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Abstract. The reliability of modern building electrical systems are receiving increasing attention 
as they become more intelligent and complex. As the majority of building electrical systems use 
neutral point grounding, earth faults or short circuits can get worse over time and damage both the 
distribution system and the electrical equipment. To this end, the corresponding three phases and 
four categories, namely three-phase voltage, three-phase current after fault, three-phase voltage 
distortion rate, three-phase current distortion rate, a total of 12 dimensional fault feature vectors 
and 10 fault simulation types, were summarised and extracted in conjunction with the actual 
operating conditions of the system. Using traditional fault identification ideas and neural network 
algorithm as reference, a 12-dimensional fault feature vector is used as the model input to construct 
a building electrical fault diagnosis and detection model based on ELM algorithm. Results showed 
that the ELM-based model’s classification accuracy for this experimental sample was 97.56 %, its 
AUC was 0.92, and its RMSE was 0.3521. These figures were higher than the classification 
accuracy and performance of the BP algorithm and GA-BP algorithm fault diagnosis models, and 
they also demonstrate better robustness and generalizability. The model also has a 97.27 % correct 
rate in fault discrimination, while the computation time is only 0.201 s, and its fault identification 
and diagnosis speed is faster than other algorithmic models. At the same time, this research model 
has a good fault monitoring accuracy of up to 98.6 % for building electrical systems. The research 
can provide a more sensitive, accurate and rapid fault monitoring method for the current building 
electrical system. It also improves the reliability of the building electrical system in a complex 
environment and achieves better protection of the system. This has a certain significance for the 
development of the building electrical industry.  
Keywords: building electrical systems, fault diagnosis, monitoring techniques, ELM, BP neural 
networks. 

1. Introduction 

With the gradual evolution of modern building electrical systems towards complexity and 
intelligence, their operational status and reliability directly affect the normal operation of the 
system and are therefore of increasing concern [1]. Monitoring the condition of the system 
provides a prediction of how the system will operate when it is functioning properly. To determine 
the final results of fault diagnosis when the power system fails, the operation of power equipment 
and lines is tracked and studied [2]. At present, for the building electrical systems fault 
investigation automation degree is poor, mainly rely on manual monitoring, inspection and 
maintenance to carry out. In addition to wasting a lot of human resources, this occasionally 
necessitates taking a subsystem offline for inspection throughout the inspection process, which 
prolongs the time it takes for defects to be fixed. Another significant factor is that an electrical fire 
is more likely to start if this system fails [3-4]. It is therefore essential to improve the reliability of 
the building electrical systems under complex conditions, to find the best means of fault diagnosis 
and to maximize the normal operation of the system and the personal safety of the staff. Back 
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Propagation (BP) neural networks are typical multi-layer feed-forward neural networks with good 
learning generalization capability and are widely used in today's predictive diagnostics and other 
systems [5]. Genetic algorithm optimization of BP is to optimize weights and connection 
thresholds of BP neural network, which can effectively improve the convergence speed and 
accuracy of the final result of BP network [6]. However, these two more mature fault diagnosis 
methods also have certain shortcomings, and many scholars are researching new algorithms with 
faster training speed and stronger generalization capability. Extreme Learning Machine (ELM) 
has faster training speed, strong pan-Chinese ability and global optimal solution searching ability. 
The main difference between ELM and BP networks is that the BP algorithm sets a fixed number 
of hidden layer neurons and relies on iteration to update the weight and threshold to achieve 
convergence. The ELM algorithm does not fix the number of hidden layer neurons and randomly 
inputs the threshold and weight. The algorithm can only obtain the unique optimal solution by 
changing the number of hidden layer neurons. 

Therefore, to improve the safety of building electrical systems and improve its fault diagnosis 
efficiency, the research focuses on the safe operation of building electrical systems. On the basis 
of developing more mature neural network fault diagnosis technology, the fault causes and class 
diagnosis methods of building electrical power system are analyzed. A new system fault diagnosis 
model based on extreme learning machine (ELM) is proposed, which combines the advantages of 
other algorithms. The aim of this research is to provide a more sensitive, accurate and rapid fault 
monitoring method for the current building electrical systems, so as to achieve better protection 
of the system. The research mainly includes five parts, as follows: 

1) Introduction. In the first part of this paper, the paper expounds the building electrical 
systems, and introduces the necessity and problems of the current building electrical systems fault 
diagnosis, as well as the relevant solutions. 

2) Literature review. The content of the second part is a summary of fault diagnosis of building 
electrical systems, which mainly introduces the previous research results. This paper summarizes 
and analyses the design difficulties and methods of building electrical systems fault diagnosis. 

3) Research methods. The research methods are mainly divided into two sections. In 
Section 2.1, the fault simulation method and feature extraction of building electrical systems are 
proposed. In Section 2.2, a fault diagnosis and monitoring construction method of building 
electrical systems based on ELM algorithm is designed. 

4) Analysis of experimental results. The fourth part is the validity verification of the research 
model. 

