the 
fitting parameter; and 𝜔 is the connection weights between the implicit and output layers. 

The specific neural network structure established is shown in Fig. 2. 
The 𝑦 value of the output layer of the BP neural network ranges from [–1, 1], and the output y 

needs to be reduced to obtain the polymer drag reduction efficiency, as shown in Eq. (9): 𝐷𝑅∵ = ൛ൣ൫𝐷𝑅  ୫ୟ୶ − 𝐷𝑅  ୫୧୬ ൯൫𝐷𝑅   − 𝑏൯൧/(𝑎 − 𝑏) + 𝐷𝑅  ୫୧୬ ൟ. (9)

3.2. The number of nodes in the hidden layer is determined 

The number of hidden layer nodes will have a large impact on the established polymer 
turbulence drag reduction efficiency, and because the optimal number of hidden layers 
corresponding to the data of each polymer is different, to obtain the optimal number of hidden 
layer nodes of each polymer drag reducer, the range of the number of hidden layer neurons is 
determined by the number of input and output layers, as shown in Eq. (10): 
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𝑚 = √𝑛 + 𝑙 + 𝑡, (10)

where, 𝑛 is the number of neurons in the input layer, 𝑛 = 4; 𝑚 is the number of neurons in the 
hidden layer of the neural network, 𝑚 takes the range of [4, 13]; 𝑙 is the number of neurons in the 
output layer of the neural network, 𝑙 = 1; and 𝑡 is a constant in the range of the interval [1, 10]. 

 
Fig. 2. Structure of BP neural network for prediction of polymer turbulence drag reduction efficiency 

To select the optimal number of hidden layer nodes, the root mean square error (RMSE) is 
chosen as the evaluation index. The BP neural network is trained from the range of the number of 
neurons in the hidden layer, and the number of hidden layer nodes corresponding to the neural 
network with the smallest root-mean-square error (RMSE) in the training set is determined as the 
optimal hidden layer. Where the root mean square error (RMSE) is calculated as shown in 
Eq. (11): 

𝑅𝑀𝑆𝐸 = ඨ1𝑁 (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑௧ − 𝑙𝑎𝑏𝑒𝑙)ଶே௧ୀଵ . (11)

Table 5. Root mean square error (RMSE) within the number of hidden layers of FLOXL data 
Number of neurons 
in the hidden layer 

Normalized root mean 
square error (RMSE) 

Number of neurons 
in the hidden layer 

Normalized root mean 
square error (RMSE) 

4 0.0004231 9 0.0003342 
5 0.019318 10 0.0004459 
6 0.032353 11 0.0001788 
7 0.0015129 12 0.0003119 
8 0.0003104 13 0.0005499 

Table 6. Number of neurons in the optimal hidden layer of polymers 

Polymer type The training set normalized root mean 
square error (RMSE) 

The optimal number of hidden layer 
neurons 

FLOXL 0.000179 11 
M-Flowtreat 0.000108 13 
Necadd-447 5.63E-05 8 
FLO MXA 0.00026 12 

The results of the root mean square error (RMSE) within the number of hidden layers 
corresponding to the FLOXL data are shown in Table 5, from which the optimal number of hidden 
layer nodes corresponding to the FLOXL polymer is obtained as 11, and the corresponding 
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training set has the smallest normalized root mean square error (RMSE) value of 0.000179. The 
optimal number of neurons in the hidden layer corresponding to each of the four polymers is 
obtained by calculating the number of neurons in the hidden layer corresponding to each of the 
four polymers. The specific results are shown in Table 6. 

3.3. Outcome prediction of BP neural networks 

Based on the optimal number of hidden layers obtained above, the BP neural network models 
corresponding to different polymers were established. After the training of the BP neural network 
is completed, the graphs of the mean square error (MSE) of the four polymer drag reducers with 
the number of training are obtained, and the optimal validation performance of the four polymer 
drag reducers during the training process is obtained, and the results are shown in Fig. 3.  

 
a) FLOXL  

 
b) FLO MXA 

 
c) Necadd-447 

 
d) M-Flowtreat 

Fig. 3. Plot of mean square error (MSE) of the polymers with the number of training sessions 

