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Abstract. In order to solve the dependence of convolutional neural networks (CNN) on large 
samples of training data, an intelligent fault diagnosis method based on spectral kurtosis (SK) and 
attention mechanism is proposed. Firstly, the SK algorithm is used to obtain two-dimensional fast 
kurtosis graphs from vibration signals, and the two-dimensional fast spectral kurtosis graphs are 
converted into one-dimensional kurtosis time-domain samples, which are used as the input of 
CNN. Then the channel attention module (CAM) is added to CNN, and the weight is increased in 
the channel domain to eliminate the interference of invalid features. The accuracy of fault 
identification can reach 99.8 % by applying the proposed method on the fault diagnosis experiment 
of rolling bearings. Compared with the traditional deep learning (DL) method, the proposed 
method not only has higher accuracy, but also has lower dependence on the number of samples.  
Keywords: rolling bearing, spectral kurtosis, channel attention mechanism, CNN, small samples. 

1. Introduction 

Because of the rolling bearing’s long-term operation and poor working environment, it is easy 
to damage its internal structure, which leads to equipment failure and causes economic losses and 
even casualties [1-2]. Therefore, reliable fault diagnosis technology becomes the key to real-time 
detection of equipment health status. 

In the data mining algorithm, CNN has been used widely because of its powerful local feature 
learning ability and flexible structure, and successfully applied in the fault diagnosis field [3-4]. 
A diagnostic model combining continuous wavelet transform with binary CNN is proposed [5], 
which replaces the traditional convolution layer with binary convolution, so that the model has a 
faster training speed. The residual learning module is embedded into CNN to increase the depth 
of the network model and prevent overfitting [6]. A multi-channel CNN (MCNN) [7] diagnosis 
model was proposed: Multi-scale fusion (MSCF) and STFT were used for data preprocessing, and 
MCNN was used for fault classification. Wang et al proposed a multi-task CNN(MACNN) [8], 
and introduced Atlas convolutional layer module and parallel multiple independent output layer 
to enhance feature learning ability. Wang et al [9] solved the sparse coefficient by using OMP 
algorithm, in which the fault features were represented sparsely, and the reconstructed fault feature 
signals were obtained and input into CNN for fault diagnosis. Shao et al [10] proposed a diagnosis 
method based on 1DCNN and INS0-SVM: 1DCNN was used to extract fault features, and the 
extracted features were used for SVM training to classify faults. Jin et al [11] proposed a light 
neural network to reduce CNN parameters, so as to accelerate fault identification and improve 
fault diagnosis efficiency. A Fault diagnosis method for material handling system using feature 
selection and data mining techniques is proposed in [12]. 

Although the intelligent diagnosis method based on CNN has been successfully applied in the 
field of fault diagnosis, there are still some problems to be solved: 

(1) In actual working conditions, the features of faulty bearing are usually interfered by noise 
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and other characteristic information. Many fault diagnosis methods based on CNN set aside the 
knowledge of diagnosis domain, resulting in poor diagnosis effect. 

(2) The excellent feature learning ability of CNN depends on a large number of data sets. 
However, in actual working conditions, the amount of fault data collected is usually limited. When 
smaller data sets are used, network degradation may occur in the model due to excessive CNN 
network parameters. 

According to the above problems, the rolling bearing fault mechanism is fully introduced into 
the data preprocessing stage, and the knowledge in the field of kurtosis is introduced. Kurtosis is 
a dimensionless index in time domain, which is sensitive to the transient impact component buried 
in the signal [13], but it is easily disturbed by noise, resulting in poor effect. Spectral kurtosis was 
proposed by Deyer [14] to identify transient impact components from background noise by 
calculating the higher-order statistics of each spectral line kurtosis. Wan et al [15] improved the 
maximum correlation kurtosis deconvolution (MCKD) to extract composite fault information in 
different frequency bands. After MCKD processing, Fast spectral kurtosis (FSK) analysis was 
used to further identify the resonant frequency. Jing et al [16] used EMD data preprocessing to 
obtain the reconstructed signal, and then designed a suitable filter to filter the reconstructed signal 
through FSK to eliminate interferences, and finally analyzed the envelope demodulation result for 
feature extraction. Inspired by the aforementioned literatures, the SK algorithm is used to obtain 
the high-order statistics of each spectral line kurtosis in the vibration signal, and takes them as the 
input of CNN to enhance the feature representation. The important contributions of this paper are 
as following: (1) A fault diagnosis method based on SK feature extraction and CAM-CNN is 
proposed to solve the dependence of CNN on large data sets. (2) This method uses SK for 
preprocessing to enhance feature representation and reduce the learning difficulty of CNN. 
(3) CAM modules are embedded in CNN to distinguish the importance of each channel and 
improve the efficiency and accuracy of the network model. 