2. Related work 

Intelligent fault diagnostic methods are currently drawing more attention from experts and 
academics both domestically and internationally as a crucial tool for data-driven control and 
application methods. Alcaiz et al. [7] proposed a collaborative approach for fault detection of 
residential PV systems that relies on PV systems. The study showed that the method has a strong 
ability to distinguish between system and actual fault problems. In order to address issues like the 
lack of historical fault data for wind turbines, Liu et al. [8] suggested a condition monitoring and 
fault isolation system, and the system's efficacy was confirmed through simulation. Pang et al. [9] 
used the method of infrared thermal imaging to detect the fault of electrical systems. The method 
was shown to detect fault and trend analysis effectively. Yang et al. [10] used a Back Propagation 
Neural Network (BPNN) to analyze faults in machine tools and experiments showed that the 
method was effective and better able to identify different types of faults. Shi et al. [11] applied an 
improved BP algorithm to diagnosis of aircraft fuel failure systems. Simulation results indicated 
the algorithm is fast in diagnosis and has a high prediction accuracy. To improve the performance 
of motor system fault diagnosis, researchers such as Zhang P. proposed a diagnosis method which 
combines chaotic adaptive gravity search algorithm and particle swarm optimization algorithm. 
The research results showed that the classification performance and diagnostic accuracy of the 
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algorithm were improved after the introduction of adaptive gravitational constant attenuation 
factor and chaotic mapping [12]. Han Y. et al. proposed a method based on short-term wavelet 
entropy and support vector machine (SVM) to diagnose the inductance failures of the bridge arm 
of Modular Multilevel Converter (MMC). This studies revealed that this method was accurate and 
robust [13]. 

Kai et al. [14] applied a self-diagnosis method for sensor faults in building structural 
monitoring systems based on an optimized communication technology. Experiments showed that 
the method was able to quickly identify sensor faults and fault channels in the detection system. 
In order to solve the challenge of monitoring, evaluating, and diagnosing industrial gas turbine 
defects using conventional approaches, Elashmawi et al. [15] suggested a semi-artificial and 
intelligent ANN model to foretell the decline in a turbine engine's performance efficiency. The 
outcomes showed that, in comparison to the training data set, the model made predictions with a 
higher degree of accuracy. Sharma et al. [16] used a Support Vector Machine (SVM) based feature 
selection technique and an artificial neural network classification method for the automatic 
identification of engine faults. The artificial neural network was shown to have better performance 
than the SVM. Talaat et al. [17] used an artificial neural network to predict the deterioration of 
major engine components and selected the best neural network structure based on the minimum 
value of the MSE. The method was shown to be effective with high prediction accuracy. Xing et 
al. [18] introduced Extreme Learning Machine (ELM) for earthquake damage prediction and 
validated it against algorithms such as BP neural network and SVM. The results showed that the 
ELM-based algorithm gave the best prediction results. 

The above research has shown that the current research on fault diagnosis methods is relatively 
solid and detailed, but there are still some unsolved and unrealistic problems. One is that the large 
number of sensors and false and missed alarms place a certain burden on the fault diagnosis 
process. Secondly, while the effectiveness of a single fault diagnosis approach is affected by the 
increasing complexity of fault diagnosis problems, the combination of several sophisticated 
diagnostic techniques does not guarantee that it will significantly increase the accuracy of system 
fault identification. The study combines the actual problem and based on the more mature fault 
diagnosis techniques of previous authors, the ELM algorithm is proposed to be used for the fault 
diagnosis about building electrical systems. The corresponding model is constructed by combining 
the advantages of neural network systems. 

3. Research on the application of fault diagnosis techniques and monitoring methods in 
building electrical systems 

3.1. Fault simulation methods for building electrical systems and their feature quantity 
extraction 

Fault diagnosis is actually the determination and identification of whether the system is 
operating abnormally. There are many different types of faults in building electrical systems and 
each fault is accompanied by abnormal data. Fault diagnostics instantly classifies and identifies 
the collected data and determines the indications and types of faults. However, any fault diagnosis 
method must be based on a basic modelling and data collection of the building electrical system 
and fault conditions. The study therefore starts with an analysis of the modelling of the building 
electrical system, fault simulation and extraction of characteristics. 

When modelling building electrical systems, they need to be constructed according to their 
characteristics, as they are located in different environments, have different requirements and vary 
greatly in their functionality. In this study, the MATLAB/Simulink library is used to build a model 
of the electrical distribution system by selecting the appropriate model components and 
parameters [19]. Fig. 1 shows, for example, an extracted line topology of a lighting outlet in a 
hospital distribution system. 
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Fig. 1. Building electrical system topology 

As can be seen from Fig. 1, the 10 kV busbar is the main network distribution line and CB1 is 
the distribution branch line switch. The main network current arrives at the distribution 
transformer via the branch line, which acts as a link between the low and high voltage sides and 
is used to step down the voltage from the high voltage side at 10 kV to the low voltage side at 
0.4 kV. The building electrical system is modelled with a total of ten 0.4 kV outgoing lines, 
including six three-phase load fan coil lines and three single-phase load lighting-socket lines, as 
well as a standby line. To facilitate fault identification, a protection recording device was 
configured on each of these lines. The device is a three-phase voltage-current recorder, where the 
three-phase current and voltage values flowing through. Considering the economic constraints of 
the building electrical system, its sampling frequency is 20 kHZ. considering that the 10 kV system 
is generally a neutral point ungrounded system, set 𝑌 as the way the three phase voltage source is 
grounded.  

