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Abstract. In the milling process of composite materials, the initial chatter frequency is not 
obvious and is easily swamped by the rest of the signals, making frequency monitoring difficult, 
so the study proposes a chatter frequency monitoring method based on frequency cancellation 
algorithms and wavelet packet decomposition. The results of the experiments shown that the 
frequency cancellation algorithm can successfully remove invalid signals, such as spindle rotation 
frequency and cutter tooth frequency, and only keep the necessary signals, at which point the 
chattering frequency may be observed at a frequency of roughly 1333 Hz. The influence of the 
frequency bands s5, s9, s10, s12, and s13 after de-frequency removal should be avoided because 
they all have a low energy share of roughly 23 %, 0.9 %, 5 %, 10 %, and 16 %, respectively, and 
are less sensitive to chatter. For milling edge depths of 0.5 mm, 2 mm, and 4 mm, the average 
chatter thresholds were around 3.27, 2.9, and 2.89, respectively. It was challenging to pinpoint the 
chatter of the system because the empirical modal decomposition observed an average chatter 
energy entropy of just 1.55 and found that its fluctuations at the milling edge depth junction were 
insignificant. On the other hand, the chattering could be plainly seen since the energy entropy 
experienced a substantial and dramatic fluctuation at the intersection of the milling edge depth 
when it was about 2.9, 2.6, and 2.5, respectively. The experimental findings demonstrated that the 
frequency cancellation technique and wavelet packet decomposition-based chattering frequency 
monitoring approach can precisely track the chattering state of the system. 
Keywords: milling, chatter, fast Fourier transform, frequency eliminate, wavelet packet 
decomposition, sensitive frequency bands. 

1. Introduction 

Higher standards for the various material qualities are imposed by the advancement of 
aeronautical technology. And composite materials, which are made of two or more different 
substances combined in various ways, overcome the flaws of a single material. They are frequently 
used in the production of solar cell wings and shells, large launch vehicle shells, aircraft wings, 
satellite antennas, engine shells, and structural components of spacecraft, among other things. It 
is extremely challenging to manufacture and especially prone to chattering because of the varied 
properties of the layers of material used in the machining process. Chattering can readily reduce 
the workpiece's quality by, for instance, increasing surface roughness and decreasing precision. 
Additionally, it causes the system to become unstable, which accelerates the deterioration of tool 
and machine life and raises production costs [1, 2]. Because of this, controlling and reducing 
chatter generation has become a significant challenge in the processing of composite materials 
today. The analysis of the system's stability using a dynamical model yields a stability leaflet 
diagram, from which the maximum milling depth and the key circumstances for system stability 
may be computed. This is one of the two primary ways to chatter monitoring. The alternative 
method is to monitor the chattering signal using empirical mode decomposition (EMD). But the 
initial frequency of chatter is not visible and is easily covered by the background noise, and other 
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frequency bands are not sensitive to chatter [3, 4]. As a result, chatter monitoring is not very 
accurate. There are instances of leakage and misjudgment, which together with the fact that the 
majority of existing research concentrate on a single signal further diminish the monitoring 
accuracy. The research suggests a chattering frequency monitoring technique based on the 
Frequency Elimination Algorithm (FEA) and Wavelet Packet Decomposition (WPD). Compared 
to the conventional filtering technique, this approach efficiently eliminates insignificant signals, 
extracts the flutter-sensitive frequency band, removes abnormal characteristic points, and 
establishes the flutter monitoring threshold. 

The study is broken into four parts: the first part gives a quick summary of the state-of-the-art 
in chatter monitoring and WPD research; the second part examines FEA and WPD; the third part 
examines FEA and WPD; and the fourth part examines FEA and WPD. The third part analyses 
the experimental data; and the fourth and final section provides a summary of the entire body of 
work. 