2. Spectral kurtosis 

Antoni [17] proposed a FIR - based FSK algorithm, and its basic principle is to decompose the 
original signal with a 1/3- binary tree filter, and then calculate the kurtosis value of each frequency 
of the decomposed signal. The specific method is to select a suitable high-pass filter ℎଵ(𝑡) and 
low-pass filter ℎ(𝑡), as shown in Fig. 1, the specific formula is as following: 

൞ℎ(𝑡) = ℎ(𝑡)𝑒గସ ,     𝑡 ∈ ൬0, 14൰ ,ℎଵ(𝑡) = ℎ(𝑡)𝑒ଷగସ ,     𝑡 ∈ ൬14 , 12൰ , (1)

among them, ℎ(𝑡) is the FIR low-pass filter, and the cut-off frequency is ଵ଼ + 𝜀. 

 
Fig. 1. Decomposition of high-pass filter and low-pass filter ℎ(𝑡) and ℎଵ(𝑡) are used to filter the analyzed signal 𝑋(𝑡) respectively, and the filtering 

results are sampled twice down. In this way, the corresponding filtering results are obtained 
iteratively. The filtering results include the filtered results of center frequency and bandwidth, and 
the spectral kurtosis is calculated according to Eq. (2): 
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𝑃 = 𝐸(|𝑐 (𝑡)|ସ)[𝐸(|𝑐 (𝑡)|ଶ)]ଶ − 2,     𝑖 ∈ [0,1,2,3. . . . . , 2 − 1]. (2)

Finally, all the calculated spectral kurtosis are integrated to form the fast spectral kurtosis graph 
of signal 𝑋(𝑡). 

3. Channel attention mechanism 

Because some feature information may have nothing to do with fault location, and different 
convolutional checks have different recognition degrees of feature information, which may result 
in judgment errors [18]. The channel attention mechanism weights each feature channel to enhance 
effective features and suppress redundant information, so as to eliminate the interference of noise 
and other invalid features adaptively [19]. 

The basic structure diagram of CAM is shown in Fig. 2. CAM weights each characteristic 
channel through modeling, and then enhances or suppresses different feature channels for different 
tasks. The input is a combination of channel 𝑌 ∈ 𝑅௪×ଵ. First, the feature map of each channel is 
compressed to a single value of 𝑧(𝑧 ∈ 𝑅ଵ×) by using the GAP. Calculate the 𝑖th 𝑧 according to 
the following formula: 

𝑧 = 𝐴𝑣𝑔𝑝𝑜𝑜𝑙(𝑦) = 11 × 𝑊𝑦ௐ
ୀଵ (𝑗). (3)

Embed two dimensions of information into 𝑧. A set of weights are learned with two fully 
connected layers after dimension reduction and dimension increasing, and channel weight feature 𝑧′ is generated, which is defined as follows: 𝑧ᇱ = 𝛿 ൬𝐹ᇱᇱ ቀ𝜎൫𝐹ᇱ(𝑧)൯ቁ൰, (4)

where, 𝜎 represents the RELU activation function. 𝐹′ drop the number of channels through the 
first full collection layer (FC), and 𝐹′′ recovers the original number of channels through the second 
FC, which encode channel correlation. 𝛿 is the Sigmoid function, and the weight of the encoded 
channel is normalized to between 0 and 1, so as to obtain the weight value of each channel 𝑧. 𝑧 
represents the weight of the whole channel. Multiply the normalized weight feature 𝑧′ with the 
input: 𝑀 = 𝑌𝑧ᇱ = (𝑦ଵ𝑧′ଵ,𝑦ଶ𝑧′ଶ, ,𝑦ଷ𝑧′ଷ,⋯ ,𝑦𝑧′). (5)

 
Fig. 2. Feature enhancement module based on channel mechanism 
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4. CNN 

CNN is mainly composed of convolution layer, pooling layer and full connection layer (FC). 
Its structure is shown in Fig. 3. The convolutional layer is mainly used for feature extraction, the 
pooling layer mainly reduces the dimension and fewer network parameters, and FC classifies the 
extracted features. 