The parameter settings of the Powergui simulation master control element are related to the 
accuracy, effectiveness and time of the simulation. The study set the simulation method to discrete 
and the simulation time granularity to 5×10-5 s. Single-phase fault elements were selected to 
implement different fault types. In the specific simulation process, the study uses the program loop 
call method to improve the efficiency with the flexibility of modelling and easy modification [20]. 
In this case, the fault parameters are set in the fault element as variables to be retrieved from the 
workspace. In the study, the resistance was set to FR for resistive faults and the arc length was set 
to LC for arc faults. All components were aggregated and connected according to the topology of 
the building electrical system topology diagram in it [21]. The steps required to model the building 
electrical system during the simulation run are shown in Fig. 2. 

As shown in Fig. 2, the simulation process was mainly carried out to obtain the recorded 
voltage and current waveforms for different fault parameters. After summarizing the fault transient 
voltages and currents obtained from the simulation and their characteristics, the study proposes 
several characteristic quantities for fault identification in building electrical systems. Firstly, the 
three-phase voltage scaling capabilities reflect the information about the voltage change before 
and after the fault, and also the magnitude of the change. Therefore, the minimum value of the 
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three-phase voltage is one of the most characteristic quantities for fault diagnosis in building 
electrical systems, which is calculated as in Eq. (1) [22]: 𝑈ிಲᇱ = 𝑢ி𝑢 , (1)

where, 𝑈ிಲᇱ  represents the nominal value of the A-phase voltage after the fault, 𝑢ி represents the 
magnitude of the A-phase voltage after the fault and 𝑢 is the magnitude of the A-phase voltage 
before the fault. The three phase currents are calculated as in Eq. (2) [23]: 𝑈ிಲᇱ = 𝑖ி𝑖 , (2)

where, 𝐼ிಲᇱ  represents the post-fault A-phase voltage scale value, 𝑖ி represents the post-fault 
A-phase voltage magnitude and represents the pre-fault A-phase voltage magnitude. The 
difference in the voltage expression of the arcing fault can then be highlighted by calculating the 
distortion of the three-phase voltage after the fault; the calculation is illustrated in Eq. (3) [24]: 

𝑇𝐻𝐷௨ = ඥ𝑢ଶ𝑢ଶ + 𝑢ଷ𝑢ଷ + ⋯+ 𝑢𝑢𝑢ଵ ∗ 100 %, (3)

where, 𝑇𝐻𝐷௨ represents the three-phase voltage distortion rate, 𝑢ଶ to 𝑢 represent the 2nd to 𝑛 
harmonic voltage rms values and 𝑢ଵ represents the fundamental voltage rms values. The distortion 
rate of three-phase current after fault is then calculated as shown in Eq. (4) [25]: 

𝑇𝐻𝐷 = ඥ𝐼ଶ𝐼ଶ + 𝐼ଷ𝐼ଷ + ⋯+ 𝐼𝐼𝐼ଵ ∗ 100 %, (4)

where, 𝑇𝐻𝐷௨ represents the three-phase current distortion rate, 𝐼ଶ to 𝐼 represent the 2nd to 𝑛 
harmonic current rms, and 𝐼ଵ represents the fundamental current rms. The above four indicators 
are used as the characteristic vectors for the types of orphaned airplane plunges in the building 
electrical system. After obtaining the waveforms of various obstacle recordings, the four 
indicators are then calculated for the three-phase voltage and current of each fault to obtain 12 
fault diagnosis characteristic vectors. 
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Fig. 2. Steps of building electrical system modeling in simulation operation 

The fault characteristic quantity data obtained by studying the simulation and extraction of 
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low-voltage building electrical systems include three-phase voltage after fault, three-phase current 
after fault, the distortion rate of three-phase voltage and three-phase current in 12 dimensions, and 
the types of simulated faults include 10 categories. Table 1 shows these types and numbers of 
building electrical fault diagnosis and monitoring simulation faults for this study. 