2. Related works 

Li Y. and his team propose an adaptive decision tree and variational mode decomposition 
based chatter identification method for the monitoring of chatter. The process uses a decision tree 
to calculate the chattering threshold after adaptive variational mode decomposition divides the 
original signal into many sub-signals. The results of the experiments demonstrated that the 
approach can accurately and successfully identify chatter [5]. Jin et al. proposed a stability 
prediction method based on a dynamics model. By creating a dynamics model of the thin-walled 
workpiece milling system and employing a numerical integration approach to produce the milling 
system's stability waveform diagram, the method determines the chattering frequency. The tested 
method's experimental results and the anticipated outcomes agree rather well [6]. Rahimi et al. 
have proposed a chatter monitoring method based on machine learning algorithms and physical 
models for the detection of milling vibrations. The method converts the vibration signal into a 
short-time spectrum and enhances the chattering signal by Kalman filtering. According to the 
experimental findings, the approach for chatter detection had a success rate of up to 98.9 % [7]. 
To solve the issue of how to automatically alter the chatter threshold, Stavropoulos P and others 
suggested a chatter detection system based on variational mode decomposition and support vector 
machines. The method decomposes the vibration signal to extract features in different 
simultaneous frequency domains and uses support vector machines to make predictions about 
system stability. The method was tested to achieve a classification accuracy of 93 % and a 
detection time of only 26.1 ms [8]. In order to quickly and correctly detect chatter, Gao and his 
team suggested a multi-sensor signal fusion-based chatter detection approach. The approach uses 
variable modal decomposition energy entropy, multi-scale power spectrum entropy, and multi-
scale displacement entropy to interpret the signals gathered by various sensors. The experimental 
findings demonstrated the method's accuracy in detecting the milling machining state [9]. 

As a time-frequency domain analysis method, WPD is widely used for processing various 
types of signals because it can describe the signal characteristics very accurately. To solve the 
issue of how to perform the denoising of noisy signals from automobiles, Liang L. et al. suggested 
a signal extraction approach based on WPD and mathematical morphological filters. According 
to experimental findings, the approach effectively removed interfering background noise from the 
signal and extracted the components of the tapping sound with a decent signal-to-noise ratio [10]. 
Wang and others have proposed a fault detection model based on WPD and BiCNN to address the 
problem of how to achieve fault detection in the presence of data imbalance. In order to counteract 
the negative effects of data scarcity, the model uses WPD to mine data across a variety of 
frequency domains. The model has been tested to have good classification performance in the 
presence of data imbalance [11]. Hossen and Qasim proposed a WPD and ANN based 
identification model for the problem of how to identify obstructive sleep apnoea. The model uses 
WPD to obtain and estimate the standard band of HRV signals and ANN to classify test subjects. 
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The experimental results showed that the model achieved 95 % accuracy in classifying negative 
normal subjects and mild OSA subjects, and 87.5 % accuracy in classifying mild, moderate and 
severe OSA subjects [12]. Fan X. B. and his team proposed a WPD-based analysis method to 
address the problem of how to analyse non-stationary signals; the method decomposes the original 
signal by WPD and reconstructed by WPD. The technique outperformed the competition in the 
analysis of non-stationary signals, according to experimental results [13]. For the fault detection 
issue of the mix production process, Chen Y. et al. suggested a fault detection model based on 
WPD and SVM. The model extracts features by wavelet basis functions and classifies faults by 
using SVM. The fault detection accuracy of the model was tested to be 4.33 % higher than that of 
PCA [14]. 

In summary, the research on chattering frequency monitoring models has been quite 
successful, but most of the methods are not effective in monitoring the frequency at the beginning 
of chattering because the frequency at the beginning of chattering is masked by the spindle rotation 
frequency, etc. To address this problem, a chattering frequency monitoring algorithm based on 
FEA and WPD is proposed to achieve accurate monitoring of chattering frequency. 

3. Frequency monitoring method for milling edge chatter in composites based on FEA and 
WPD algorithms 

In the field of aerospace manufacturing, the monitoring and suppression of milling edge chatter 
in composite materials has been a difficult research problem, especially since the milling edge 
processing process is often accompanied by changes in the signal spectrum and band energy ratio 
distribution, which exacerbates the monitoring difficulty. In order to realise the frequency 
monitoring of milling edge chatter, a frequency monitoring method based on FEA and WPD 
algorithms is proposed. 