 
Fig. 3. Classical architecture of convolutional neural network 

4.1. Convolution layer 

The convolution layer generates specific feature sequences by performing local convolution 
operations on inputs, and different convolution kernels learn the weights of different regions of 
the original signal. Eq. (6) is convolution operation: 

𝑦(,௧) = 𝐾 × 𝑋() = ቀ𝐾൫௧ᇲ൯𝑋൫௧ା௧ᇲ൯ቁିଵ
௧ᇱୀ , (6)

where, 𝐾(௧ᇱ) is the 𝑡th weight learned from the 𝑙rd convolution layer, 𝑋 is the 5 convoluted part 𝑡thlocal region of the convolution in layer 𝑙, and 𝑏 is the size of the convolution kernel. 

4.2. Pooling layer 

The sequence of features increases after convolving the input, which results in an increase in 
dimension. Pooling layer prevents overfitting by reducing data to reduce network parameters. 
Pooling function mainly includes average pooling and maximum pooling. Maximum pooling is 
adopted in this paper, and its formula is as follows: 𝑃(,௧) = (𝑡 − 1)𝑉 + 1 ≤ 𝑗 ≤ 𝑗𝑏൛𝑎(,)ൟ, (7)

where, 𝑎 is an element of the convolution core in the convolution layer, 𝑉 is the size of the target 
area, and 𝑃 is the output of the maximum pooling function. 

4.3. Full Connection layer 

The FC classifies the features learned from the convolution kernel, and reduces the dimensions 
of the features learned from the convolution core. Besides, FC also updates and reorganizes the 
weights. The formula of FC is as follows: 
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𝑍ା(௧) = 𝑊௧ 𝑎() + 𝑏௧ᇱ
ୀଵ , (8)

where, 𝑊௧  is the weight between convolution cores in different convolution layers. 𝑍ା(௧) is the 
pair value of the 𝑡th output convolution kernel in layer 𝑙 + 1. 𝑏௧ᇱ  is the shift of the convolution 
core in the convolution layer relative to the convolution core in the next convolution layer. 

5. Construction of SK-CAM-CNN model 

In practical engineering, the impact incomplete period is caused by the instability of velocity, 
the change of load and the random deviation of rolling elements. In this case, the traditional time 
fault diagnosis method usually could not extract the fault information perfectly under the 
interference of background noise. To this end, SK is introduced to preprocess the data, and the 
data set is obtained by using the data enhancement technology with fixed length random 
segmentation. Then the kurtosis value is calculated, and the unique characteristic signal is 
extracted. Finally, CNN is used for fault classification and diagnosis. 

5.1. Convolutional neural network based on CAM 

In order to enhance the adaptive ability of the convolution check receptive field size and 
improve the recognition ability of the network model to fault features, a CAM-based multi-layer 
convolutional network is proposed. Its structure is shown in Fig. 4. 

For input 𝑋 ∈ 𝑅ᇲ×ௐᇲ, the initial feature extraction is completed by the first layer of wide 
convolution, and the input feature elements are compressed (𝑋 ∈ 𝑅×ௐ → 𝑋′ ∈ 𝑅ଵ×ௐ) in 
operation 𝐹, which is mainly completed by global average pooling (GAP). In operation of 𝐹, the 
compressed feature elements are mainly integrated into the fully connected layer to predict the 
importance of each channel, and then the obtained weights are multiplied by the features of the 
upper layer to realize the weighting of channels. Then it is input to the next layer of convolution 
to complete the final feature extraction, and the learned features are classified to get the output 
results. 