Table 1. Classification of simulation fault data 
Category No. Fault type Number of groups 

0 Normal operation 50 
1 Single phase grounding 50 
2 Two phase short circuit 50 
3 Two phase short circuit grounding 50 
4 Three phase short circuit 50 
5 Single phase arc grounding 50 
6 Two phase arc short circuit 50 
7 Three phase disconnection 20 
8 Single-phase phase failure 20 
9 Overload fault 20 

3.2. Building electrical system fault diagnosis and monitoring construction based on ELM 
algorithm 

After the basic simulation of the type and number of faults and the extraction of the 
characteristic quantities for the building electrical systems and fault states, the appropriate 
algorithm must be used to model them, and then the model must be used for fault identification 
and diagnosis. BP neural networks are widely used in current fault diagnosis due to their multi-
hidden layer structure, which increases the computational power of diagnosis [26]. However, BP 
neural networks also have some obvious drawbacks, resulting in slow convergence of the 
computational results, or not easy convergence. The ELM method is based on the BP algorithm. 
The benefits of the ELM are based on its network structure and mathematical principles, which 
don't fix the number of neurons in the hidden layer but instead generate connection weights and 
thresholds at random between the input and hidden layers before continuously changing the 
number of neurons in the hidden layer to produce a theoretically distinct optimal solution [27]. 
First, the connection weights between the input and hidden layers are set according to Eq. (5): 

𝑤 = ൦𝑤ଵଵ  𝑤ଵଶ  ⋯   𝑤ଵ𝑤ଶଵ  𝑤ଶଶ  ⋯   𝑤ଶ  ⋮         ⋮     ⋱     ⋮𝑤ଵ  𝑤ଶ   ⋯   𝑤ଵ ൪∗, (5)

where, 𝑤 stands for connection weights between 𝑖 neuron of input layer and the 𝑗 neuron of the 
hidden layer. Similarly, the connection weights between implicit and output layer are shown in 
Eq. (6): 

𝛽 = ൦𝛽ଵଵ  𝛽ଵଶ  ⋯  𝛽ଵ𝛽ଶଵ  𝛽ଶଶ  ⋯  𝛽ଶ  ⋮       ⋮     ⋱     ⋮𝛽ଵ   𝛽ଶ  ⋯  𝛽ଵ ൪∗, (6)

where, 𝛽 is the connection weights between 𝑖 neuron of the input layer and 𝑘 neuron of the 
hidden layer. Set threshold of neuron transmission to the hidden layer be 𝑏, then its expression is 
shown in Eq. (7): 



THE APPLICATION OF FAULT DIAGNOSIS TECHNIQUES AND MONITORING METHODS IN BUILDING ELECTRICAL SYSTEMS – BASED ON ELM 
ALGORITHM. GUANGHUI LIU 

394 ISSN PRINT 2335-2124, ISSN ONLINE 2424-4635  

𝑏 = ൦𝑏ଵ𝑏ଶ⋮𝑏 ൪∗ଵ. (7)

Set the data matrix of the training set with the number of samples 𝑞 be 𝑋, then its expression 
is shown in Eq. (8): 

𝑋 = ൦𝑥ଵଵ  𝑥ଵଶ  ⋯  𝑥ଵ𝑥ଶଵ  𝑥ଶଶ  ⋯  𝑥ଶ  ⋮       ⋮    ⋱     ⋮𝑥ଵ  𝑥ଶ  ⋯  𝑥൪∗. (8)

Similarly, the output matrix 𝑌௨௧ is shown in Eq. (9): 

𝑌௨௧ = ൦𝑦ଵଵ   𝑦ଵଶ   ⋯   𝑦ଵ𝑦ଶଵ   𝑦ଶଶ   ⋯   𝑦ଶ  ⋮       ⋮      ⋱      ⋮𝑦ଵ  𝑦ଶ  ⋯  𝑦൪∗
. (9)

When activation function is used for the neurons in hidden layer, let it be 𝑔ሺ𝑥ሻ, then the 
network output 𝑇 is calculated as shown in Eq. (10): 𝑇 = ൣ𝑡ଵ, 𝑡ଶ, … , 𝑡൧∗ , (10)

where, 𝑡 is calculated as in Eq. (11): 

𝑡 = ൦ 𝑡ଵ𝑡ଶ⋮𝑏൪∗ଵ
=
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡𝛽ଵ𝑔൫𝑤𝑥 + 𝑏൯
ୀଵ𝛽ଶ𝑔൫𝑤𝑥 + 𝑏൯
ୀଵ ⋮𝛽𝑔൫𝑤𝑥 + 𝑏൯
ୀଵ ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎤

∗ଵ

,      ሺ𝑗 = 1,2, … ,𝑞ሻ. (11)

In Eq. (12): 𝑤 = ൣ𝑤ଵ,𝑤ଶ, … ,𝑤൧,𝑥 = ൣ𝑥ଵ , 𝑥ଶ , … , 𝑥൧் .  (12)

