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Abstract. Structural health monitoring plays a crucial role in ensuring the integrity and safety of 
engineering structures such as steel beams. This research paper presents a comprehensive 
methodology for detecting transverse cracks in beams with a constant section and any boundary 
conditions. The proposed approach utilizes the normalized squared modal curvature of the beam, 
the damage severity, and the natural frequency of the undamaged beam. By analyzing the natural 
frequencies of both the undamaged and damaged states, Relative Frequency Shift (RFS) values 
are obtained. Subsequently, the Damage Location Coefficients (DLC) are calculated by 
normalizing the RFS values. These DLC values are then employed to establish a comprehensive 
database of known damage signatures, enabling the training of an artificial neural network (ANN) 
in MATLAB. The trained ANN can predict the locations of damages for new scenarios by utilizing 
DLC values obtained from measurements. To validate the effectiveness of the ANN, extensive 
simulations using Finite Element Method (FEM) and experimental measurements are conducted 
on a steel cantilever beam. The results demonstrate the ANN’s capability to accurately predict the 
locations of transverse cracks, showcasing its potential as a reliable tool for structural health 
monitoring of steel beams. 
Keywords: structural health monitoring, transverse cracks, steel beams, natural frequencies, 
relative frequency shift, damage location coefficients, artificial neural networks. 

1. Introduction 

Steel beams are widely used in various structural applications, and their integrity is of vital 
importance to ensure the safety and reliability of engineered systems. Transverse cracks can 
significantly compromise the structural performance of steel beams, leading to potential 
catastrophic failures if left undetected. Therefore, the development of effective techniques for 
early detection and localization of transverse cracks is crucial for structural health monitoring and 
maintenance practices [1]. Numerous methods have been proposed for crack detection in steel 
structures, including visual inspection, ultrasonic testing, magnetic particle inspection, and 
vibration-based techniques [2]. Among these, vibration-based approaches have gained 
considerable attention due to their non-destructive nature and ability to detect incipient cracks [3]. 

In recent years, the use of measured natural frequencies and modal parameters has emerged as 
a promising approach for crack detection in steel beams [4]. Numerous researchers [4, 5] have 
investigated the relationship between crack-induced changes in modal parameters and have 
demonstrated that changes in the natural frequencies of a beam can be indicative of crack presence 
and location. 

One notable algorithm developed for calculating the natural frequencies of beams affected by 
transverse cracks is based on the normalized squared modal curvature, damage severity, and the 
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undamaged natural frequency of the beam [5]. This algorithm allows for accurate determination 
of the damage severity and location along the beam. However, the challenge lies in utilizing these 
calculated natural frequencies to effectively detect and locate cracks in real-world scenarios. To 
address this, researchers have proposed the use of the Relative Frequency Shift (RFS) values, 
obtained by comparing the natural frequencies of the undamaged and damaged states [6, 7]. The 
RFS values can be further normalized to obtain Damage Location Coefficients (DLC), which 
serve as signatures for different crack scenarios. To harness the full potential of the DLC values 
and facilitate practical crack detection, this research paper proposes the utilization of an artificial 
neural network (ANN) [8]. The ANN is trained using a comprehensive database of known damage 
signatures created from DLC values, enabling accurate prediction of the position of cracks for 
new damage scenarios. The effectiveness of the ANN is evaluated through both FEM simulations 
and experimental measurements performed on a steel cantilever beam [8, 9]. 

2. Generating the damage scenarios 

In this section, we present a mathematical relation that can be employed to determine the RFS 
values of a beam with any boundary condition, by using the required squared normalized modal 
curvature ൣ𝜙′′തതതത(𝑥)൧ଶ and the damage severity 𝛾(𝑎) [10, 11]. This facilitates the development of a 
database that establishes a connection between the position of the crack and the decrease in natural 
frequencies of bending vibration modes. The mathematical relation is: 𝑓ି(𝑥,𝑎) = 𝑓ି ቄ1 − 𝛾(𝑎)ൣ𝜙ᇱᇱതതതത(𝑥)൧ଶቅ. (1)

In this context, we represent the position of the crack as 𝑥, the depth of the crack as 𝑎, and 𝑖 
represents the mode number. By using Eq. (1), we can derive the relative frequency shift (RFS) 
values, which refer to the normalized decrease in frequency caused by a crack: 