 
Fig. 4. Convolutional neural network based on channel attention mechanism 

5.2. Fault diagnosis framework based on SK and CNN 

The combination of spectral kurtosis preprocessing with CAM-CNN was applied on bearing 
fault diagnosis. Firstly, the collected vibration signal is preprocessed in the kurtosis domain to 
obtain the kurtosis map, and then transform the two-dimensional kurtosis map into 
one-dimensional kurtosis time domain samples. Then, one-dimensional time-domain kurtosis 
samples are input into CNN for training, and the network introduces CAM module to update the 
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weight, which further improves the feature learning ability of the network. The entire diagnostic 
process is shown in Fig. 5. 

Step 1: First, one-dimensional vibration signals are collected, and the fixed-length random 
segmentation data enhancement technology is adopted to obtain training and test data. 

Step 2: Perform spectral kurtosis analysis on the enhanced data, and the obtained fast spectral 
kurtosis graph is transformed into a one-dimensional kurtosis time domain sample, which is used 
as input of CNN. 

Step 3: After the convolution, BN and pooling operations, the features learned from the 
convolution kernel are input into the CAM module, and the network channel weights are updated 
to eliminate the interference of invalid features. 

Step 4: Use the training set training model and optimize the network parameters by Adam 
algorithm. A network model based on SK-CAM-CNN is established. 

Step 5: Input the test set into the CAM-CNN model to obtain visual results. 

 
Fig. 5. Flow chart of convolutional neural network based on spectral kurtosis feature extraction and 

channel attention mechanism 

6. Verification by experiment 1 

6.1. Data description 

The validity of the proposed model is verified by the rolling bearing data set of Western 
Reserve University. Fig. 6 shows the rolling bearing test platform. In addition to normal state 
(NC), SKF deep groove ball bearings also introduce three kinds of faults, namely inner ring fault 
(IF), outer ring fault (OFS) and rolling body fault (BFS). There are three fault types of faulty 
bearings, with fault diameters of 0.1778 mm, 0.3556 mm and 0.5334 mm respectively. There are 
7 bearing health states (NC, BF14, BF21, IF7, IF14, OR7, OR14) corresponding to the shaft speed 
of 1772 r/min under 1 HP load. Fig. 7 shows the three-dimensional time-domain waveform of 
rolling bearings under three different loads. 

In this test, the minimum bearing speed was 1772 r/min. In order to fully ensure the integrity 
and reliability of fault information of each data sample, the length of each data sample was set as 
1024 sampling points, and the fixed-length random segmentation data enhancement technology 
was adopted to obtain training and test data. Sample data of 7 original one-dimensional vibration 
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signals are labeled. Each type of signal contains 200 samples, a total of 1400 samples, which are 
divided into training set, test set and verification set with ratio of 7:2:1. The distribution of bearing 
fault samples is shown in Table 1. 

 
Fig. 6. Rolling shaft data acquisition experimental bench 

 
a) 1 HP 

 
b) 2 HP 

 c)  
Fig. 7. Time domain waveforms of different fault signals under three loads 

6.2. Setting of CNN structure 

Construct CNN based on CAM. The CNN architecture consists of five layers of convolution 
layer, five layers of pooling layer, CAM module, full connection layer and Soft-max layer. The 
CAM module is set after the first layer of pooling and before the second layer of convolution. The 
step size of the convolution layer is set as 1, and the number of convolution kernels of the first 
convolution layer is set as 16. The latter layer has twice as many convolution kernels as the 
previous one. Zero convolution padding is used to preserve the size of the space between the input 
and output volumes. Pooling layer adopts maximum pooling and window span is 2. The last layer 
is Soft-max layer, and the model parameters are shown in Table 2. 



CONVOLUTIONAL NEURAL NETWORK INTELLIGENT DIAGNOSIS METHOD USING SMALL SAMPLES BASED ON SK-CAM.  
LIANG CHEN, SIMIN LI, PEIJUN LI, YUTAO LIU, RENQI CHANG 