3.1. FEA research 

Since the initial frequencies of the chatter are not obvious, and the frequency signal often 
contains spindle rotations and multipliers unrelated to the chatter, making it difficult to extract the 
relevant signal, the irrelevant signal must be removed. The traditional filters can often only remove 
a single frequency and cannot achieve the removal of multiple frequencies [15]. To solve the 
above problem, research proposed FEA based on FFT. FFT as a kind of discrete Fourier transform 
algorithm, its solve the traditional discrete Fourier algorithm of the computational shortcomings 
of the large amount. Compared with the traditional filtering method, this method can effectively 
remove irrelevant signals and extract the flutter sensitive frequency band, and eliminate the 
abnormal characteristic points and determine the flutter monitoring threshold. Now suppose there 
is a sequence, then the Fourier transform equation of the sequence is shown in Eq. (1): 

𝑋ሺ𝑘ሻ =  𝑥ଵሺ𝑟ሻ𝑊ேଶே ଶ⁄ ିଵ
ୀ + 𝑊ே  𝑥ଶሺ𝑟ሻ𝑊ேଶே ଶ⁄ ିଵ

ୀ =  𝑥ሺ𝑛ሻ𝑊ேୀୢୢ +  𝑥ሺ𝑛ሻ𝑊ேୀୣ୴ୣ୬ , (1)

where, 𝑥ሺ𝑛ሻ denotes the sequence; 𝑊ே denotes the rotation factor; 𝑁 denotes the length of the 
sequence; 𝑥ଵሺ𝑟ሻ and 𝑥ଶሺ𝑟ሻ denote the subsequence of length 𝑁 2⁄  divided by the parity of 𝑛. The 
equation for the subsequence and the rotation factor are given in Eq. (2): 

𝑊ேଶ = 𝑒ିଶగே ଶ = 𝑒ି ଶగே ଶ⁄  = 𝑊ே ଶ⁄ . (2)

Substitute the above equation into Eq. (1) to obtain Eq. (3): 
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𝑋ሺ𝑘ሻ =  𝑥ଵሺ𝑟ሻ𝑊ே ଶ⁄ே ଶ⁄ ିଵ
ୀ + 𝑊ே  𝑥ଶሺ𝑟ሻ𝑊ே ଶ⁄ே ଶ⁄ ିଵ

ୀ = 𝑋ଵሺ𝑘ሻ + 𝑊ே𝑋ଶሺ𝑘ሻ, 𝑘 = 0,1,⋯ ,𝑁 − 1, (3)

where, 𝑋ଵሺ𝑘ሻ and 𝑋ଶሺ𝑘ሻdenote 𝑁 2⁄  odd sequence points and even sequence points, respectively, 
both with period 𝑁 2⁄ ; 𝑊ேାே ଶ⁄ = −𝑊ே. Thus Eq. (3) can be rewritten as Eq. (4): 

൞𝑋ሺ𝑘 + 𝑁 2⁄ ሻ = 𝑋ଵሺ𝑘ሻ −𝑊ே𝑋ଶሺ𝑘ሻ, 𝑘 = 0,1,⋯ ,𝑁2 − 1,𝑋ሺ𝑘ሻ = 𝑋ଵሺ𝑘ሻ + 𝑊ே𝑋ଶሺ𝑘ሻ, 𝑘 = 0,1,⋯ ,𝑁2 − 1. (4)

Eq. (4) is known as the butterfly operation. When the sequence length is 8, the butterfly 
calculation flow is shown in Fig. 1. 
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Fig. 1. Butterfly calculation process for 8 points 

As can be seen in Fig. 1, the butterfly calculation of eight points is divided into three stages, 
which first perform the calculation of two points, before merging to four points and performing 
the calculation again. The computation time of this method is halved compared to the conventional 
discrete Fourier transform [16-17]. The system chatter will generate a non-periodic component 
during the machining operation of the machine tool, and this component will gradually approach 
the natural frequency of the machine tool. At the same time, the initial frequency amplitude is very 
small, so it is masked by the rotational frequency and difficult to detect, so the spindle rotational 
frequency and multiplication frequency must be eliminated by FEA. The equation for calculating 
the spectrum of the time series is shown in Eq. (5): 

