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Abstract. In the railway container yard, there are few mature intelligent lifting prevention 
solutions available for train flatbed loading and unloading operations due to the poor detection 
accuracy or speed of traditional detection methods. This paper designs a train Flatbed Twist Rail 
(F-TR) lock anti-lifting detection method based on an improved BP neural network. The system 
collects weight and laser distance measurement data from the four locks of the hoist, establishes 
a flatbed lifting detection model based on the BP neural network, and optimizes the model's 
performance by incorporating a momentum factor and adaptive learning rate during weight 
adjustment. In practical tests, this system demonstrates a high detection rate and fast detection 
speed, offering intelligent safety protection for automated rail mounted gantry in the railway 
container yard. 
Keywords: railway container yard, F-TR lock anti-lifting detection method, BP neural network, 
momentum factor, adaptive learning. 

1. Introduction 

In the railway container yard, the locking mechanism commonly used on train flatbed wagons 
is the F-TR lock [1], as shown in Fig. 1. The F-TR lock is a type of locking mechanism with a 
distinctive eagle-head structure used on flatbed wagons to secure containers or cargo for safe 
loading. If the container’s lock hole is not properly disengaged from the F-TR Lock during the 
lifting process by a Rail-mounted Container Gantry Crane (RMG), it can lead to a situation where 
the crane's hoisting equipment lifts both the container and the entire flatbed wagon of the train 
together. This is typically referred to as a “F-TR locked lifting accident”. As shown in Fig. 2, it’s 
quite hard to inspect the safety hazards accurately and quickly for the RMG operator in the remote 
control room. Once RMG lifts both the container and the train flatbed together, extremely serious 
safety incidents can occur, such as the F-TR lock being pulled out from the train flatbed, or in 
more severe situations, the train flatbed can be pulled apart, and there can even be damage to the 
RMG itself [2]. 

 
Fig. 1. The F-TR lock 

In container terminals, to ensure the safety of intelligent remote control operation and prevent 
operational accidents and improve operational efficiency, both domestic and international scholars 
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have researched and designed various intelligent lifting prevention systems for container vehicles. 
For instance, Lv and Du [3] proposed a real-time detection system to detect whether the truck is 
lifted by using laser radar to scan the displacement information of the container trucks chassis. 
Similarly, Zhen and others [4] suggested using laser radar to scan the contour information of the 
target and reconstruct it into a 3D model. By analyzing the geometric shape of the model, the 
system calculates the dimensions and positions of the target to detect whether the truck is lifted. 
Using laser radar scan data for detection and recognition offers high accuracy and resistance to 
environmental and weather interference. However, the drawback is that laser radar equipment can 
be relatively costly [5]. 

 
a) Normal lifting 

 
b) F-TR locked lifting accident 

Fig. 2. Normal lifting and F-TR locked lifting accident while unloading operation 

With the advancement of image recognition and measurement technologies, more and more 
image detection techniques have been applicated in the field of automated port [6]. These include 
container number recognition based on image recognition technology [7], container lock 
positioning [8], ship identification and tracking using vision-based target tracking technology  
[9, 10], and container trucks tracking [11] etc. In addition to the advantages of lower equipment 
costs and convenient camera installation, image-based detection technologies offer two key 
benefits. First, vision-based detection uses Complementary Metal-Oxide-Semiconductor (CMOS) 
or Charge-Coupled Device (CCD) cameras with high image resolution to acquire image 
information, enabling higher measurement accuracy through non-contact measurement [12]. 
Second, based on deep learning techniques such as Convolutional Neural Networks (CNN) can 
recognize complex features [13]. For example, Huang et al. [14] employed a feature point 
matching algorithm to compare feature points in each frame of the video with those in the pre-
lifting frame, calculating the coordinate changes between feature points to determine if the 
container trucks have been accidentally lifted. Huang et al. [15] designed a container trucks lifting 
detection system based on CNN and target tracking algorithms to identify and track the 
displacement of the container truck's hub in real-time to detect accidental lifts. 