 JOURNAL OF VIBROENGINEERING. MAY 2024, VOLUME 26, ISSUE 3 541 

Table 1. Distribution of rolling bearing fault samples 

Diameter of failure / mm 
0 0.1778 0.3556 0.5334 

Load / 
HP Normal Inner 

ring 
Outer 
ring 

Body of 
rolling 

Outer 
ring 

Inner 
ring 

Body of 
rolling 

Fault label 0 1 2 3 4 5 6 

A 

Set of training 700 700 700 700 700 700 700 

1 Set of tests 200 200 200 200 200 200 200 
Set of 

verification 100 100 100 100 100 100 100 

B 

Set of training 700 700 700 700 700 700 700 

2 Set of tests 200 200 200 200 200 200 200 
Set of 

verification 100 100 100 100 100 100 100 

C 

Set of training 700 700 700 700 700 700 700 

3 Set of tests 200 200 200 200 200 200 200 
Set of 

verification 100 100 100 100 100 100 100 

Table 2. CAM-CNN model parameters 
Layer Layer type Kernel Number of filters Filter size Output Size 

1 Input / / / (1024,1) 
2 Conv Kernels 16 64*1 (128,16) 
4 Glob / / / （16） 
5 FC / / 68 (4,1) 
6 ReLU / / / (4,1) 
7 FC / / 80 (16,1) 
8 Multiply / / / (128,16) 

11 Conv1D Kernels  1 (128,16) 
13 conv1d_2 Kernels / / (64,32) 
14 conv1d_3 Kernels / / (32,64) 
15 conv1d_4 Kernels / / (16,128) 
16 conv1d_5 Kernels / / (16,256) 
17 Dropout Dropout rate / 0.5 (16,256) 
18 Fc / / 42 (16,1) 

6.3. Analysis and discussion 

6.3.1. Analysis of experimental results 

The data set with load of 1HP was selected for testing. After 100 rounds of training, the model 
got the test results as shown in Fig. 8, which showed that the diagnostic accuracy could reach 
99.92 %. The loss curve leveled off after 20 rounds of training. Therefore, it is verified that 
SK-CAM-CNN has high accuracy in rolling bearing fault diagnosis. 

The confusion matrix represents the type and number of misjudgments under different fault 
types. The confusion matrix is used to further verify the fault recognition ability of the model. The 
experimental results shown in Fig. 9: 1400 test samples are all correctly identified, which further 
verified the excellent fault recognition capability of the proposed model. 

In order to show the ability of fault identification more intuitively, the classification results of 
deep neural network are clearly displayed by using t-SNE visualization technology. Ten kinds of 
bearing data diagnosis processes with motor loads of 1 HP, 2 HP and 3 HP are selected for 
visualization, and the experimental results are shown in Fig. 10. The original data is processed by 
the proposed method, and all data features are obviously classified and clustered. It can be found 
that the model can correctly classify 10 fault features, which shows that the model has good 
diagnostic performance. 
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a) Accuracy with number of iterations 

 
b) Loss with number of iterations 

Fig. 8. Accuracy and loss curves of the model after training 

 
Fig. 9. Confusion matrix of rolling bearing classification 

 
a) 1 HP 

 
b) 2 HP 

 
c) 3 HP 

Fig. 10. visualization results of t-SNE under three different loads  

In this paper, EMD-SVM [20] based on artificial filtering, CNN [21] based on DL and Lenet-5 
[22] are selected for comparison. 10 experiments are carried out with 1HP data set, and the average 
accuracy was taken 10 times. The results are shown in Fig. 11. The fault identification accuracy 
of this method is higher than that of the other three methods. Experimental results verify the 
effectiveness of SK pretreatment and CAM module. 
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Fig. 11. Diagnostic accuracy of different models 

6.3.2. Performance analysis of the model under different data set sizes 

The amount of collected fault data is usually limited in actual operating conditions. When 
smaller data sets are used, network degradation may occur in the model with the depth of the deep 
learning network increasing. Therefore, it is very important for the fault diagnosis model to have 
a good diagnostic effect under smaller samples. This paper conducts experiments on the data of 
1 HP, and compares and analyzes the data under five different scales of 100 %, 80 %, 60 %, 40 % 
and 20 % of the total data set, and conducts 20 tests on the reduced data set and then averages the 
results, and the results were shown in Fig. 11. 

 
Fig. 12. Accuracy for different data set sizes 

As can be seen from the diagnostic results in the Fig. 12, the proposed model has a high 
accuracy in different scale data sets except that the diagnostic effect decreases in 20 % case. 
Therefore, it still has good accuracy and stability under small scale data set. 