⎩⎪⎨
⎪⎧𝑋ሺ𝑖ሻ = 𝑥ሺ𝑘ሻ𝑊ெெ

ୀଵ ,     𝑘 = 1,2,⋯ ,𝑀,
𝑊ெ = exp ൬−𝑗 2𝜋𝑀൰ ,  (5)

where, 𝑋ሺ𝑖ሻ denotes the spectrum obtained from the time series transformation; 𝑀 denotes the 
length of the spectrum, units in s; 𝑥ሺ𝑘ሻ denotes the time series. The equation for calculating the 
spindle rotation frequency and multiplication frequency is shown in Eq. (6): 

൝𝑓௭ = 𝑛௦60 ,𝑓ௗ = 𝑐𝑓௭, (6)
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where, 𝑓௭ indicates the spindle frequency, units in Hz; 𝑛௦ indicates the spindle speed, units in 
r/min; 𝑓ௗ indicates the multiplier frequency, units in Hz; 𝑐 indicates the initial value. The equation 
for calculating the spectrum considering the fluctuation of the transformation frequency is shown 
in Eq. (7): 𝑋തሺ𝑖ሻ = ൜0, 𝑐𝑓௭ − 𝑎 ≤ 𝑖 ≤ 𝑐𝑓௭ + 𝑎,𝑋ሺ𝑖ሻ, ሺ𝑐 − 1ሻ𝑓௭ + 𝑎 ≤ 𝑖 ≤ 𝑐𝑓௭ − 𝑎, (7)

where, 𝑎 denotes the floating constant and takes the value of 0.5, 𝑋തሺ𝑖ሻ represents the frequency 
spectrum after the interval amplitude of the frequency ሺ𝑓௭ − 𝑎, 𝑓௭ + 𝑎ሻ. The equation for 
calculating the time series after the inverse Fourier transform is given in Eq. (8): 

𝑥ሺ𝑘ሻ = 𝑋തሺ𝑖ሻ𝑊ெିெ
ୀଵ ,     𝑘 = 1,2,⋯ ,𝑀, (8)

where, 𝑥ሺ𝑘ሻ denotes the inverse Fourier transformed time series. The FEA process is shown in 
Fig. 2. 

 
Fig. 2. Flow of FEA 

As can be seen from Fig. 2, FEA will first transform the time series to obtain the spectrum; 
after obtaining the spectrum, remove the spindle transconversion and multiplication; then set the 
spectrum amplitude of frequency (𝑓௭ − 𝑎, 𝑓௭ + 𝑎) in the spectrum to 0, if 𝑐𝑓௭ < 𝑖 < 𝑁 2⁄ , then 
return to the second step; otherwise proceed to the next step to de-frequency the spectrum. 

3.2. Research on WPD-based SFB selection algorithm 

The signal spectrum is often very complex and it is difficult to extract the chatter characteristics 
accurately. Calculations are also complicated by the different sensitivities of different frequency 
bands. It is therefore necessary to accurately identify the chatter sensitivity bands in order to 
monitor the chatter frequency. The WPD equation and the band reconstruction equation are given 
in Eq. (9): 

⎩⎪⎨
⎪⎧𝑑ାଵ,ଶ =  𝑎ିଶ𝑑, ,𝑑ାଵ,ଶାଵ =  𝑏ିଶ𝑑, ,𝑑ାଵ, =  𝑎ଶି𝑑ାଵ,ଶ +  𝑏ଶି𝑑ାଵ,ଶାଵ , (9)
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where, 𝑑 denotes the WPD coefficient; 𝑎 denotes the high-pass filtering coefficient; 𝑏 denotes the 
low-pass filtering coefficient; 𝑛 denotes the number of decomposition layers; 𝑗 denotes the band 
node number; and 𝑘 denotes the number of bands. the WPD structure is shown in Fig. 3. 

