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Abstract. Laser surfacing repair technology for sealing welds is widely used in metal repair. Due 

to welding technology and usage scenarios, process defects on the metal surface are inevitable. 

Therefore, ultrasonic surface wave technology is used to analyze the surface defects of metal 

materials. Principal Component Analysis (PCA) is used to extract the main defect signals on the 

metal surface, and synthetic aperture focusing technology is used to reduce imaging errors. 

Considering the lack of PCA in imaging defects, wavelet domain hidden Markov models 

(WHMM) are combined to optimize the signal, thereby improving the inspection effect of metal 

defects. In the test results of the relationship between the propagation distance of 316 L steel and 

the defect echo signal, the echo signal gradually fitted as the propagation distance increased. When 

the propagation distance was greater than 10 mm, the image acquisition defect signal had 

significant noise points. Various techniques were used to process the original echo signals of metal 

surface defects. The improved PCA-WHMM algorithm had significant advantages with the SNR 

value of the defect image increased by 13.65 % compared to PCA-WHMM. At the same time, the 

surface repair effects of laser surfacing 316 L metal before and after optimization were compared. 

The hardness, toughness, and corrosion resistance of the optimized metal were significantly 

improved. The proposed technological innovation combines traditional laser surfacing repair with 

deep learning fault diagnosis, which not only greatly improves the efficiency of fault diagnosis, 

but also proves that this research can effectively avoid common focus issues of laser surfacing 

repair technology, providing important technical reference for the application of ultrasonic 

technology in metal defect detection. 
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1. Introduction 

In the aerospace field, sealing weld laser surfacing technology is often used to repair defects 

corrosion problems in parts. The more precise the part, the higher the difficulty in the repair 

process. Laser repair technology can ensure the beauty and smoothness of the repaired part while 

improving the quality of the welding position. However, due to factors such as laser welding 

technology and materials in the actual working environment, minor defects on the repaired metal 

surface inevitably occur. This continues to expand over time, affecting the safe operation of 

industrial facilities. Surface defects in metal materials can greatly affect the use of the equipment 

and easily cause personal safety accidents. Hence, it is crucial to conduct a thorough safety testing 

procedure for equipment components during equipment utilization to guarantee the safe operation 

of the equipment [1]. Various inspection techniques are used to detect surface defects on metal, 

such as radiographic inspection, penetrant or magnetic particle inspection, eddy current 

inspection, thermal imaging inspection, and ultrasonic inspection. Ultrasonic inspection is highly 

efficient in detecting various metal surface defects due to its excellent emission directionality and 

high detection efficiency by collecting signals from defective areas. Therefore, this study employs 

ultrasonic inspection technology to analyze metal material defects [2]. To overcome the issue of 

defect signal error, the PCA algorithm and WHMM model are integrated into the inspection signal 
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optimization process, improving the detection efficacy of ultrasonic technology on metal material 

surface defects. This research introduces a novel approach to inspecting metal surface defects, 

thus enhancing the detection accuracy of metal material surface defects. 

2. Related work 

Surface defects of metal parts have always been a significant concern in modern industrial 

manufacturing, and the application of ultrasonic inspection technology has propelled rapid 

development in this field. Both domestic and foreign experts have conducted extensive research 

on this issue. For instance, Chabot et al. found that additive manufacturing could be a 

game-changer in modern industrial manufacturing since it uses direct energy deposition for metal 

processing. However, practical applications lacked effective health control measures. Therefore, 

a comprehensive ultrasonic technology-based manufacturing process was studied for timely 

tracking of industrial processes, accurately identifying relevant problems and avoiding defective 

parts during processing [3]. Similarly, Obadimu et al. proposed an efficiency improvement scheme 

for existing melt wire manufacturing technologies using immersion ultrasonic testing to detect 

defective parts in manufacturing, including human error and machining defects. Experimental 

tests showed that the quality of the part inspection image depended on the probe frequency and 

accuracy of the processing system parameters [4]. Acevedo et al. studied the impact of residual 

stress on production in existing field of parts processing, concluding that ultrasonic technology 

could improve the manufacturing effect of parts and product production quality as an effective 

residual stress solution [5]. In their research, Gupta et al. investigated various industrial production 

processes, including casting, rolling, forging, extrusion, etc., requiring extremely high process 

accuracy in manufacturing technology. In large-scale manufacturing environments, non-

destructive testing technology such as visual inspection, penetrant testing, magnetic particle 

testing, radiographic testing, and ultrasonic testing were applied to the field of parts manufacturing 

for quality and performance testing. Experimental tests indicated that non-destructive testing 

technology enables manufacturing optimization and improves the overall production quality of 

parts [6]. 