Fig. 3 demonstrates the variation of mean square error with increasing number of iterations for 
predicting BP neural networks for turbulent drag reduction efficiency of different polymer 
solutions. As can be seen in Fig. 3, the mean square error of the training set, validation set, and 
test set is larger at the beginning and gradually decreases with the increasing number of iterations 
of the BP neural network. With the increase in the number of iterations, the change in the mean 
square error of the three tends to level off, and the location of the small green circle in the figure 
represents the mean square error at the best number of iterations. To prevent the BP neural network 
from overfitting and improve the prediction performance of the model, the early stopping strategy 
that comes with MATLAB is used. The performance of the validation dataset is periodically 
evaluated during the training process so that the training can be stopped in time when the 
validation performance stops improving, thus improving the generalization performance of the 
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established BP neural network. In this training process, the early stopping criterion is utilized. 
When the mean square error of the validation set no longer decreases for six consecutive times 
and the validation performance does not improve, the training ends, confirming that the BP neural 
network established at this time is the optimal model. As can be seen in Fig. 3, when the iteration 
errors of the four polymers FLOXL, М-Flowtreat, Necadd-447, and FLOMXA reached 7, 7, 8, 
and 6, respectively, the mean-square errors of the validation set converged to the minimum value, 
which were all less than 10-2, and did not degrade any more in the following six training sessions, 
which indicated that the BP neural network had reached the convergence condition. 

4. Effectiveness evaluation and practical application 

4.1. Evaluation of the effect of BP neural network 

According to the calculated optimal number of hidden layers, the BP neural network models 
corresponding to different polymers were established, and the root mean square error (RMSE) 
value and the goodness of fit 𝑅ଶ were chosen as the evaluation indexes to evaluate the prediction 
effect of the established BP neural network models, and the specific results are shown in Fig. 4.  

 
a) FLOXL  

 
b) FLO MXA 

 
c) Necadd-447 

 
d) M-Flowtreat 

Fig. 4. Comparison of predicted and actual values of BP neural network prediction test set 

According to the results of the comparison between the test set of BP neural network 
predictions obtained from the training of the four polymer drag reduction and the actual values, it 
can be seen that the results predicted by the BP neural network are consistent with the results of 
the polymer turbulence drag reduction efficiency measured by the experiment. The root mean 
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square error (RMSE) values of the BP neural networks obtained from this training are all below 
2, and the goodness of fit 𝑅ଶ is above 0.98. Since the Root Mean Square Error (RMSE) values 
reflect the deviation between the predicted and true values and are more sensitive to outliers in the 
data. Accordingly, it can be concluded that the accuracy of the present method in predicting the 
polymer turbulence drag reduction efficiency is high, indicating a good fitting of the correlation 
of the selected sample data set. The drag reduction performance of the four polymer drag reduction 
types can be predicted using the trained BP neural network model. It can be seen that there is a 
good correlation between the basic parameters such as polymer drag-reducing agent type, 
concentration, viscosity, density, Reynolds number, and polymer drag-reduction efficiency. 
Meanwhile, the root mean square error (RMSE) values and the goodness of fit 𝑅ଶ values obtained 
from the four polymer drag reduction BP neural networks are compared. It can be found that the 
BP neural network obtained from the training of the Necadd-447 model of drag-reducing agent 
has the best prediction with the smallest Root Mean Square Error (RMSE) value of 0.6553 and 
the largest 𝑅ଶ value of goodness of fit of 0.9949.  

 
a) FLOXL  

 
b) FLO MXA 

 
c) Necadd-447 

 
d) M-Flowtreat 

Fig. 5. 10-fold cross-validation results of four polymer BP neural networks 

In order to further assess the generalisation ability of the BP neural network models and to 
detect the overfitting of the models, the evaluation of the BP neural network models built by the 
four polymers was further carried out using 𝐾-fold cross-validation. By dividing the dataset into 𝐾 similarly sized subsets, using 𝐾 − 1 of them as the training set each time, and the remaining 
one as the validation set, and repeating the process 𝐾 times, 𝐾 independent model performance 
evaluations were obtained, and finally, the performance metrics of the 𝐾 times were averaged as 
the final evaluation results of the model. In this 𝐾-fold cross-validation, we take the value of 𝐾 as 
10, and choose the root mean square error and goodness of fit as the evaluation metrics to evaluate 
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the four polymer models, and the results are shown in Fig. 5. From the figure, it can be seen that 
the BP neural networks established by the four polymers have good prediction accuracy in the 
case of 10-fold cross-validation, the average value of the goodness of fit is above 0.98, and the 
average value of the root mean square error is below 2. Based on the results of the 10-fold cross 
validation, it can be seen that the established BP neural network model is accurate and stable, and 
at the same time, it performs well on the whole dataset, and there is no overfitting. 