However, the intelligent lifting prevention systems for container trucks cannot be directly 
applied to the train flatbeds unloading operations in railway container yards due to the following 
reasons: 

(1) Inapplicable Technical Solutions. The intelligent lifting prevention systems for container 
trucks primarily use either laser, vision, or a combination of both technologies. Laser-based 
solutions involve real-time detection of container separation from the chassis during unloading by 
sweeping lasers across the container and truck frame. Laser solutions provide high stability and 
detection rates, capable of handling situations where individual locks on the flatbed are not 
unlocked. However, these solutions cannot precisely measure the lifting height. On the other hand, 
vision-based solutions involve real-time collection and processing of images from multiple 
cameras during the lifting process to identify and detect movements of specific features on the 
container trucks. The drawback of vision-based solutions is that they lack high precision, real-
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time capabilities as laser solutions. Combining laser and vision-based systems can harness the 
advantages of both methods, offering high detection accuracy and precision. However, the 
drawback is that such systems tend to be relatively costly. 

However, the technical solutions used in intelligent lifting prevention systems for container 
trucks are not applicable to the detection of F-TR locks on train flatbeds. These lifting prevention 
systems for container trucks are primarily designed for single-lane. But in railway container yards, 
there are typically two railway tracks. The technical approaches employed in container trucks 
lifting prevention solutions are based on one side scanning. These methods are not suitable for 
railway container yards with two parallel railway tracks because they can be obstructed by the 
presence of multiple tracks. 

(2) Inadequate Accuracy Requirements. Detecting F-TR locks on train flatbeds requires 
extremely high accuracy and real-time performance. National Railway Administration regulations 
dictate that once a train flatbed is lifted, any damage to the locks at the bottom of the flatbed results 
in the flatbed being deemed unusable, causing significant operational accidents. However, in 
existing container handling vehicle lifting prevention solutions, both laser and vision-based 
methods require a certain degree of lifting of the flatbed before detection is finished, which makes 
them unsuitable for detecting F-TR lock lifting prevention in real-time. 

As the research on artificial neural networks becomes mature, Artificial neural networks have 
been widely applicated in various industries. It is able for artificial neural network to approximate 
complex nonlinear mappings with arbitrary precision [16]. This provides an excellent solution for 
problems with low accuracy in indirect measurements. Chen, Qin, Hao et al. used neural networks 
to establish load prediction models for vehicle weighing [17-19]. Vyas and Satishkumar [20], Pany 
et al. [21] applied artificial neural networks for mechanical fault prediction and river flow 
prediction. However, the above-mentioned studies were all conducted using traditional BP neural 
networks, which have long iteration times and limited prediction accuracy. Kosarac et al. [22] 
presents the development and evaluation of neural network models using a small input-output 
dataset to predict the thermal behavior of a high-speed motorized spindles. The results indicate 
that even with small-scale datasets, artificial neural networks can achieve high prediction 
accuracy. Sun et al. [23] use an improved BP neural network algorithm to diagnose computer 
communication network failures. Chen and Peng [24] improved BP neural network algorithm by 
incorporating a momentum factor and adaptive learning rate to predict traffic accidents. Compared 
to traditional BP neural network algorithms, it demonstrated faster convergence and higher 
prediction accuracy. 

In summary, the technical solutions used in intelligent lifting prevention systems for container 
trucks cannot be directly applied to the unloading of train flatbeds in railway container yards. This 
paper proposes a F-TR lock anti-lifting detection method based on improved BP neural network. 
Unlike traditional intelligent container trucks lifting prevention solutions that rely on laser or 
vision-based detection, this system uses the weight data and laser ranging data from four locks of 
the hoist as samples to establish a BP neural network model for detecting train flatbed lifting. The 
training process incorporates a momentum factor to improve the algorithm.  

2. System design and control principle 

In this system, weight sensors and laser sensors are installed at the four locks of the hoist on 
RMG to collect information related to container lifting operations, and this design is also adaptable 
for various container handling equipment. As shown in Fig. 3, the installation on the hoist on the 
RMG is presented as an example. 

The implementation principle of the F-TR lock lifting prevention system(F-TRLLPS) for train 
flatbeds is shown in Fig. 4. The F-TRLLPS serves as an independent information collection 
system that communicates with Automatic Crane Control System (ACCS). ACCS is a common 
control system used on RMGs responsible for managing and controlling RMG operations. 

When the RMG is on working, the F-TRLLPS continuously collects real-time data from the 
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four locks of the RMG hoist, including weight data and laser ranging data. These data are then 
processed by the algorithm module to determine whether there is a connection between the F-TR 
lock on the train flatbed and the container. If the system detects that the F-TR lock is not unlocked, 
the algorithm module sends an alarm signal to ACCS, which can immediately stop the movement 
of the lifting equipment using Programmable Logic Controller (PLC). 