Δ𝑓̅ି(𝑥,𝑎) = 𝑓ି − 𝑓ି(𝑥,𝑎)𝑓ି = 𝛾(𝑎)ൣ𝜙పሶᇱᇱതതതത(𝑥)൧ଶ. (2)

The crack severity is evaluated using an energy-based approach, which states that a beam with 
a crack will have a reduced energy storage capacity compared to a similar crack-free beam [8]. 
Additionally, the cracked beam will experience greater deformation when subjected to a force [9]. 
Therefore, we can quantify the severity by utilizing a mathematical relationship [10]: 

𝛾(𝑎) = ඥ𝛿(𝑎) −ඥ𝛿ඥ𝛿(𝑎) , (3)

where, we used the notation 𝛿 to represent the deflection of the healthy beam and 𝛿 to represent 
the deflection of a beam with a crack of depth 𝑎. Afterward, Eq. (4) can be employed for obtaining 
the DLC values for any crack position by dividing all RFS by the maximum value of the series, 
thus removing the effect of the severity: 

𝐷𝐿𝐶(𝑥) = 𝛾(𝑎)ൣ𝜙పሶᇱᇱതതതത(𝑥)൧ଶmax ቄ𝛾(𝑎)ൣ𝜙ଵᇱᇱതതതത(𝑥)൧ଶ … 𝛾(𝑎)ሾ𝜙ᇱᇱതതതത(𝑥)ሿଶቅ = ൣ𝜙పሶᇱᇱതതതത(𝑥)൧ଶmax ቄൣ𝜙ଵᇱᇱതതതത(𝑥)൧ଶ. . . ሾ𝜙ᇱᇱതതതത(𝑥)ሿଶቅ. (4)

By using the described approach, one can easily create a database containing the analytically 
contrived DLC values and because the effect of the damage severity is reduced, the DLC values 
will be repeated several times because they remain similar to other values for every specific 
damage location, thus assuring a better training of the ANN.  
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3. Training a feedforward ANN with backpropagation 

In this section, the development of a feedforward Artificial Neural Network (ANN) with 
backpropagation using the calculated DLC values for several scenarios of transverse open cracks 
with different depths is presented. The ANN serves as a predictive tool to accurately determine 
the position of cracks in a steel cantilever beam with the dimensions presented in Fig. 1. The 
damage scenario database required for training the ANN is calculated by removing the transverse 
crack with a step of 2 mm and by considering the severity values 𝛾(𝑎) starting from 10 % and 
reaching 36 % relative to the beam’s thickness. The considered severity values are shown in 
Table 1. 

Table 1. Considered severity values 
Severity 𝛾(𝑎) Crack depth 𝑎 [mm] Severity 𝛾(𝑎) Crack depth 𝑎 [mm] 
0.000866543 0.5 0.005123933 1.2 
0.001191134 0.6 0.007104848 1.4 
0.002140983 0.8 0.009516999 1.6 
0.003345971 1 0.012434481 2 

 
Fig. 1. Main dimensions of the cantilever beam 

To develop the ANN, a large database of known damage signatures is created by analytically 
generating different crack scenarios considering the DLC values for the first six transverse 
vibration modes of a steel cantilever beam. These scenarios involve the consideration of transverse 
cracks at various positions 𝑥 and depths 𝑎 along the beam. The corresponding DLC values for 
each damage scenario are calculated using the previously described methodology. The ANN is 
trained using this database, where the DLC values serve as the input and the corresponding crack 
positions as the target output. The feedforward ANN architecture is chosen due to its simplicity 
and effectiveness in learning complex patterns and relationships. The ANN consists of an input 
layer, two hidden layers of 30 neurons each, and an output layer as shown in Fig. 2.  

 
Fig. 2. The structure of the ANN 

The number of nodes in the input layer of the artificial neural network (ANN) is determined 
based on the DLC values obtained from the measurements. The training process of the ANN 
involves the application of the backpropagation algorithm, which encompasses two primary 
phases: forward propagation and backward propagation. During the forward propagation phase, 
the input DLC values are introduced into the ANN, and the neurons' weighted sums and 
activations are computed for each layer. This computation continues until the output layer is 
reached, resulting in the prediction of the crack position. Once the predicted crack position is 
obtained, it is compared to the actual crack position to determine the error. In the subsequent 
backward propagation phase, the weights and biases of the network’s neurons are adjusted to 
minimize this error. During the training phase, the performance of the ANN is continuously 
evaluated using validation data that is separate from the training dataset as 70 % for training, 15 % 
for validation, and 15 % for testing. This helps prevent overfitting and ensures the generalization 
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of the network to new, unseen damage scenarios. Once the training process is completed, the ANN 
is capable of accurately predicting the position of cracks for new damage scenarios. These new 
scenarios can be obtained by inserting DLC values from measurements into the trained ANN. The 
network takes these DLC values as input and generates the predicted crack position as the output. 