 
Fig. 3. Structure of WPD 

As shown in Fig. 3, the WPD divides the signal into high frequency and low frequency 
components after signal acquisition. The signal is then divided again, and so on, until the 
decomposition is complete. The frequency case of the WPD decomposed signal is ordered by the 
Gray code law [10, 19, 20]. In the system frequency band energy ratio, energy entropy as its 
characteristic quantity is often used to reflect the change of the frequency band energy ratio. The 
energy entropy calculation equation is shown in Eq. (10): 

⎩⎪⎨
⎪⎧𝑃 = 𝐸𝐸 ,
𝐻 = −𝑃logଶ|𝑃|ே

ୀଵ , (10)

where, 𝑃 denotes the normalised 𝑖th band energy ratio; 𝐸 denotes the 𝑖th band energy, units in 
mV.s; 𝐸 denotes the energy of all bands; 𝐻 denotes the energy entropy; and 𝑁 denotes the number 
of bands. The band energy ratio determines the sensitivity of the energy entropy value to 
chattering, and the correlation coefficient and the fluctuation variance of the band energy ratio can 
be used to select the frequency bands with stronger sensitivity to chattering, so as to improve the 
performance of the energy entropy in identifying the initial frequency of chattering. The 
correlation coefficient is given in Eq. (11): 

⎩⎪⎪⎨
⎪⎪⎧𝜌(𝑠 , 𝑆) = cov(𝑠 , 𝑆)ඥ𝐷(𝑠)𝐷(𝑆) ,     𝑖 = 1,2,⋯ 2,
𝐷(𝑠) = ∑ (𝑠(𝑡) − �̅�)ଶ௧்ୀଵ 𝑇 ,𝐷(𝑆) = ∑ (𝑆(𝑡) − 𝑆̅)ଶ௧்ୀ 𝑇 ,

 (11)

where, 𝜌(𝑠 , 𝑆) denotes the correlation coefficient; 𝑠 denotes the 𝑖th band reconstruction signal; 𝑆 denotes the original signal; 𝐷(𝑆) denotes the covariance of the raw signal; cov(𝑠 , 𝑆) denotes 
the covariance between the band reconstruction signal and the original signal; 𝑛 denotes the 
number of WPD layers; �̅� denotes the mean of the band reconstruction signal; 𝑆 denotes the mean 
of the original signal; 𝐷(𝑠) denotes the variance of the band reconstruction signal; 𝑇 denotes the 
sampling period, units in s; 𝑠(𝑡) denotes the covariance of the band reconstruction signal within 
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the 𝑡 moment; 𝑆(𝑡) denotes the original signal within the EE moment E denotes the original signal 
at the time of 𝑡. When |𝜌(𝑠 , 𝑆)| ≤ 0.1, the band reconstruction signal is weakly correlated with 
the original signal; when 0.1 < 𝜌(𝑠 , 𝑆) ≤ 0.5, the band reconstruction signal is correlated with 
the original signal; when 0.5 < 𝜌(𝑠 , 𝑆) ≤ 1, the band reconstruction signal is strongly correlated 
with the original signal. The stronger the correlation between the band and the original signal and 
the more accurate information in the signal, or the opposite, the more interfering signals, the larger 
the correlation coefficient between the band reconstructed signal and the original signal. In the 
steady state, the band energy ratio fluctuations during the sampling period are normally 
distributed. When dither occurs, the band energy fluctuates dramatically and gradually converges 
to the intrinsic frequency, so the sensitivity of the reconstructed signal to dither anomalies can be 
reflected by the band energy ratio fluctuation variance. The band energy ratio fluctuation variance 
is calculated by Eq. (12): 

𝜎(𝑡) = ∑ (𝑃(𝑡) − 𝜇)ଶ௧்ୀ 𝑇 ,     𝑖 = 1,2,⋯ ,𝑁, (12)

where, 𝜎(𝑡)ଶ denotes the fluctuating square of the band energy ratio; 𝜇 denotes the average value 
of the energy ratio of the first band; 𝑃(𝑡) denotes the energy ratio of the 𝑖 th band at the 𝑡 moment. 
The greater the difference between the band energy ratio fluctuation square, the more sensitive the 
band is to chattering, otherwise it means the band is not sensitive to chattering. If the energy ratio 
is greater than 0.13, the frequency band has high sensitivity, whereas if the ratio is less than this 
threshold, the sensitivity is low. Eliminating the interference of the less sensitive bands based on 
the band's correlation with the original signal and the energy ratio fluctuation is important to 
increase the sensitivity of the characteristic quantity to the initial frequency monitoring of dither. 
The conditions to be satisfied for the dither SFB are shown in Eq. (13): 