Neural network algorithm technology has seen significant developments in recent years and 

has been widely employed in medical, industrial manufacturing, graphic recognition, and other 

fields. The application of neural network technology in metal surface defect detection has greatly 

improved the detection effect of metal surface defects. Sun et al. found that metal performance 

defect detection technology has significant implications for industrial manufacturing quality 

control. They constructed a metal surface defect detection method using convolution models that 

extracted metal surface features and constructed model training samples. A large volume detection 

instrument was also constructed based on this technology to address the problem of metal surface 

volume recognition. Specific testing experiments demonstrated that this proposed technology can 

effectively identify metal surface defects, including scratches, indentations, pits, and other defects, 

with a recognition rate of over 97 %, meeting industrial production requirements [7]. Similarly, 

Luo et al. emphasized the importance of building a health system for parts production and used a 

full scene vision system to achieve the inspection of metal performance defects. They proposed a 

non-destructive testing network to solve the problem of extracting image feature distortion by 

using high-resolution instruments to extract metal surface defect feature parameters. By 

constructing a surface defect training dataset, the system improved the detection effect of metal 

performance defects. Experimental tests showed that this technology effectively identifies metal 

performance defects, with recognition accuracy superior to traditional detection techniques [8]. 

Mohammed et al. identified the limitations of existing metal crack detection technologies, such as 

manual maintenance, low detection efficiency, and failure to meet quality requirements. 

Therefore, they proposed a new technology that displays two-dimensional images of the part 

surface obtained through visual instruments, extracts image feature data using a depth learning 

model, and completes the inspection of metal crack defects through model training. Experimental 
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inspection confirmed that this technology is cost-effective and more effective than traditional 

inspection technologies, meeting the requirements for parts processing and use [9]. 

As per the above-mentioned research, it has been observed that metal performance defects 

pose a significant challenge in the industrial manufacturing sector. However, recent advances in 

ultrasonic testing technology have proven to be highly effective in detecting such defects. In this 

regard, PCA-WHMM ultrasonic welding detection technology is proposed based on neural 

network and other advanced methodologies. The proposed technique assimilates ultrasonic 

detection with cutting-edge neural network technology, enabling superior accuracy in image 

recognition, defect category diagnosis, and other crucial aspects. Furthermore, the proposed 

solution exhibits numerous advantages over traditional technologies. For example, the recognition 

efficiency of defects is faster, the recognition of different types of defects is more accurate, and 

the integration with traditional recognition technologies greatly improves the comprehensive 

effect of defect diagnosis. This significantly enhances the application effect of ultrasonic detection 

technology in detecting metal surface defects. Thereby exhibiting a significantly enhanced 

application effect of ultrasonic testing technology in detecting metal surface defects. 

3. Metal material surface defect detection model construction 

3.1. Ultrasonic metal surface signal acquisition and feature analysis 

In industrial manufacturing, laser surfacing repair is a widely employed technique for sealing 

welds in metal parts. This method employs a heat source to weld alloy materials onto the surface 

of the metal part, resulting in a low-cost and resource-efficient solution. However, the metal 

surface repaired by this technology is susceptible to various weld defects, which can pose 

significant safety hazards to the equipment's usage [10]. Fig. 1 demonstrates some of the typical 

defects encountered in surfacing repair. 
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d) Undercut of surfacing 

Fig. 1. Common problems in laser surfacing repair 

In the context of laser surfacing for metal parts repair, it is imperative to conduct a meticulous 

examination of the repaired surface to ensure its efficacy. One such technique that has gained 
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prominence in recent times is ultrasonic leaky surface wave inspection technology. This 

non-destructive testing approach exhibits several advantages over traditional metal performance 

defect detection technologies, including superior recognition accuracy for metal defects and 

greater flexibility in application scenarios [11]. During testing, when a solid surface is inspected, 

the ultrasonic wave moves along the inspection finger, as depicted in Fig. 2, highlighting the 

propagation trajectory of the ultrasonic metal [12]. 