 
Fig. 3. Installation of system equipment 

 
Fig. 4. Principle of F-TR lock lifting prevention system 

3. F-TR lock lifting detection algorithm  

BP neural networks are trained using the backpropagation algorithm and have characteristics 
such as non-linear mapping, self-organization, and self-learning. The learning process of the BP 
neural network algorithm consists of two parts: forward propagation and backpropagation [25-26]. 
The model structure of the BP neural network is shown in Fig. 5.  

 
Fig. 5. Schematic diagram of BP neural network 

It is a single-layer neural network that takes the weight sensors values and laser sensors values 
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from four positions (left front, left rear, right front, right rear) on the hoist as input. The output 
layer consists of a single neuron representing the confidence level of whether the train is lifted 
(0.9999 for lifted and 0. 0001 for not lifted). This results in 8 input layer neurons and 1 output 
layer neuron. 

3.1. Data acquisition and preprocessing 

In the railway container yard, there are typically four operational conditions: 20-foot empty 
containers, 20-foot loaded containers, 40-foot empty containers, and 40-foot loaded containers. 
Depending on the engagement status of the F-TR lock and the container, these conditions can be 
further categorized into normal lifting, 1 lock engaged, 2 locks engaged, 3 locks engaged, and 
4 locks engaged. Data was collected for each of these conditions through weight sensors and laser 
ranging sensors, resulting in 20 rounds of data collection. Each round included 10 data sets, with 
5 sets used for training and 5 sets for testing. 

Due to the strict requirements of flatbed unloading operations, the lifting process requires 
incremental movements. During these incremental movements, the collected weight data exhibit 
a step-like pattern. The fluctuations in weight data and laser ranging data generated by the RMG 
operator's incremental lifting, as shown in Fig. 6 and Fig. 7, which can affect the detection of 
whether the train flatbed has been lifted or not. 

 
Fig. 6. Weight data waveform from the four locks of the hoist during jogging operation 

 
Fig. 7. Laser ranging data waveform from the four locks of the hoist during jogging operation 
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Therefore, noisy data at the initial phase of lifting (when the hoisting wire rope is not yet fully 
tensioned) should be filtered out. Data preprocessing is performed to extract the data during the 
period from when the hoist securely locks the container until the container detaches from the F-TR 
locks is extracted based on the following conditions: 

(1) The weight data from individual lock must be above a threshold. 
(2) The sum of the weight data from all four locks in the current frame must be greater than 

the sum in the previous frame. 
(3) The sum of the weight data from all four locks in the current frame must be greater than 

the maximum sum in historical data. 
(4) The difference between the sum of the weight data from all four locks in the current frame 

and the sum in the previous frame must be above a threshold. 
(5) The laser ranging data from individual lock must be above a threshold. 
Furthermore, it is necessary to normalize the collected sample data to prevent neuron saturation 

and improve the training efficiency of the neural network. This is achieved by using 
transformation Eq. (1) to scale the data to the range of [–1, 1]: 

𝑥 = 2𝑥 − (𝑥 + 𝑥 )𝑥 − 𝑥 , (1)

where 𝑥  represents the 𝑖-th data point of a particular feature parameter; 𝑥  is the minimum 
value of this feature parameter within a set of data; 𝑥  is the maximum value of this feature 
parameter within a set of data; 𝑥  is the normalized value of the 𝑖-th data point of this feature 
parameter. 

The processed sample data is then used as the database for training and testing the BP neural 
network. To avoid the issue of one class of samples dominating the training and causing the 
network to bias towards it, while neglecting the other class when it’s input, different rounds of test 
data are cross-input to reconstruct the training sample set. 