6.3.3. Generalized performance analysis of the model under different load conditions 

The load of rolling bearings often changes under the influence of working environment, so it 
is very important to maintain good diagnostic effect under different load conditions. Three data 
sets under different loads were tested to verify the diagnostic performance of the model under 
different loads. Data sets A, B, and C represent data at 1, 2, and 3 horsepower loads, respectively. 
Taking A→B as an example, data set A is used to train the network model, and data set B is used 
to test the network model. The experimental results averaged 20 times. 

Data sets under three different loads are tested and compared with EMD-SVM, CNN and 
Lenet-5 methods. Table 3 shows the fault diagnosis results of the four methods under different 
loads. Experimental results show that the diagnostic effect of this method is better than the other 
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three methods under different loads. Taking C→A and C→B as examples, the fault recognition 
accuracy of VMD-SVM based on feature extraction is only 85.69 % in different load domains due 
to the problem of modal confusion. CNN and LeNet-5 based on DL model use two-dimensional 
data as network input. The conversion of one-dimensional data to two-dimensional data may result 
in the loss of fault characteristic information. Therefore, the fault diagnosis rates of these two 
methods are only 94.76 % and 94.36 % under different loads. In the C→A and C→B experiments 
under different loads, the fault diagnosis rate of the proposed method is above 97 %, and the 
average accuracy of all experiments under different loads is 98.33 %. This is because the diagnosis 
domain knowledge is introduced before diagnosis, and spectral kurtosis preprocessing is carried 
out to enhance the fault mode of each category, thus reducing the difficulty of learning CNN. At 
the same time, the CAM module is added to CNN to extract the beneficial features of the network 
model in a weighted adaptive way to reduce the influence of redundant information. Experimental 
results show that the method has good stability and generalization performance under different 
load conditions. 

Table 3. Accuracy of each model under different loads 
Methods A→A A→ B A→C B→B B→A B→C C→C C→A C→B Average 

VMD-SVM 98.52 % 86.15 % 76.88 % 97.56 % 87.25 % 78.85 % 93.58 % 85.69 % 84.55 % 87.76 % 
LeNet-5 98.36 % 91.22 % 91.32 % 98.52 % 96.77 % 96.43 % 97.55 % 85.52 % 93.51 % 94.36 % 

CNN 98.85 % 94.27 % 93.29 % 98.74 % 97.27 % 96.21 % 98.96 % 89.52 % 85.75 % 94.76 % 
Our method 99.75 % 98.55 % 96.58 % 99.32 % 98.56 % 96.89 99.21 % 98.55 % 97.52 % 98.33 % 

7. Verification by experiment 2 

7.1. Description of experimental data 

In order to further verify the performance and effectiveness of the method proposed in this 
chapter, the gearbox fault data is used for experiments. This data set is the real signal of the 
gearbox collected from the QPZZ-II rotating machinery vibration test bench [23]. The 
experimental platform is shown in Fig. 13.  

motor

Input shaft

Gear box

Output 
shaft

Belt pulley
Shaft 

coupling

 
Fig. 13. QPZZ-Ⅱ rotating machinery vibration test bench 

Among them, the number of teeth of the large gear of the gearbox is 75, the number of teeth 
of the small gear is 55, and the modulus is 2. In the experiment, the wire electric discharge cutting 
process was used to make faults on the large gear. By replacing the faulty gear in the gearbox, a 
total of 10 different gear states were simulated: normal state, crack fault and pitting fault, including 
faults at different points. For single-tooth and double-tooth faults, the faulty parts are shown in 
Fig. 14. Vibration data in different states is collected by the acceleration sensor installed on the 
gearbox. The motor speed is 1500 r/min, the sampling frequency is set to 12,800 Hz, and the 
sampling time is set to 10 s. A total of 128,000 data points are obtained for each state. In the 
experiment, 400 data points were selected as the data of a sample, and the number of fault samples 
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of each type was 320 by using non-overlapping division. The samples were divided into training 
set, verification set and test set according to 7:1:2. Table 4 shows the experimental data sets have 
different numbers of fault points and different damage diameters (width or diameter×depth) to 
generate detailed information of different types of faults. Fig. 15 shows the original waveform 
diagram of the vibration signal measured under 10 types of gears. 