The above Eq. (12) can be simplified to Eq. (13): 𝐻𝛽 = 𝑇ᇱ, (13)

where, 𝑇ᇱ represents the transposed form of matrix 𝑇 and 𝐻 is output matrix of hidden layer of the 
ELM network, which is expressed as shown in Eq. (14) [28-29]: 
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𝐻൫𝑤ଵ,𝑤ଶ, … ,𝑤 , 𝑏ଵ, … , 𝑏 , 𝑥ଵ, 𝑥ଶ, … , 𝑥൯
= ⎣⎢⎢
⎡𝑔ሺ𝑤ଵ𝑥ଵ + 𝑏ଵሻ  𝑔ሺ𝑤ଶ𝑥ଵ + 𝑏ଶሻ  𝑔ሺ𝑤𝑥ଵ + 𝑏ሻ𝑔ሺ𝑤ଵ𝑥ଶ + 𝑏ଵሻ  𝑔ሺ𝑤ଶ𝑥ଶ + 𝑏ଶሻ  𝑔ሺ𝑤𝑥ଶ + 𝑏ሻ⋮𝑔൫𝑤ଵ𝑥 + 𝑏ଵ൯  𝑔൫𝑤ଶ𝑥 + 𝑏ଶ൯  𝑔൫𝑤𝑥 + 𝑏൯⎦⎥⎥

⎤
∗

. (14)

Two important theorems have been proposed in the context of the underlying neural network 
structure. The first is that for a single-hidden-layer Feedforward Neural Network (SLFN) with 𝑄 
neurons, when faced with any 𝑄 different samples, where 𝑥 = ൣ𝑥ଵ, 𝑥ଶ, … , 𝑥൧ ∈ 𝑅 and  𝑡 = ൣ𝑡ଵ, 𝑡ଶ, … , 𝑡൧ ∈ 𝑅 for an infinitely differentiable activation function 𝑅:𝑅 → R over a 
wide interval [30]. For randomly assigned weights 𝑤 ∈ 𝑅 and thresholds 𝑏 ∈ 𝑅, the output 
matrix 𝐻 is necessarily invertible for the hidden layer and has ‖𝐻𝛽 − 𝑇ᇱ‖ = 0. Second, when 
faced with any 𝑄 number of different samples ሺ𝑥 , 𝑡ሻ, where 𝑥 = ሾ𝑥ଵ, 𝑥ଶ, … , 𝑥ଶሿ் and  𝑡 = ሾ𝑥ଵ, 𝑥ଶ, … , 𝑥ଶሿ ∈ 𝑅. For any small error 𝜀 > 0 in a given environment, with an infinitely 
differentiable activation function 𝑅:𝑅 → R in any interval, there must exist an implicit layer SLFN 
containing a single neuron, with ‖𝐻∗𝛽ெ∗ − 𝑇ᇱ‖ < 𝜀 for randomly assigned weights 𝑤 ∈ 𝑅 
and thresholds 𝑏 ∈ 𝑅 [31]. 

The ELM Extreme Learning Machine can be used in a stepwise manner when computing 
classification problems. The first step is to initialize the network with an input set of 𝑋 and an 
output set of 𝑌. The output of the implicit layer is computed, and the connection weights and 
thresholds are computed through its input feature vector to obtain and the output of the implicit 
layer, which is expressed in Eq. (15): 

𝐻 = 𝑓 ቆ 𝐻𝑤 − 𝑏ୀଵ ቇ ,            𝑘 = 1,2, … ,𝑚. (15)

For the output layer, the ELM neural network output value 𝑇 is calculated after accounting for 
the King City based on its structure by combining 𝐻, the connection weights 𝑊 and the threshold 𝑏. The calculation is shown in Eq. (16): 

𝑇 =  𝐻𝑤 − 𝑏ୀଵ ,           𝐾 = 1,2, … ,𝑚. (16)

Eq. (17) illustrates how ELN may approximate the training sample with 0 error performance 
for any weight and threshold when activation function 𝑓ሺ𝑥ሻ is an endlessly differentiable function 
if the number of neurons in the hidden layer is equal to the input in the actual problem: 

൞ ฮ𝑡 − 𝑦ฮொୀଵ = 0,𝑦 = ൣ𝑦ଵ ,𝑦ଶ , … ,𝑦൧் . (17)

It can be demonstrated that the error of the model derived from its training is incredibly small 
and is theoretically approximating the minimal value 𝜀, as shown in Eq. (18), when the number of 
neurons in the hidden layer benefits the number of inputs in the actual problem. At this point, the 
number of input sets appears to be too large: 

 ฮ𝑡 − 𝑦ฮொୀଵ < 𝜀. (18)
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The frontal network weights of the output and hidden layers are then updated. ELM keeps its 
network connection weights in a previously constant state during model training, but needs to 
update the weights of the output and hidden layers, as shown in Eq. (19): 

൝min௪ೕೖ ฮ𝐻𝑤 − 𝑇ᇱฮ,𝑤ෝ = 𝐻ା𝑇ᇱ,  (19)

where, 𝐻ା is Moore Penrose generalized inverse matrix [32] of the implied layer output matrix 𝐻. The final step is to perform the iterative computation of this algorithm, as shown in Fig. 3. 