3.2. Building network structure 

The performance of the BP neural network model greatly depends on the number of neurons 
in the hidden layer. An empirical Eq. (2) is used to determine the range of values for the number 
of hidden layer neurons [27]. By comparing the mean square error values of different neural 
networks with varying numbers of hidden layer neurons, the optimal number of hidden layer 
neurons is determined: 𝑝 = √𝑛 + 𝑚 + 𝑎, (2)

where, 𝑝 represents the number of hidden layer neurons; 𝑛 and 𝑚 represent the number of input 
layer and output layer neurons respectively; 𝑎 is a variable constant. By setting 𝑛 to 8, 𝑚 to 1, and 
varying the value of 𝑎 within the range [1, 10], and subsequently substituting these values into 
Eq. (2), the range of the number of hidden layer neurons is determined to be [4, 13]. Training is 
conducted for 500 iterations using training samples for networks with different numbers of hidden 
layer neurons. The relationship curve between the number of hidden layer neurons and network 
output error is shown in Fig. 8. 

As observed, within the range of hidden layer neuron values, the network’s output error 
initially shows an upward trend followed by a decrease, with the minimum error occurring when 
the number of hidden layer neurons is 11. However, as the number of hidden layer neurons 
continues to increase beyond this point. And the last there is a slight fluctuation. Therefore, this 
paper adopts 11 hidden layer neurons for the F-TR lock lifting detection model. 
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Fig. 8. Schematic diagram of the relationship between the number of neurons  

in the hidden layers and the mean squared error of samples 

3.3. Improvement learning algorithm 

The algorithmic operation of the BP neural network includes two processes: forward 
propagation and backpropagation modification. The training process of the BP neural network is 
as shown in Fig. 9. In the forward propagation process, input sample data is weighted and 
transmitted to the hidden layer to calculate the output error; in the backpropagation modification 
process, the weights of each layer are continuously adjusted through backpropagation to ensure 
that the actual output meets the accuracy requirements of the expected value. 

Traditional BP neural network algorithms face issues such as slow convergence and 
susceptibility to local minima due to the large number of input parameters [28]. Therefore, in this 
paper, improvements are made to the traditional BP neural network algorithm by introducing a 
momentum factor and adaptive learning rate during the weight adjustment in backpropagation. 

Assuming in the 𝑡-th iteration of neural network training, with input variables 𝑥 (𝑡)  (𝑖 = 1,2, … 8), we can derive: 

𝑦 = 𝑓 𝜔 𝑥 (𝑡) − 𝜃 , (3)

where, 𝑦  (𝑗 = 1,2, … 11) represents the output variables of the hidden layer; 𝑓 is the activation 
function; 𝜔  represents the connection weight from the input layer to the hidden layer; 𝜃  is the 
bias of the hidden layer. After undergoing activation function computation in the hidden layer, it 
is transmitted to the output layer, and the transmission relationship is as follows: 

𝑌(𝑡) = 𝑓 𝜔 𝑦 − 𝜑 , (4)

where, 𝑌(𝑡) represents the output of the neural network, 𝑓 is the activation function; 𝜔  represents 
the connection weight from the hidden layer to the output layer; 𝜑 is the bias of the output layer. 
The mean squared error of the actual output of the neural network and the expected output 𝑌 (𝑡), 
which can be calculated through Eq. (5), is the objective function for neural network training: 𝐸(𝑡) = 12 (𝑌(𝑡) − 𝑌 (𝑡)) . (5)

The adjustment of weights 𝜔  from the hidden layer to the output layer and weights 𝜔  from 
the input layer to the hidden layer is calculated using the negative gradient descent algorithm. 
Additionally, the adjustments from the previous iteration are incorporated, as shown in Eq. (6-7): 
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∆𝜔 (𝑡) = −𝜂(𝑡)𝜕𝐸(𝑡)𝜕𝜔 + 𝛼∆𝜔 (𝑡 − 1),     (𝑗 = 1,2, … ,11), (6)∆𝜔 (𝑡) = −𝜂(𝑡)𝜕𝐸(𝑡)𝜕𝜔 + 𝛼∆𝜔 (𝑡 − 1),     (𝑖 = 1,2, … 8,      𝑗 = 1,2, … ,11), (7)

where, 𝛼 represents the momentum factor, which is empirically set to 0.7 in this paper; 𝜂(𝑡) is the 
learning rate at the 𝑡-th iteration, with an initial value of 0.1. 