 
Fig. 14. Gear failure parts 

 
Fig. 15. Original waveform diagram of gear vibration signal in different states 

7.2. Analysis of experimental results 

Fig. 16 shows the output results of the test set accuracy by using the proposed method same as 
section 6 and the proposed network model to conduct 10 experiments on the data respectively. 
The red line represents the accuracy using the proposed method and the blue line represents the 
accuracy using CNN directly. The average accuracy rate of the proposed method’ fault 
classification is 98.96 %, the highest accuracy rate is 99.69 %, and the lowest accuracy rate is 
98.13 %. However, the average diagnostic accuracy of the CNN network was 95.41 %, and the 
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highest accuracy was 97.19 %. It can be seen that this method can also achieve satisfactory 
classification results in the fault diagnosis of gears, and can effectively improve the diagnostic 
accuracy of the CNN network. 

Table 4. Gear failure dataset description 

Fault type Failure 
points 

Damage 
diameter 

sample 
length 

Number of 
samples 

Sample 
division Label  

Normal – – 400 320 224/32/64 0 
Single tooth 
crack fault 

– 0.2×0.5 400 320 224/32/64 1 
– 0.2×2 400 320 224/32/64 2 

Double tooth 
crack fault 

– 0.2×0.5 400 320 224/32/64 3 
– 0.2×1 400 320 224/32/64 4 

Single tooth 
pitting fault 

3 Point Ø0.4×1 400 320 224/32/64 5 
6 Point Ø0.4×1 400 320 224/32/64 6 
9 Point Ø0.4×1 400 320 224/32/64 7 

Double tooth 
pitting fault 

3 Point Ø0.4×1 400 320 224/32/64 8 
6 Point Ø0.4×1 400 320 224/32/64 9 

 
Fig. 16. Test set accuracy for ten trials 

 
a) CNN network model multi-class confusion  

matrix visualization 

 
b) Proposed model multi-class confusion  

matrix visualization 
Fig. 17. The proposed method is used to visualize the multi-class confusion matrix under the gear dataset 

Fig. 17 and Fig. 18 are the multi-class confusion matrix and t-SNE feature visualization of the 
results obtained in the fourth of 10 experiments of this method, respectively. The recognition 
accuracy rate of the test set based on the proposed method is 99.69 %, and the error rate is 0.31 %. 
Among them, one real category 3 is misclassified to category 4 and one real category 4 is 
misclassified to category 7, and only one sample of each was misclassified. However, the accuracy 
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of the CNN diagnostic model is only 94.84 %. It can also be seen from the t-SNE figure that the 
proposed method can cluster and identify better than the CNN network model, and its feature 
classes are more concentrated, which further proves that the proposed method can effectively 
improve the classification accuracy of CNN for gear fault diagnosis. 

 
a) Feature visualization of the last fully connected 

layer of the CNN network model 

 
b) Feature visualization of the last fully connected 

layer of the proposed method’ network model 
Fig. 18. The proposed method is used for t-SNE feature visualization under the gear dataset 

8. Conclusions 

In order to solve the problem that CNN's excellent classification ability depends on a large 
number of data sample, a convolutional neural network intelligent diagnosis method based on 
SK-CAM is proposed. SK is used for preprocessing, and the obtained two-dimensional fast 
spectral kurtosis graph is converted into one-dimensional kurtosis time domain sample and used 
as the input of CNN, which reduces the difficulty of network feature learning. The introduction of 
CAM module increases the weight of network channel and adaptively eliminates the interference 
of invalid features. The accuracy of fault identification can reach 99.8 % by using 1HP data set 
from western reserve university. The smaller sample data sets are verified by experiment and the 
results show that this method still has high classification accuracy under smaller data sets. At the 
same time, the experiment under different load also achieved good diagnostic effect. Besides, the 
gear fault experiment data set is also used to further verify the excellent performance of the 
proposed method. Therefore, this method has higher precision and better generalization 
performance. 

The paper mainly solves the fault diagnosis of rolling element bearing or gear under constant 
speed. In the future research, the order tracking analysis method being suitable for analyzing 
variable speed conditions will be combined with the proposed method to extend the research for 
fault diagnosis of rotating machinery working on variable speed condition, and make the proposed 
method more universal in engineering application. 
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