4.2. Long-distance pipeline applications for refined oil products 

Based on the above evaluation of the polymer turbulence drag reduction efficiency prediction 
results, it can be seen that the BP neural network has a high prediction accuracy for the 
experimental results, and can play an obvious prediction advantage in the field of polymer 
turbulence drag reduction. To further verify and improve the accuracy of the prediction model, 
based on the established BP neural network prediction model, it is applied in the turbulence-
damping transport process of industrial oil products pipeline and then realizes the prediction of 
turbulence-damping efficiency of long-distance oil products transport pipeline. In this paper, we 
use M-FLOWTREAT polymer drag reducer with the concentration of 𝑐 = 4.91-15.06 ppm, diesel 
viscosity of 𝜐 = 7.5 mm2/s, and density of 𝜌 = 843.6-847.8 kg/m3 to carry out turbulence 
reduction experiments on the long-distance oil product pipeline of the section Vtorovo-Primorsk, 
with the length of the pipeline 𝐿 = 227 km and the diameter of the pipeline 𝐷 = 530 mm. 
Turbulence drag reduction experiments are carried out in the oil pipeline, and a BP neural network 
prediction model is established based on the obtained drag reduction flow data. 

The pipeline operation dataset is imported into MATLAB software, which is also randomly 
divided into 70 % of the training set and 30 % of the test set. The BP neural network was 
established, and the prediction accuracy and root mean square error of the BP neural network were 
compared and analyzed under the conditions of different numbers of hidden layer neurons. The 
optimal number of hidden layer neurons is selected as 13, and the optimal BP neural network 
model is established. Based on the established model, the polymer turbulence drag reduction 
efficiency is predicted, and the specific prediction fitting results are shown in Fig. 6. Comparative 
analysis of the predicted and actual values of the BP neural network prediction test set for  
M-FLOWTREAT refined oil pipeline shows that the BP neural network established based on the 
data set of polymer drag reducer type, concentration (𝑐), viscosity (𝜐), density (𝜌), and Reynolds 
number (𝑅𝑒) can accurately predict turbulence damping efficiency of the pipeline with the 
addition of the polymer drag reducer, and the goodness of fit of the BP neural network model is 
up to 0.9965. 

 
Fig. 6. Comparison of predicted and actual values of M-FLOWTREAT  

refined oil pipeline prediction test set 

Since the long-distance pipeline transport of refined oil products is a closed sequence transport, 
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with the change of polymer damping agent type, injection volume, and pipeline operation state, 
the turbulence damping efficiency of the polymer damping agent will produce corresponding 
changes. Using the BP neural network, the turbulence-damping efficiency of the polymer damping 
agent can be predicted quickly, so that the pumping station in the pipeline conveying process can 
be reasonably regulated. However, the influencing factors of polymer turbulence damping 
efficiency are complex and related to polymer concentration, viscosity, density, molecular weight, 
pipeline flow parameters, etc. The BP neural network prediction model cannot completely replace 
the experimental test, but rather, through the database accumulated in the past, it can quickly react 
to the unknown state and obtain the new polymer damping efficiency, which can help the daily 
management of the pipeline transportation of refined oil products and reduce the energy 
consumption. 

5. Conclusions 

Since polymer-reducing agents can greatly reduce the operating cost of long-distance pipeline 
transport of refined oil products, this paper proposes and establishes a polymer turbulence 
drag-reducing efficiency prediction model based on the BP neural network according to the basic 
parameters of polymer drag-reducing agents and different working conditions of pipeline 
operation. 

1) Based on the data from the polymer turbulence drag reduction experimental system, the 
polymer type, polymer concentration, viscosity, density, and Reynolds number are selected as the 
influencing factors. The root mean square error is used as the evaluation index to determine the 
optimal number of neurons in the hidden layer for different polymers and the optimal BP neural 
network prediction model for different polymer drag reducers is obtained. 

2) The established BP neural network model was used to predict the polymer drag reduction 
efficiency, and the root mean square error (RMSE) values of the predicted and actual values were 
compared and analyzed, as well as the goodness-of-fit 𝑅ଶ. The results of the effect evaluation 
showed that the predicted values of the BP neural network and the actual distribution of the data 
on the drag reduction efficiency were the same, and the BP neural network fitting accuracies for 
the four types of polymer drag reducers were all above 0.98. Among them, the Necadd-447 model 
was the best fitted, with a goodness-of-fit 𝑅ଶ of 0.9949. The model was also evaluated using 
10-fold cross-validation, and based on the results, it can be seen that the established BP neural 
network model is accurate and stable, and at the same time performs well on the entire dataset 
without overfitting. 

3) BP neural network is applied to predict the long-distance oil pipeline of refined oil products 
with the addition of polymer. The results show that the goodness of fit 𝑅ଶ can reach 0.9965, and 
the turbulence damping efficiency of polymer damping agent can be predicted quickly, to 
reasonably regulate the pumping station in the process of pipeline transmission and reduce the 
energy consumption in the process of refined oil pipeline transmission. 
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