 
Fig. 9. Training process of BP neural network 

The adjustment of the learning rate 𝜂(𝑡) is based on the total network error, typically measured 
by using mean squared error. The adjustment is made as follows: If the error at the 𝑡-th iteration, 𝐸(𝑡) > 𝐸(𝑡 + 1), then the learning rate for the (𝑡 + 1)-th iteration is increased to accelerate 
convergence; If 1.04 ∗ 𝐸(𝑡) < 𝐸(𝑡 + 1), it suggests that the step size is too large. In this case, the 
learning rate for the (𝑡 + 1)-th iteration should be decreased to ensure convergence [29]: 

𝜂(𝑡 + 1) = 1.05𝜂(𝑡), 𝐸(𝑡 + 1) < 𝐸(𝑡),0.7𝜂(𝑡), 𝐸(𝑡 + 1) > 1.04 ∗ 𝐸(𝑡)𝜂(𝑡), others. , (8)

Subsequently, following the algorithm’s process, the sample data is re-inputted to adjust the 
neural network’s weights. The neural network then computes the output error, and it is checked 
whether this error meets the precision requirements. If it doesn’t meet the precision requirements, 
the weights are adjusted again using backpropagation. By continuously adjusting the weights and 
iterating the computations until the error accuracy meets the requirements. 
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3.4. Model training 

Developing a program to implement the improved BP Neural Network algorithm, and use 
training sample sets to train both the traditional BP neural network algorithm and the improved 
BP neural network algorithm. Set the error target value to 0.0001, with 500 iterations. Both 
algorithm’s mean squared error curves are shown in Fig. 10. In each figure, the solid line 
represents mean square error, the dashed line represents the best mean square error during training, 
and the dotted line represents the expected mean square error. 

 
a) Traditional BP neural network algorithm 

 
b) Improved BP neural network algorithm 

Fig. 10. Mean square error performance curves 

Analyzing the mean square error performance curves of the traditional BP neural network 
algorithm and the improved BP neural network algorithm, it can be concluded that the improved 
BP neural network algorithm can bring the best error closest to the expected error, and the error 
curve shows a smooth descent, significantly enhancing the algorithm's convergence speed. 

4. Experiment and analysis 

The final output of the model after training is the confidence level for F-TR lock lifting 
detection. A confidence level 𝜎 is set to determine whether the train flatbed is lifted. If 𝜎 = 0.8 is 
chosen, then: 𝑦 ≥ 0.8, The train flatcar is lifted,𝑦 < 0.8, The train flatcar is not lifted. (9)

Compare the model’s predicted results with the actual test results, and calculate the detection 
rate of this algorithm by using Eq. (10): 

𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑠 × 100 %. (10)

The F-TR lock anti-lifting detection method test was carried out at a railway container yard. 
To simulate the train flatbed being lifted, the F-TR locks and the container lock holes were tied 
with iron chains, as shown in Fig. 11. The weight data and laser ranging data collected in real-time 
during actual operations are shown in Fig. 12. 

The experiments were conducted under 20 different conditions, including 20-foot empty 
container, 20-foot loaded container, 40-foot empty container, and 40-foot loaded container, each 
tested for normal lifting, single F-TR lock engagement, double F-TR locks engagement, triple 
F-TR locks engagement, and quadruple F-TR locks engagement. The experimental results are 
presented in Table 1. 

Similarly, the traditional BP neural network algorithm was tested by using the same dataset to 
predict its outputs. The comparison of the testing performance between the two learning 
algorithms is shown in Table 2. 
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Table 1. Experimental results of the train Lifting prevention detection method  
based on improved BP neural network 

Testing 
Sample 

20-foot empty 
container 

20-foot loaded 
container 

40-foot empty 
container 

40-foot loaded 
container 

Testing 
Conditions 

Confidence 
Level 

Detection 
Time 
(ms) 

Confidence 
Level 

Detection 
Time 
(ms) 

Confidence 
Level 

Detection 
Time 
(ms) 

Confidence 
Level 

Detection 
Time 
(ms) 

Normal 
Lifting 

0.3342 126 0.2421 136 0.5282 141 0.2339 115 
0.4802 124 0.1097 133 0.3427 144 0.2092 134 
0.2724 128 0.2385 105 0.5716 123 0.5903 119 
0.3814 116 0.5117 128 0.4381 157 0.5767 129 
0.2251 135 0.1375 119 0.2261 109 0.3265 127 

Single F-TR 
Lock 

Engagement 

0.8582 124 0.9731 124 0.8282 103 0.9311 125 
0.8452 125 0.8972 135 0.8444 118 0.9678 143 
0.8946 123 0.9281 106 0.9773 149 0.8841 136 
0.9467 115 0.9917 113 0.8568 155 0.8305 132 
0.8662 104 0.8383 138 0.9203 112 0.8183 137 