Sample data

Training data

Test Set Data

Create ELM 
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Fig. 3. Steps to establish ELM extreme learning machine 

As seen in Fig. 3, the ELM is trained once a test set is produced. The ELM model is then tested 
by repeatedly iterating over the target accuracy values until the desired metric is obtained, 
resulting in the output of a performance evaluation of the ELM. If the set metric is not reached, 
the iterative computation continues. The study carried out model construction based on the above 
ELM algorithm principles, and structure of this model is shown in Fig. 4. 

Start

Operation status of 
building electrical system

Whether 
the system is 

disturbed

Whether the information 
required for ELM 

detection is complete

Output ELM 
prediction results

Is the 
output result within 
a 95% confidence

 interval

Check the prediction 
method of pattern base

Correction 
value

Output the final 
result of stable 

prediction

Whether 
communication 

failure 
occurs

Matching 
prediction using 

power angle 
information

Match and predict the 
working condition 

information of
 the cloud

Output the 
prediction results of 
the pattern libraryEnd

Yes

No

YesNo

No

 
Fig. 4. Fault identification and monitoring model of building electrical system based on ELM algorithm 

As shown in Fig. 4, the study uses the ELM algorithm to monitor and identify faults in building 
electrical systems. Being a fault diagnosis model, the model has many inputs and a single output. 
At this point, the input to the model is a 12-dimensional feature vector. Experimental analysis of 
fault diagnosis technology and monitoring method for building electrical system based on ELM 
algorithm. 
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4. Analysis of experimental results 

4.1. Transient analysis of building electrical system fault simulation 

Since the number of hidden layer neurons of ELM extreme learning machine cannot be 
determined, the algorithm is needed to search automatically. The specific parameter Settings of 
ELM extreme learning machine, BP neural network and GA-BP neural network are shown in 
Table 2. 

Table 2. Three kinds of neural network parameter Settings 

Algorithm ELM 

Mapping 
function 

Input 
layer Tansig 

Activation 
function Sigmoid  Hide 

Layers Tansig 

Weight 
threshold 

ELM automatically finds the 
optimal solution 

Output 
layer Purelin  

Number of 
hidden layer 

nodes 
13 Training 

function 

Training function 
trainlm of Levenberg 

Marquardt 

Algorithm BP 

Mapping 
function 

Input 
layer Tansig 

Activation 
function Sigmoid  Hide 

Layers Tansig 

Weight 
threshold 

Random initialization, then 
gradient descent optimization 

to reduce the error 

Output 
layer Purelin  

Number of 
hidden layer 

nodes 
13 Training 

function 

Levenberg Marquardt's 
BP algorithm training 

function trainlm 

Algorithm GA-BP 

Mapping 
function 

Input 
layer Tansig 

Activation 
function Sigmoid  Hide 

Layers Tansig 

Weight 
threshold 

GA algorithm is initialized, and 
then gradient descent 

optimization is used to reduce 
the error 

Output 
layer Purelin  

Number of 
hidden layer 

nodes 
13 Training 

function 

Levenberg Marquardt's 
BP algorithm training 

function trainlm 

Fault simulations were performed on the modelled building electrical system, with the faults 
set to occur in the middle section of the line. For each type of fault in the model, several different 
sets of fault parameters were set to investigate the degree of change in system voltage and current 
and the trend under different fault parameters. This was done in an effort to simulate as closely as 
possible the faults that would occur in the field operation of the building electrical system. The 
wiring of the building electrical system was set up for an ABC three-phase short circuit fault. The 
fault resistance was varied from 1 Ω to 50 Ω, with a total of 50 sets of simulations. To highlight 
the contrast effect, only the transient voltage and current waveforms for the 1 Ω and 25 Ω 
simulations are drawn, as shown in Fig. 5. Note: Fig. 5(a) shows the A phase short-circuit fault 
simulation transient voltage. Fig. 5(b) shows the B phase short-circuit fault simulation transient 
voltage. Fig. 5(c) shows the C phase short-circuit fault simulation transient voltage. Fig. 5(d) 
shows the A phase short-circuit fault simulation transient current. Fig. 5(e) shows the B phase 
short-circuit fault simulation transient current. Fig. 5(f) shows the C phase short-circuit fault 
simulation transient current. 
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Fig. 5. Waveform of transient voltage and current of three phase short circuit fault simulation 

Fig. 5 shows that both the voltage and current of this system changed after a fault. The 1 Ω 
and 25 Ω simulated transient voltages showed the same trend, while the ABC three-phase 
short-circuit simulated voltage showed smaller fluctuations in the 0.07-0.1 s time range. Similarly, 
the 1 Ω and 25 Ω simulated transient currents showed almost no change in the 0.07-0.1 s time 
range. Similarly, the trends of the transient currents for the 1 Ω and 25 Ω simulations are 
consistent, but the ABC three-phase short circuit simulated currents show little variation in the 
0-0.1 s time range and regular variation after 0.1 s. The results show that for a three-phase short 
circuit, the magnitude of this fault resistance has a limited effect on the three-phase voltage, but a 
greater effect on the three-phase current. 