Acoustic beam incidence angle Reflected wave

Waveform conversion point

Refracted longitudinal wave

Refracted shear wave

 
Fig. 2. Schematic diagram of ultrasonic signal propagation 

Referring to the schematic diagram in the figure depicting ultrasonic wave propagation on the 

metal surface, the expression of refraction is determined by Snell’s Law, as demonstrated in 

Eq. (1): 

sin𝜃

𝑐𝑝

=
sin𝛽𝑠

𝑐𝑠2

=
sin𝛽𝑝

𝑐𝑝2

=
1

𝑐𝑟

, (1) 

where, 𝛽𝑠  represents the detection of the internal shear wave refraction angle of the metal, 𝛽𝑝 

represents the detection of the internal longitudinal wave refraction angle of the metal, 𝑐𝑝 

represents the longitudinal wave velocity in the medium, 𝑐𝑟 represents the surface wave velocity, 

and 𝑐𝑠2
 represents the intermediate shear wave velocity in the medium. In ultrasonic testing, leaky 

surface waves refer to the appearance of a wave field on the surface of a medium by a sound 

source and the appearance of waves leaking outward [13]. This phenomenon can reflect the lesions 

problem on the surface of media objects. In actual metal surface defect detection, the focusing 

probe will gather ultrasound at a point, and the leakage surface wave can be divided into the 

leakage surface wave sound field and the focused sound field [14]. If the focal point of the metal 

solid surface is defined as (𝑥𝑠1, 𝑦𝑠1) , which is consistent with the mutual theory, then the 

amplitude of any point of the leaky surface wave is as shown in Eq. (2): 

𝑝(𝑥𝑠1, 𝑦𝑠1) = ∫ 𝑠0 (𝐶𝑛(𝑥1)𝐺1

𝜕𝑝0(𝑦1)

𝜕𝑛(𝑦1)
) 𝑑𝑆𝑜(𝑦1), (2) 

where, 𝑥1, 𝑦1, and 𝑧1 represent the focal point location parameters, 𝐶 represents the propagation 

speed of sound waves in the medium, 𝑠0 represents the focus probe area, 𝑝0 represents the probe 

surface acoustic pressure amplitude, 𝐺1 represents the Green’s function, 𝑛 represents the normal 

vector, and 𝑑 represents the focus size parameter. Green's function is shown in Eq. (3): 

𝐺1 =
exp(𝑖𝑘𝑟1)

4𝜋𝑟1
, (3) 
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where, 𝑟1 represents the radius of the circular arc probe, 𝑘 represents the second-order mass wave 

number, and 𝑖 represents a constant. Due to the use of an elliptical ultrasonic probe to detect metal 

surface defects, the probe will form a focal point on the second dielectric surface and change the 

focus shape as the refractive angle changes [15]. Sound source integration is used for expansion 

and the focal point of the leaky surface wave is shown in Eq. (4): 

𝑝(𝑥𝐴1,𝑦𝐴2
) =

−2

𝑐𝐿𝑅𝑊
⋅

1

𝑀𝑥
∫𝑣1

′(𝑦2)𝐺2𝑑𝑆1
𝑠

, (4) 

where, 𝑐𝐿𝑅𝑊  represents the sound velocity of the leaky surface wave, 𝐺2  represents the leaky 

surface wave Greening function, 𝑣2 represents the acoustic velocity of the second-order medium, 

𝑆1  represents the focal area of the second-order medium surface, and 𝑀𝑥  represents the area  

𝑆1-axis length, as shown in Eq. (5): 

𝑀𝑥 =
2𝑎

cos𝜃
, (5) 

where, 𝜃  represents the longitudinal wave incidence angle of the probe. The collection and 

analysis of metal surface defect features can be achieved by scanning metal surfaces with 

ultrasonic instruments. The defect detection model of the ultrasonic probe is shown in Fig. 3 [16]. 

Metal joint profile to be tested

Interference with acoustic wave propagation path

Longitudinal wave propagation path of 

leaky surface wave
Metal surface to be tested

Acoustic probe

 
Fig. 3. Ultrasonic metal testing model 

When detecting metal surface defects, the initial step involves calibrating the ultrasonic probe. 

To enable the probe to receive metal surface-emitted waves, it must be moved along the 𝑋-axis 

direction by a specific distance [17]. Additionally, due to variations in the material and structure 

of the tested metal, ultrasonic waves may exhibit different scattering and attenuation phenomena 

in different media, particularly in composite materials. Considering that surfacing repair of metal 

surfaces also belongs to composite metals, studying the effective distance of surface leakage 

waves and the characteristics of acoustic wave attenuation can facilitate the inspection of metal 

surface defects. 

4. Synthetic aperture-focused imaging model construction based on PCA-WHMM 

The ultrasonic signals utilized for metal surface defect detection comprise defect signals, 

system noise, and structural noise, which differ somewhat from the echo signals generated by 
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conventional ultrasonic testing methods. The relationship between defect signals and noise signals 

is more intertwined and can better reflect the attributes of metal surface defects. However, unlike 

these two signals, structural noise does not disperse entirely within the detection signal. As a result, 

it ultimately impacts the imaging quality of ultrasonic testing in specialized environments such as 

near-field testing [18]. To enhance the effectiveness of ultrasound technology, a PCA-WHMM 

signal noise reduction model has been developed by combining principal component analysis 

(PCA) and wavelet domain hidden Markov models (WHMM), which improves the imaging effect 

of surface leakage waves [19]. 