Double F-
TR Locks 

Engagement 

0.9413 154 0.9082 134 0.9827 157 0.8355 112 
0.8987 134 0.9028 125 0.9646 155 0.8501 118 
0.8272 125 0.9251 157 0.9371 136 0.8979 122 
0.8782 102 0.8663 140 0.8011 128 0.8790 137 
0.8093 131 0.8198 159 0.9983 139 0.9057 153 

Triple F-TR 
Locks 

Engagement 

0.9668 137 0.9032 145 0.9063 155 0.8469 111 
0.8481 122 0.8539 135 0.8577 114 0.8423 106 
0.9683 149 0.8047 119 0.7214 151 0.8815 149 
0.9954 142 0.9213 147 0.9102 113 0.8231 158 
0.9509 124 0.7017 134 0.8306 115 0.9698 149 

Quadruple 
F-TR Locks 
Engagement 

0.9815 142 0.8076 137 0.9465 135 0.8230 111 
0.8776 155 0.8968 117 0.6241 139 0.9054 121 
0.9576 136 0.9565 121 0.9967 132 0.9340 149 
0.9330 153 0.8960 128 0.8409 122 0.5051 116 
0.9592 109 0.8898 155 0.8860 137 0.8973 145 

Table 2. Comparison of detection rate and average detection time between improved  
and traditional BP neural network algorithm 

Method Detection rate Average detection time (ms) 
Traditional BP neural network algorithm 88 % 479 
Improved BP neural network algorithm 96 % 131 

 
Fig. 11. Simulate the train flatbed being lifted 

According to Table 2, compared to the traditional BP neural network algorithm, the improved 
BP neural network algorithm, which incorporates a momentum factor and adaptive learning rate, 
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exhibits higher detection rates (The detection rate has been increased by 8 %) and faster network 
convergence (The average detection time has been reduced by 73 %). 

 
Fig. 12. Schematic diagram of experimental weight data and laser ranging data waveform 

5. Conclusions 

Railway container yard requires an intelligent lifting prevention system to prevent accidents 
where containers and train flatbeds are lifted together. This paper presents a train F-TR lock 
anti-lifting detection method based on improved BP neural network. It utilizes a BP neural 
network to construct a model for detecting train flatbeds lifted and improves the algorithm to 
enhance detection accuracy and convergence speed. The following conclusions can be drawn: 

1) Compared to the traditional BP neural network algorithm, improving the algorithm’s 
performance by introducing a momentum factor and adaptive learning rate in weight adjustments 
can significantly enhance the model's detection accuracy and reduce the detection time. Through 
experimental testing, in comparison to the traditional BP neural network, the train F-TR 
anti-lifting detection method based on the improved BP neural network demonstrates higher 
detection accuracy (96 %) and shorter detection time (131 ms). 

2) The train F-TR anti-lifting detection method based on the improved BP neural network 
proposed in this paper demonstrates that the detection accuracy and speed can meet the 
requirements for preventing lifting incidents during train flatbed operations in railway container 
yards. Additionally, due to the lower hardware equipment costs and more convenient installation, 
it is more suitable for railway container yard train flatbed anti-lifting detection than traditional 
laser radar or visual solutions. 

In the future, the train F-TR lock anti-lifting detection method proposed in this paper has the 
potential to further improve the detection rate by replacing the laser ranging sensor with higher 
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measurement accuracy equipment, such as laser radar. This anti-lifting detection method has been 
applied in an intelligent railway container yard in China, assisting the intelligent remote control 
system in automating train loading and unloading operations. 

Acknowledgements 

The authors have not disclosed any funding. 

Data availability 

The datasets generated during and/or analyzed during the current study are available from the 
corresponding author on reasonable request. 

Conflict of interest 

The authors declare that they have no conflict of interest. 