ቊ𝜌 > ሾ𝜌ሿ,ሼ𝜎ଶሽ = ൛𝜎ଵଶ,𝜎ଶଶ,⋯ ,𝜎ଶ 𝑗 = 1,2,⋯ ,𝑁ൟ, (13)

where 𝜎ଶ stands for the energy ratio fluctuation variance in the 𝑗th band. Eq. (14), which 
describes the 𝑁 formula: 𝑁 = 𝑟𝑜𝑢𝑛𝑑(𝑎 ⋅ 𝑁), (14)

where, 𝑁 denotes the number of bands after WPD; “round” denotes the rounding function in 
Matlab; and 𝑎 denotes the sensitivity factor. The SFB logic is shown in Fig. 4. 

 
Fig. 4. Sensitive frequency band logic 

As shown in Fig. 4, the band is SFB when both conditions described in Eq. (13) are satisfied, 
and the equation is expressed in Eq. (15): 
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𝑠 = 𝐴 ∪ 𝐵, (15)

where, 𝐴 denotes the band that satisfies 𝜌 ≤ ሾ𝜌ሿ; 𝐵 denotes the band where the variance of the 
energy fluctuation ratio lies after 𝑁. 
4. Experimental results and analysis 

Experiments on FEA and WPD are conducted in order to validate the efficacy of the chattering 
frequency monitoring approach suggested in the study. In the validation experiments on FEA, the 
performance of its frequency cancellation will be tested by synthesising the signal. In the 
validation experiments for WPD, the performance of its frequency monitoring will be verified 
using signals acquired during machining and compared with EMD. The material size used for 
machining is 300 mm×140 mm×6.5 mm and the tool diameter is 8 mm; and the milling force 
signal in the feed direction at different milling edge depths is measured using a force gauge, the 
meter is Kistler 9257B; the sensor’s sample frequency is set at 10 kHz. The feed rate is 120 mm/s, 
and the spindle speed is 4000 r/min. The experimental processing apparatus is shown in Fig. 5. 

Main shaft

Hilt

PCD tool

Dynamometer

Workpiece
 

Fig. 5. Experimental processing device 

The relevant data including the milling edge depth of the experiment are shown in Table 1. 

Table 1. Experimental parameters of the milling edges 
Milling length / 

mm 
Spindle speed 

(r/min) 
Feed speed 

(mm/s) 
Cutting depth / 

mm 
Cutting width / 

mm 
0-30 

4000 120 

0.5 

4 30-60 2.0 
60-90 4.0 
90-140 6.5 

Fig. 6 displays the initial synthesised signal as well as the signal following de-frequencying. 
The original signal, which has an amplitude maximum at 10, is more chaotic and without any 

discernible pattern, as shown in Fig. 6(a). As shown in Fig. 6(b), the signal essentially exhibits 
periodic changes following the FEA de-frequency, with the exception of the initial phase of the 
signal, which exhibits a subtle Gibbs phenomenon. In addition, the maximum amplitude value 
also decreases from 10 to about 5. This shows that the FEA has more completely restored the 
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signal to be preserved. The signal spectrum and its de-frequency results are shown in Fig. 7. 
Fig. 7(a) shows that the original signal has the following frequencies: 6, 18, 40, 80, 120, 160, 

and 200 Hz, where 40, 80, 120, 160, and 200 Hz all have an amplitude of roughly 1. The 
de-frequency signal only has two frequencies, 6 Hz and 18 Hz, which are represented by 
amplitudes of about 2.9 and 2, respectively, as can be seen in Fig. 7(b). The above results show 
that the FEA algorithm has excellent frequency cancellation capability and can accurately remove 
a certain fundamental frequency and its multiples. The processed signals and their de-frequency 
results are shown in Fig. 8. 