Due to the mechanistic nature of ELM learning, the number of neuron nodes is then selected 
after several matching trials. The effect of number of neurons in hidden layer on this ELM 
performance is shown in Fig. 6. 
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Fig. 6. The influence of the number of hidden layer neurons on the performance of three algorithm models 

Fig. 6 illustrates how the ELM learning machine performs best when the number of hidden 
layer neuron nodes is set to 50, resulting in a test set prediction accuracy of approximately 
97.86 %. As the number of neurons increased, the model's ability to generalise started to decrease. 
In the range of 85-160 neurons, the correct prediction rate was maintained at around 95.78 %. At 
165 neurons in the hidden layer, it dropped to 92.34 %. After the number of neurons exceeded 
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180, the correct prediction rate of the model dropped sharply and overfitting occurred. Similarly, 
the prediction performance of the BP network model and the GA-BP network fault diagnosis 
model was affected by the number of neurons in the hidden layer, similar to that of the ELM-based 
model. When the number of hidden layers reached 50, the prediction accuracy of these two models 
was the highest, around 91.56 % and 93.69 % respectively. As the number of neurons in the hidden 
layer increases, the predictive ability of both models tends to decrease and eventually overfitting 
occurs. The experimental results showed that the ELM-based fault diagnosis model for building 
electrical systems was superior to other models in terms of prediction accuracy. 

The 12 feature vectors were used as input to the fault diagnosis and monitoring model for this 
building electrical system and the studied ELM algorithm-based model was compared with the 
BP model and the Genetic Algorithm-Back Propagation (GA-BP) fault diagnosis model based on 
the Genetic Algorithm Optimization BP algorithm. The classification errors and classification 
outputs of the networked distribution network faults obtained from these three models are shown 
in Fig. 7. NOTE: Fig. 7(a) shows the classification error of three models. Fig. 7(b) shows the BP 
model classification output. Fig. 7(c) shows the GA-BP model classification output. Fig. 7(d) 
shows the ELM model classification output. 
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Fig. 7. Fault classification results of distribution network based on ELM, BP and GA-BP algorithms 

From Fig. 7(b), it can be seen this BP algorithm based model can accurately achieve the 
classification of 10 faults with a maximum error of 2. From Fig. 7(c), the GA-BP neural network 
based model can accurately achieve the classification of 10 faults with a maximum error of 7. 
From Fig. 7(d), the ELM algorithm based model can accurately achieve the classification of 10 
faults with a maximum error of 2. From Fig. 7(a) and Fig. 7(b), it can be inferred that the model's 
classification accuracy for this sample is 89.09 %. Out of 110 samples, 12 of the anticipated results 
based on the BP neural network model had incorrect classifications. From Fig. 7(a) and Fig. 7(c), 
it can be seen that the predicted output based on the GA-BP algorithm model and the actual output 
error in 110 samples, there are 7 samples with Therefore, the classification accuracy of the model 
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for this sample is 93.64 %. From Fig. 7(a) and Fig. 7(d), the predicted output of the ELM-based 
model is misclassified in only 2 out of 82 samples. Therefore, the classification accuracy of the 
model for this sample is 97.56 %. The results show that the ELM algorithm-based fault diagnosis 
technology and monitoring method for building electrical systems has a higher classification 
accuracy than both BP network and GA-BP model fault diagnosis models, showing better 
generalization ability and robustness. 

To further validate the proposed method for fault detection in building electrical systems, it 
was compared with the BP and GA-BP models, respectively. The plot of the FPR-TPR binary is 
called the ROC curve, which makes it easier to determine the ability of a classifier to detect 
samples at a given threshold. The ROC curves of the three models are shown in Fig. 8. 
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Fig. 8. ROC curves of three models 

From Fig. 8, the AUC values of the research ELM algorithm-based model with BP model and 
GA-BP model are 0.92, 0.87 and 0.63, respectively. The results indicated that the research model 
was better than other two algorithm models for fault discrimination of building electrical systems. 

4.2. Comparative analysis of performance of three fault diagnosis models for building 
electrical systems 

Finally, to study the accuracy of the proposed methods for fault diagnosis of building electrical 
systems, they are compared with the BP and GA-BP models respectively. In order to avoid chance 
in calculation and to lessen the impact of random initial values on the results, the three methods 
are computed ten times to take the average value. Their performance comparison results are shown 
in Table 3. As the connection weights of its input and implied layers in ELM theory are random 
in nature. 