In the field of signal denoising, wavelet transform is widely used in signal denoising, image 

compression, and other fields. However, when dealing with signal problems, wavelet is also easy 

to remove effective signals. Markov model can accurately describe the relationship between 

wavelet coefficients and improve the statistical effect of wavelet coefficients. Therefore, a 

WHMM model is constructed by combining the two, and its structure is shown in Fig. 4. 

White noise

WT

Bayesian estimation

Bayesian estimation

Expected maximum algorithm

IWT X 

XOriginal signal

Reconstructed 

symbol

 
Fig. 4. WHMM model signal denoising process 

In signal denoising of the WHMM model, the observed signal can be described using wavelet 

coefficients as shown in Eq. (6): 

𝑤𝑓
𝑘 = 𝑦𝑖

𝑘 + 𝑛𝑖
𝑘, (6) 

where, 𝑤𝑓
𝑘 represents the measured signal, 𝑦𝑖

𝑘 represents the defective signal, and 𝑛𝑖
𝑘 represents 

the noise reduction signal. By calculating the inverse wavelet transform, the filtered surface wave 

signal can be obtained. At the same time, considering that the WHMM model cannot process 

modulated region signals, PCA and Frequency Domain Synthetic Aperture Focusing Imaging 

Technology (F-SAFT) were introduced in the study to reconstruct the image of defects. Therefore, 

the PCA method and WHMM model are combined to process metal surface detection signals [20]. 

The signal processing flow of the PCA-WHMM model is shown in Fig. 5. 

According to the characteristics of acoustic wave detection, the detected metal surface signal 

is divided into two parts. The first part is the noise near the field area, which is 𝐺(𝑡1). The sound 

source far field area is 𝐹(𝑡2). The original pulse-echo signal is shown in Eq. (7): 

𝑌(𝑡) = 𝐺(𝑡1) + 𝐹(𝑡2). (7) 

The PCA method is used to process the 𝐺(𝑡1) signal, extract the defective signal, and describe 

the reconstructed signal as 𝑔(𝑡1). The WHMM model is used to process the 𝐹(𝑡2) signal to 

enhance the signal-to-noise ratio and improve the recognition rate of the defective signal. The 

processed signal is described as 𝑓(𝑡2), and the pulse-echo sampling signal after noise reduction 

and reconstruction is shown in Eq. (8): 

𝑦(𝑡) = 𝑔(𝑡1) + 𝑓(𝑡2). (8) 
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Fig. 5. PCA-Whmm model signal noise reduction process 

In the composition of metal defect detection imaging, the F-SAFT algorithm is introduced to 

reduce the composition imaging defect error, while improving the signal-to-noise ratio of the 

defect image, thereby improving the overall quality of metal performance defect detection 

composition imaging. Assuming that the acoustic wave emitted by the ultrasonic probe propagates 

between the defect and the probe position, the detection area is defined as 𝑝(𝑥, 𝑧, 𝑡), and there is 

a change in the sound pressure at any point (𝑥, 𝑧) in the area. The medium sound propagation 

speed at the equivalent link is �̂�𝑧, as shown in Eq. (9): 

�̂�𝑧 =
𝑐

2
, (9) 

where, 𝑐 represents the mean square sound velocity of both media. The time correspondence has 

to be satisfied for both types of imaging to calculate the imaging results. The acoustic wave 

equation is shown in Eq. (10): 

∇2𝑝(𝑥, 𝑧, 𝑡) −
1

�̂�𝑧
×

𝜕2𝑝(𝑥, 𝑧, 𝑡)

𝜕𝑡2
= 0, (10) 

where, 𝑡 represents the propagation time of the sound wave. The inverse Fourier transform of 

𝑝(𝑥, 𝑧, 𝑡) can be obtained as shown in Eq. (11): 

∫ (
𝜕2

𝜕𝑧2
+ (

𝜔2

�̂�2(𝑧)
− 𝑘𝑥

2))
𝑣∞

𝑝(𝑘𝑥, 𝑧, 𝜔)exp(𝑖(𝑘𝑥𝑥 + 𝜔𝑡))𝑑𝑘𝑥𝑑𝜔, (11) 

where, 𝑘𝑥  represents the wave number in the 𝑥 axial direction, 𝑝(𝑘𝑥, 𝑧, 𝜔) represents the two-

dimensional spectrum, and 𝜔 represents the angular frequency, as shown in Eq. (12): 