4. Testing the developed ANN 

By utilizing FEM simulations and experimental measurements on the steel cantilever beam, 
the performance and accuracy of the ANN can be assessed. This evaluation provides insights into 
the reliability and effectiveness of the developed ANN in detecting and localizing transverse 
cracks in steel beams. 

The FEM modal simulations are performed in ANSYS. The process of defining the FEM 
analysis starts with creating the geometry according to the specified dimensions in Fig. 1. After 
defining the geometry, the necessary constraints are applied to simulate a cantilever beam by 
completely fixing one end of the beam to represent rigid fixation while leaving the other end free. 

Next, the material is assigned to the beam, which in this study is Structural Steel, having the 
parameters 𝐸 = 210000 MPa and 𝜌 = 7850 kg/m3.  

Once the geometry, constraints, and material properties are set, the mesh is generated by using 
hexahedral elements of 2 mm maximum edge size, and the simulations are performed to extract 
the transverse vibration natural frequencies [12]. 

To simulate the presence of transverse cracks, the beam geometry is modified by cutting 
material with a specified width to represent the crack. The crack depth can be varied to simulate 
different levels of damage. Modal simulations are then conducted for the damaged beam 
configurations to obtain the natural frequencies in the presence of the crack [13]. 

After obtaining the natural frequencies for both the intact and damaged states, the Damage 
Location Coefficients (DLC) are calculated using the previously described methodology. These 
DLC values are then introduced into the trained ANN to predict the position of cracks. The 
accuracy of the ANN predictions can be evaluated by comparing them with the actual crack 
positions and assessing the performance of the network in detecting and localizing transverse 
cracks in the steel beam. 

The defined FEM scenarios and DLC values which represent the input data are presented in 
Table 2. 

Table 2. Considered FEM damage scenarios 
Target Input DLC 

Damage 
location [mm] 

Damage 
depth [mm] Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

10 1 1 0.928371 0.870600 0.809829 0.750017 0.696220 
55 1 1 0.635838 0.386356 0.196689 0.072116 0.015072 
125 1 1 0.250022 0.017397 0.110020 0.364902 0.581511 
363 1 0.614741 0.589864 0.809845 0.025322 1 0.596311 
489 1 0.258190 1 0.023941 0.985002 0.035263 0.954652 
604 1 0.122845 0.948614 0.612107 0.184099 1 0.062169 
806 1 0.019223 0.158862 0.619890 1 0.833998 0.290839 
870 1 0.014165 0.049472 0.223409 0.533812 0.846319 1 
10 0.4 1 0.926822 0.894199 0.828445 0.759512 0.713162 
55 1.6 1 0.633811 0.380316 0.190113 0.068483 0.010626 
125 1.6 1 0.244426 0.008748 0.103481 0.362654 0.577921 
363 1.6 0.601884 0.586747 0.800737 0.013022 1 0.585798 
489 1.6 0.254437 1 0.010733 0.978212 0.029111 0.946661 
604 0.4 0.158731 0.964829 0.689273 0.262632 1 0.127196 
806 1.6 0.009289 0.152873 0.622442 1 0.826174 0.282909 
870 0.4 0.077283 0.106428 0.297039 0.578020 0.860721 1 
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It can be observed from Table 2 that for different damage depths, even if the crack location is 
the same the DLC values have a small similarity, but because of the simulation and meshing errors 
the DLC are not identical, making it harder to detect the damage location, thus simulating the use 
of noisy data. 

In our previous research [8], we performed measurements on a real cantilever steel beam with 
the same dimensions as shown in Fig. 1. The beam was fixed in a vise to ensure stability during 
measurement. To determine the beam’s natural frequency, we employed an excitation method 
using a loudspeaker. The loudspeaker was positioned near the beam and generated a controlled 
vibration at the required frequency for every mode of vibration, that excited the beam into 
oscillation. 