References 

[1] Y. Zhou et al., “Flexible cooperative scheduling optimization of multiple rail mounted gantry cranes 
in railway container terminals,” Journal of Transportation Systems Engineering and Information 
Technology, Vol. 22, No. 1, pp. 133–141, 2022, https://doi.org/10.16097/j.cnki.1009-
6744.2022.01.015 

[2] X. H. Wang, L. Y. Jia, and J. X. Cai, “Integrating optimization of resource allocation and handling 
scheduling in railway container terminal,” Control and Decision, Vol. 36, No. 12, pp. 3063–3073, 
2021, https://doi.org/10.13195/j.kzyjc.2020.0597 

[3] C. F. Lv and Z. C. Du, “Chassis positioning system based on the laser radar survey technology,” Laser 
Technology, Vol. 31, No. 6, pp. 596–599, 2007, https://doi.org/10.3969/j.issn.1001-3806.2007.06.023 

[4] W. Zhen, S. Zeng, and S. Soberer, “Robust localization and localizability estimation with a rotating 
laser scanner,” in 2017 IEEE International Conference on Robotics and Automation (ICRA),  
pp. 6240–6245, May 2017, https://doi.org/10.1109/icra.2017.7989739 

[5] C. Torresan et al., “Development and performance assessment of a low-cost UAV laser scanner system 
(LasUAV),” Remote Sensing, Vol. 10, No. 7, p. 1094, Jul. 2018, https://doi.org/10.3390/rs10071094 

[6] C. Mi, Y. Huang, C. Fu, Z. Zhang, and O. Postolache, “Vision-Based Measurement: Actualities and 
Developing Trends in Automated Container Terminals,” IEEE Instrumentation and Measurement 
Magazine, Vol. 24, No. 4, pp. 65–76, Jun. 2021, https://doi.org/10.1109/mim.2021.9448257 

[7] C. Mi, L. Cao, Z. Zhang, Y. Feng, L. Yao, and Y. Wu, “A port container code recognition algorithm 
under natural conditions,” Journal of Coastal Research, Vol. 103, No. sp1, pp. 822–829, Jun. 2020, 
https://doi.org/10.2112/si103-170.1 

[8] C. Mi et al., “A fast automated vision system for container corner casting recognition,” Journal of 
Marine Science and Technology, Vol. 24, No. 1, pp. 54–60, 2016, https://doi.org/10.6119/jmst-016-
0125-8 

[9] X. Chen, S. Wang, C. Shi, H. Wu, J. Zhao, and J. Fu, “Robust ship tracking via multi-view learning 
and sparse representation,” Journal of Navigation, Vol. 72, No. 1, pp. 176–192, Jan. 2019, 
https://doi.org/10.1017/s0373463318000504 

[10] X. Chen et al., “Video-based detection infrastructure enhancement for automated ship recognition and 
behavior analysis,” Journal of Advanced Transportation, Vol. 2020, pp. 1–12, Jan. 2020, 
https://doi.org/10.1155/2020/7194342 

[11] X. Chen, Z. Li, Y. Yang, L. Qi, and R. Ke, “High-resolution vehicle trajectory extraction and denoising 
from aerial videos,” IEEE Transactions on Intelligent Transportation Systems, Vol. 22, No. 5, 
pp. 3190–3202, May 2021, https://doi.org/10.1109/tits.2020.3003782 

[12] N.-V. Ngo, Q.-C. Hsu, W.-L. Hsiao, and C.-J. Yang, “Development of a simple three-dimensional 
machine-vision measurement system for in-process mechanical parts,” Advances in Mechanical 
Engineering, Vol. 9, No. 10, p. 168781401771718, Oct. 2017, 
https://doi.org/10.1177/1687814017717183 



A TRAIN F-TR LOCK ANTI-LIFTING DETECTION METHOD BASED ON IMPROVED BP NEURAL NETWORK.  
JUN JIANG 

 JOURNAL OF MEASUREMENTS IN ENGINEERING. MARCH 2024, VOLUME 12, ISSUE 1 161 

[13] Y. D. Li, Z. B. Hao, and H. Lei, “Survey of convolutional neural network,” Journal of Computer 
Applications, Vol. 36, No. 9, pp. 2508–2515, 2016, https://doi.org/10.11772/j.issn.1001-
9081.2016.09.2508 

[14] W. Huang, D. A. Zhao, and X. Y. Liu, “Research on port container truck anti-lifting method based on 
machine version,” Software Guide, Vol. 18, No. 5, pp. 43–46, 2019. 