 
a) Raw synthetic signal 

 
b) Signal after frequency reduction 

Fig. 6. Original synthesized signal and signal after frequency reduction 
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a) The spectrum of the original synthesized signal 

 
b) Signal spectrum after frequency reduction 

Fig. 7. Signal spectrum and its frequency reduction results 

Figure 8(a) illustrates how the milling force increases incrementally as the milling depth 
increases. A milling depth of 0.5 mm results in a force of about 10 N; a depth of 2 mm results in 
a force of about 51 N; a depth of 4 mm results in a force of about 120 N; and a depth of 6.5 mm 
results in a force of about 162 N. As can be seen from Fig. 8(b), the spindle rotation frequency 
and the DC component are more prominent in the signal spectrum of the original signal and are 
concentrated mainly in the low frequency. The spindle frequency is about 66.7 Hz and the 
corresponding amplitude is about 12.7, while the tooth frequency of the cutter tooth is about 
133.4 Hz and the corresponding amplitude is about 32.8. The above signals mask the chattering 
signal, which makes it difficult to be detected, so the frequency cancellation of the original signal 
is needed. In Fig. 8(c), the signal after de-frequency fluctuates more at the junction where the 
milling edge depth changes. For example, when the tool is located at the junction of 0.5 mm-2 mm, 
the milling force first rises rapidly to about 20 N and then drops sharply to about 10 N. This is 
because the feed to the tool teeth increases suddenly at this point, which breaks the original 
equilibrium and intensifies the fluctuation of the milling force; therefore, the system is prone to 
chattering phenomenon. As can be seen from Fig. 8(d), the chattering frequency is very easy to 
observe in the signal spectrum after the de-frequency, and the chattering frequency is about 
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1333 Hz at this time. The WPD is required to estimate the dither signal's production time because, 
despite the fact that the aforementioned approach can identify the dither signal, doing so is 
challenging. The correlation coefficients, energy ratio variance and sensitivity bands for each 
frequency band after de-frequency are shown in Fig. 9. 

 
a) Original signal 
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d) Signal spectrum after frequency reduction 

Fig. 8. Processing signal and its frequency reduction results 
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Fig. 9. Correlation coefficient, energy ratio variance, and sensitivity band  

of each frequency band after frequency reduction 

From Fig. 9(a), the correlation coefficients of frequency bands s1-s16 after de-frequency are 
about 0.41, 0.28, 0.38, 0.35, 0.13, 0.25, 0.35, 0.41, 0.08, 0.08, 0.13, 0.1, 0.11, 0.14, 0.14 and 0.17 
respectively; the energy ratio variances are about 12.6, 13.8, The correlation coefficients of s9, 
s10, s12 and s13 are small, and the energy ratio variances of s5, s9, s10, s11, s12 and s13 are in 
the latter 31.25% of all bands, all of which are insensitive to chattering. Fig. 9(b) shows that at a 
time of 37 s, the energy ratio of band s2 is at its maximum point, around 49%, while the energy 
ratios of bands s5, s9, s10, s12, and s13 are all at their lowest points, respectively, at 23 %, 0.9 %, 
5 %, 10 %, and 16 %, all of which exhibit a modest sensitivity to dither. It can be seen that if the 
sensitivity of chatter monitoring is to be improved, the above-mentioned frequency bands should 
not be taken into account when calculating the energy entropy. The energy entropy for different 
milling edge depths is shown in Fig. 10. 
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As can be seen from Fig. 10(a), when the milling depth is 0.5 mm, the energy entropy fluctuates 
at 15,000 and 80,000 points, where the energy entropy is 3.3 and 3.1 respectively; at around 
70,000 points, the energy entropy reaches its maximum, at around 3.7. The energy entropy reaches 
its lowest and maximum peaks at 40,000 and 70,000 points, respectively, when the milling edge 
depth is 2 mm, as shown in Fig. 10(b). The corresponding energy entropies are 2.7 and 
3.5 respectively and fluctuate rapidly at 40,000 points. The energy entropy fluctuates more at 
41000 and 70000 points with corresponding energy entropies of 2.6 and 3.6 as shown in Fig. 10(c) 
when the milling depth is 4 mm. This is due to the fact that the actual machining process is 
extremely contingent and therefore the energy entropy does not exactly follow a normal 
distribution. The chatter thresholds for different milling depths are shown in Fig. 11. 
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c) Milling depth 4 mm 