To capture the response of the beam, we used a piezoelectric sensor. The sensor was placed at 
the free end of the beam to measure the acceleration data. The piezoelectric sensor converted the 
physical vibrations into electrical signals, which were then transferred through an interface to a 
computer for further analysis.  

We utilized LabVIEW software to process the acquired signals and enhance their accurate 
readability. LabVIEW provided a user-friendly interface that allowed us to analyze and 
manipulate the captured data. We implemented signal processing techniques, such as filtering and 
spectral analysis, to extract the relevant information related to the beam's natural frequencies. 
Furthermore, to complement the capabilities of LabVIEW and enhance the accuracy of the 
analysis, we employed previously developed software in Python [8, 9]. This custom software, 
designed specifically for our research purposes, implemented advanced algorithms and statistical 
methods to further process the data and extract precise measurements of the natural frequencies. 
By combining the capabilities of LabVIEW and our custom Python software, we were able to 
effectively analyze and interpret the measured acceleration data to determine the natural 
frequencies of the cantilever steel beam. The experimental damage scenarios and DLC values 
which represent the target and input data are presented in Table 3. 

Table 3. Considered experimental damage scenarios. 
Target Input DLC 

Damage 
location [mm] 

Damage 
depth [mm] Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

310 0.8 0.631578947 0.045455 0.434783 0.831316 0.631578947 0.045455 
587 1.2 0.368421053 1 0.608696 0.148148 0.368421053 1 
395 1.2 0.947368421 0.454545 0.565217 0.762963 0.947368421 0.454545 
795 2 0.263157895 0.340909 0.130435 1 0.263157895 0.340909 

5. Obtained results 

The obtained simulation values and measurements provided valuable input for our research 
and allowed us to validate our proposed methods for crack detection and localization using 
vibration-based techniques. 

Table 4. Obtained results for the FEM damage scenarios. 

Damage 
location [mm] 

Damage depth 
[mm] 

Predicted values Damage 
location [mm] 

Damage depth 
[mm] 

Predicted values 
Location 

[mm] 
Error 
[%] 

Location 
[mm] 

Error 
[%] 

10 1 10.3 0.03 % 10 0.4 9.9 0.01 
55 1 53.9 0.11 % 55 1.6 54.5 0.05 

125 1 118.2 0.68 % 125 1.6 121.1 0.39 
363 1 350.5 1.25 % 363 1.6 357.5 0.55 
489 1 486.5 0.25 % 489 1.6 489.9 0.09 
604 1 594.2 0.98 % 604 0.4 598.9 0.51 
806 1 799.2 0.68 % 806 1.6 803 0.30 
870 1 869.5 0.05 % 870 0.4 870 0.00 
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The results obtained for the FEM scenarios are presented in Table 4 and the results obtained 
for the experimental scenarios are presented in Table 5. 

Table 5. Obtained results for the experimental damage scenarios 

Damage 
location [mm] 

Damage depth 
[mm] 

Predicted values Damage 
location [mm] 

Damage depth 
[mm] 

Predicted values 
Location 

[mm] 
Error 
[%] 

Location 
[mm] 

Error 
[%] 

310 0.8 285.9 2.41 395 1.2 372.1 2.29 
587 1.2 557.5 2.95 795 2 799.5 0.45 

6. Conclusions 

This research paper presented a comprehensive approach for detecting and localizing 
transverse cracks in steel beams using natural frequencies. The developed algorithm, based on 
normalized squared modal curvature, damage severity, and undamaged natural frequency, are 
used for calculating the Damage Location Coefficients (DLC) for various damage scenarios. 
These DLC values were then used to train an artificial neural network (ANN) capable of predicting 
the position of cracks. 

The results obtained from Finite Element Method (FEM) simulations demonstrated the 
accuracy of the proposed approach, with a maximum error of 1.25 % in localizing damages. The 
ANN successfully predicted the crack positions for new damage scenarios based on DLC values, 
indicating its capability to generalize and provide accurate predictions. 

In the approach, when considering laboratory experiments with real cantilever steel beams, 
slightly larger errors were observed, but within acceptable limits. The maximum error in localizing 
damages for the measured laboratory experiments did not exceed 2.95 %.  

Nonetheless, the overall performance of the approach, as evidenced by the FEM simulations 
and laboratory experiments, highlights its potential for practical implementation in structural 
health monitoring systems. 
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