[15] Q. Huang, Y. Huang, Z. Zhang, Y. Zhang, W. Mi, and C. Mi, “Truck-lifting prevention system based 
on vision tracking for container-lifting operation,” Journal of Advanced Transportation, Vol. 2021, 
pp. 1–9, Dec. 2021, https://doi.org/10.1155/2021/9612480 

[16] P. Zhu, C. Lin, P. Wu, R. Fan, H. Zhang, and W. Pu, “Permeability Prediction of Tight Sandstone 
Reservoirs Using Improved BPNeural Network,” The Open Petroleum Engineering Journal, Vol. 8, 
No. 1, pp. 288–292, Aug. 2015, https://doi.org/10.2174/1874834101508010288 

[17] D. J. Chen et al., “Research on vehicle dynamic weighing system,” Automotive Technology, Vol. 6, 
pp. 9–11, 2008, https://doi.org/10.3969/j.issn.1000-3703.2008.06.003 

[18] W. Qin, G. Y. Xu, and G. Z. Yu, “Research on vehicle weighing system based on BP neural network,” 
Automotive Engineering, Vol. 39, No. 5, pp. 500–605, 2017, 
https://doi.org/10.19562/j.chinasae.qcgc.2017.05.018 

[19] X. X. Hao et al., “Vehicle dynamic weighing algorithm based on wavelet and BP neural network,” 
Instrument Technology and Sensor, Vol. 8, pp. 110–113, 2017. 

[20] N. S. Vyas and D. Satishkumar, “Artificial neural network design for fault identification in a rotor-
bearing system,” Mechanism and Machine Theory, Vol. 36, No. 2, pp. 157–175, Feb. 2001, 
https://doi.org/10.1016/s0094-114x(00)00034-3 

[21] C. Pany, U. K. Tripathy, and L. Misra, “Application of artificial neural network and autoregressive 
model in stream flow forecasting,” Journal of Indian Water Works Association, Vol. 33, No. 1,  
pp. 61–68, 2001. 

[22] A. Kosarac et al., “Thermal Behavior Modeling Based on BP Neural Network in Keras Framework for 
Motorized Machine Tool Spindles,” Materials, Vol. 15, No. 21, p. 7782, Nov. 2022, 
https://doi.org/10.3390/ma15217782 

[23] D. Sun, P. Chopra, J. Bhola, and R. Neware, “Computer communication network fault detection based 
on improved neural network algorithm,” Electrica, Vol. 22, No. 3, pp. 351–357, Jul. 2022, 
https://doi.org/10.54614/electrica.2022.21168 

[24] H. L. Chen and W. Peng, “Research on improved BP neural network in forecasting traffic accidents,” 
Journal of East China Normal University (Natural Science), No. 2, pp. 61–68, 2017, 
https://doi.org/10.3969/j.issn.1000-5641.2017.02.008 

[25] S. Ding, C. Su, and J. Yu, “An optimizing BP neural network algorithm based on genetic algorithm,” 
Artificial Intelligence Review, Vol. 36, No. 2, pp. 153–162, Aug. 2011, https://doi.org/10.1007/s10462-
011-9208-z 

[26] K. Cui and X. Jing, “Research on prediction model of geotechnical parameters based on BP neural 
network,” Neural Computing and Applications, Vol. 31, No. 12, pp. 8205–8215, Dec. 2019, 
https://doi.org/10.1007/s00521-018-3902-6 

[27] W. Liang et al., “Longitudinal control method of intelligent vehicles based on the improved BP neural 
network,” Automotive Engineering, Vol. 44, No. 8, pp. 1162–1172, 2022, 
https://doi.org/10.19562/j.chinasae.qcgc.2022.08.006 

[28] Y. J. Zhan, “Collaborative control method of fully mechanized mining equipment based on improved 
BP neural network,” Coal Technology, Vol. 41, No. 10, pp. 207–209, 2022, 
https://doi.org/10.13301/j.cnki.ct.2022.10.049 

[29] Z. G. Zhu and S. L. Tian, “Improvement of learning rate of feed forward neural network based on 
weight gradient,” Computer Systems and Applications, Vol. 27, No. 7, pp. 207–212, 2018, 
https://doi.org/10.15888/j.cnki.csa.006410 

 

Jun Jiang received Master degree in Institute of Logistics Science and Engineering from 
Shanghai Maritime University, Shanghai, China, in 2013. Now he is pursuing a Ph.D. 
degree at Shanghai Maritime University, researching in the field of Logistics Engineering 
and Management. 

 