Fig. 10. Energy entropy of different milling depths 

 
Fig. 11. Flutter thresholds for different milling depths 

As can be seen from Fig. 10, the chatter thresholds for the three experiments were 3.33, 3.24 
and 3.24 for a milling depth of 0.5 mm, with an average threshold of about 3.27; for a milling 
depth of 2 mm, the chatter thresholds were 2.81, 2.95 and 2.93 for the three experiments, with an 
average threshold of 2.9; for a milling depth of 4 mm, the chatter thresholds were 3.03, 2.89 and 
2.75 for the three experiments, with an average threshold of about 2.89. The above results show 
that the chatter threshold decreases as the milling depth increases. This is as a result of the system's 
instability increasing with increasing milling depth. The energy entropy values at the junction of 
the milling edge depth after de-frequency are shown in Fig. 12. 

Fig. 12 shows that the energy entropy of the original signal fluctuates strongly at the 
intersection of the milling depths of 0.5 mm, 2 mm and 4 mm, where the energy entropy is about 
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3 and 2.4 respectively. However, at the intersection of the milling depths of 4 mm and 6 mm, the 
fluctuation is not obvious and it is difficult to identify the abnormal signal; the average energy 
entropy is about 1.05. The average energy entropy of the signal after de-frequencying is about 3.2, 
and at the junction of the milling depths, the energy entropy is about 2.8, 2.6 and 2.65 respectively, 
which are lower than the respective dither thresholds and can obviously detect the abnormal signal. 
The energy entropy of WPD and EMD is shown in Fig. 13. 
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Fig. 12. Energy entropy value at the junction of milling depth after frequency reduction 
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Fig. 13. Characteristics of flutter signals for WPD and EMD 

Fig. 13 displays that the energy entropy of the chattering signal produced by the EMD has an 
average value of approximately 1.55. However, its variation at the milling edge depth junction is 
not immediately apparent. This lack of clarity makes it difficult to identify system chattering. The 
insensitivity of the EMS to chattering frequency changes at the initial stage is the primary cause 
of this issue. The energy entropy of the WPD varies substantially and distinctly at the junction of 
the milling edge depth for energy entropy levels around 2.9, 2.6 and 2.5, respectively. This is when 
the chattering phenomenon becomes clearly detectable, demonstrating the WPD’s increased 
sensitivity to chatter frequency monitoring. 

5. Conclusions 

Due to the variance in milling edge depth, the system is vulnerable to chattering throughout 
the milling operation. The paper suggests a WPD-based chatter frequency monitoring technique 
to accomplish reliable chatter signal frequency monitoring. The process uses WPD to track the 
chatter frequency and FEA to filter out extraneous signals from the original machining signal. 
Separate tests of the FEA and WPD revealed that the signal only contained two frequencies, 6 Hz 
and 18 Hz, as opposed to the original signal's de-frequencying, which eliminated the undesirable 
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signal. The original machining signal's spindle rotation frequency and DC component can obscure 
the dither frequency, making it challenging to detect, but the de-frequencyed machining signal 
swings more at the point where the milling edge depth changes. For instance, the milling force 
increased quickly to about 20 N and then dramatically decreased to about 10 N when the tool was 
at the 0.5 mm-2 mm junction. The energy ratio variances for s5, s9, s10, s11, s12, and s13 were 
in the bottom 31.25 % of all bands. The correlation coefficients for s9, s10, s12, and s13 in the 
de-frequency band were minimal, at 0.08, 0.08, 0.1, and 0.11 correspondingly. The influence of 
the aforementioned bands should be avoided while computing the energy entropy because they 
are all insensitive to chattering. At the intersection of the milling edge depth, where the energy 
entropy was around 2.8, 2.6, and 2.65, respectively, the de-frequency signals exhibit abrupt 
variations that were easily distinguishable from normal signals since they are all below the 
corresponding dither thresholds. Contrarily, the energy entropy of the EMD chatter signal 
averaged around 1.55, but its variation at the intersection of the milling edge depth was not 
noticeable, making it challenging to detect the chatter of the system. The aforementioned findings 
demonstrated that the WPD and FEA-based chatter monitoring techniques are more sensitive. 
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