Table 3. Performance comparison results of three models 
Algorithm index ELM GA-BP BP 

Activation function Sigmoid Sigmoid Sigmoid 
Number of neurons Iterative calculation Manual setting Manual setting 

Value (weight, threshold) Random 
Genetic algorithm 

optimization+gradient 
descent iteration 

Gradient descent 
iteration 

Root mean square error 0.3521 0.5836 0.7923 
Total accuracy of fault 

identification 97.27 % 93.64 % 89.09 % 

Algorithm time consuming 0.201s 31.456 s 0.475 s 

Table 3 shows that the ELM algorithm has the lowest value for the root mean square error of 
fault classification, which is 0.3521. The GA-BP and BP algorithms have lower RMS errors of 
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0.2315 and 0.4402 lower respectively. The overall accuracy of ELM fault identification is much 
higher than the other two algorithms, being 3.63 % higher than the GA-BP algorithm and 8.18 % 
higher than the BP algorithm. In addition, in terms of running time, the ELM algorithm takes only 
0.427 s, which is faster than the other two algorithms. In summary, the ELM algorithm has certain 
advantages over traditional algorithms in terms of recognition and running time. 

As can be seen from Fig. 9, BP has a worse performance in terms of accuracy, comparing its 
results with those of ELM, the RMSE of BP is 0.4402 higher. The RMSE of the GA-BP model is 
0.2315 higher than that of the ELM-based model. The ELM-based model has a 97.27 % correct 
rate in fault discrimination, which is better than other traditional or extended fault diagnosis 
monitoring models. In addition, the ELM model is faster in terms of model training time than the 
other models compared. As shown in Fig. 9, the monitoring accuracy of the research model is 
compared with the two more advanced fault diagnosis models in literature [12] and literature [13]. 
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Fig. 9. Monitoring accuracy comparison results of different models 

From Fig. 9, the ELM model data predicts small fluctuations, tends to be smooth and has a 
better monitoring accuracy of up to 98.6 %. Therefore, the proposed method can effectively and 
accurately diagnose and monitor the fault categories of building electrical systems and meet the 
real-time requirements. In summary, the ELM algorithm-based fault diagnosis and monitoring 
model for building electrical systems is optimal in terms of generalization performance, correct 
prediction rate and computation speed, and diagnosis and monitoring accuracy. 

5. Conclusions 

Both the distribution system and the electricity consuming equipment will suffer more damage 
from a fault in the building electrical system. The study proposes to build a fault diagnosis and 
monitoring model for building electrical systems using the ELM algorithm by combining the 
actual operating conditions of building electrical systems with the advantages and disadvantages 
of conventional neural networks for fault identification. Results showed this model based on the 
ELM algorithm can accurately achieve 10 classifications of faults with a maximum error of 2. The 
classification accuracy of the model for this experimental sample is 97.56 %, which is higher than 
the classification accuracy of BP models and GA-BP fault diagnosis models, showing better 
generalization ability and robustness. When the hidden layer's number of neuron nodes was set to 
50 for the ELM learning machine to categorize this data, its test set prediction accuracy was 
roughly 97.86 %. The AUC value of the model based on the ELM algorithm for the study was 
0.92 respectively, which is good for fault discrimination of faults in building electrical systems. 
The RMSE of the model is 0.3521, which is smaller than the BP models and GA-BP fault 
diagnosis models. The ELM algorithm-based model is faster in identifying and diagnosing faults 
than other algorithmic models, with a fault discrimination accuracy rate of 97.27 % and a 
computation time of only 0.201 s. At the same time, the ELM model in this study has a good fault 
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monitoring accuracy of up to 98.6 % for building electrical systems. Although the ELM-based 
building electrical fault diagnosis method in this research has achieved good results, there are still 
shortcomings. In the actual scene, just one lighting exhaust bus was modeled, and the malfunction 
on this bus was reproduced. Each component of the building electrical system should be 
researched in the upcoming work in order to create a comprehensive building electrical fault 
diagnosis system. A further area that needs to be addressed in future research is the residual life 
prediction of building electrical equipment, which is a crucial component of the dependability of 
building electrical lines. 

The fault characteristic quantity data were input into three fault identification intelligent 
algorithms to obtain the recognition effect of the three algorithms. The comparison results are 
shown in Table 4. 

Table 4. Fault diagnosis effect of three algorithms in different environments 
Contrast item BP (%) GA-BP (%) ELM (%) 

Single-phase grounding 57.14 85.71 85.72 
Two-phase short circuit 64.29 78.57 100 

Two-phase short-circuit grounding 100 100 100 
Single-phase arc grounding 100 100 100 
Two-phase arc short circuit 100 100 100 

Single-phase absence 89.09 93.64 97.27 
Overload fault 100 100 96 

From Table 4, for distribution network fault identification, BP neural network shows a certain 
identification speed and generalization ability. However, the accuracy of single-phase short-circuit 
fault identification is low, only 57.14 %. In line with its theory, the GA-BP neural network has 
great generalization and accuracy abilities. However, the naturally slow computational speed of 
the genetic algorithm is exacerbated when the BP neural network is optimized. It can be seen that 
the computational speed of the GA-BP algorithm is far behind that of the BP neural network and 
the ELM extreme learning machine. In addition, the ELM method still performs well in fault 
detection compared to the GA-BP algorithm, with the exception of overload fault diagnosis, which 
has a 4 % difference. For other fault types, the diagnostic performance of the ELM is much better 
than other models. 
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