𝑝(𝑘𝑥, 𝑧 + Δ𝑧, 𝜔) = 𝑝(𝑘𝑥, 𝑧, 𝜔)exp(𝑖𝑘𝑧Δ𝑧), (12) 

where, 𝑘𝑧 represents the wave number in the 𝑧 axis. 𝑘𝑧 is shown in Eq. (13): 

𝑘𝑧 = √
𝜔2

�̂�2(𝑧)
− 𝑘𝑥

2 ,     
𝜔2

�̂�2(𝑧)
− 𝑘𝑥

2 ≥ 0. (13) 

From Eq. (12), the two-dimensional spectrum of the target can be obtained by calculating the 

echo signal. The signal has the maximum amplitude when 𝑡 = 0 The planar imaging at depth 𝑧 is 
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shown in Eq. (14): 

𝑝(𝑥, 𝑧) = ∫ ∫ 𝑝(𝑘𝑥, 𝑧, 𝜔)
𝑣∞

exp(𝑖𝑘𝑧Δ𝑧)𝑑𝑘𝑥𝑑𝜔. (14) 

At the same time, it is also necessary to consider the impact between water and solid media 

and to calculate the results through different wave numbers in the use of ultrasonic technology. 

Assuming that the imaging in the water layer is within the thickness range of the water layer, the 

frequency spectrum of the layer can be obtained from Fourier transform as shown in Eq. (15): 

𝑝(𝑘𝑥, 𝑧, 𝜔) = 𝑝(𝑘𝑥, 𝑧 = 0, 𝜔) × exp (𝑖𝑧√
4𝜔2

𝑐0
2 − 𝑘𝑥

2). (15) 

The entire metal surface defect detection adopts ultrasonic testing technology. The ultrasonic 

probe equipment is placed at the position of the metal surface to be detected, the detection position 

of the instrument is adjusted, and the characteristic data of the metal surface to be detected are 

collected. The entire metal surface defect detection process is shown in Fig. 6. 

The PCA method is used to process the collected structural noise area signals. For 

nonstructural noise areas, the WHMM model is used to complete the signal noise reduction 

processing, and the two-stage processing data is reconstructed. The F-SAFT algorithm is used to 

achieve the reconstruction of feature data, thereby completing the reconstruction of metal surface 

defect images, and achieving the inspection of metal surface defects. 

Original acquisition data of 

leaky surface wave
Truncated signal

Joint PCA-WHMM 

signal processing

Data reconstruction imageF-SAFT reconstructed image

 
Fig. 6. F-SAFT Imaging process results of PCA-WHMM data processing 

5. Metal surface defect detection experimental analysis 

5.1. Metal surface defect signals feature analysis based on ultrasonic technology 

MATLAB software was used to analyze the detection of surface leakage wave signals, and 

ultrasonic probes with a frequency of 5 MHz and 7.5 MHz were selected for testing. The focal 

length of the experimental probe was 76 mm. 45 type steel and 316 L type steel were selected for 

metal surface defect detection. Before testing, the boundary reflection method was used to adjust 

the experimental position of the probe. The experimental distance of the leakage surface wave was 

continuously increased on the surface of the metal experimental block, ultimately achieving sound 

pressure fitting to complete the signal testing. Fig. 7 shows the test results of the echo signal 

received by the probe. 

Fig. 7(a) shows the echo signal detected by 45 type steel under a 5 MHz probe. According to 

the curve results, when the propagation distance was 50 mm, the sound pressure amplitude 

gradually tended to fit with the increase of the propagation distance of the leaky surface wave on 
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the metal surface. Fig. 7(b) shows the echo signal detected by 316 L steel under a 5 MHz probe. 

According to the curve results, the acoustic pressure amplitude curve obtained for 316 L steel was 

similar to that for 45 steel with a shorter fitting distance. When the propagation distance was 

40 mm, the acoustic pressure amplitude tended to fit, indicating that there were differences in the 

detection results of echo signals from different metal materials. Fig. 7(b) and Fig. 7(d) show the 

echo signals detected by a 7.45 MHz probe for 45 type steel and 316 type steel, respectively. 

According to the curve change results of the test, there were differences in the attenuation of the 

final detected echo signal for the same metal sample under different frequency probes. With a 

7.45 MHz probe, 45 type steel had a region fitting at a distance of 35 mm, while 316 L type steel 

had a region fitting at a distance of 25 mm. When ultrasonic technology was used to detect metal 

surface defects, it was necessary to select a reasonable probe detection frequency based on the 

type of metal to ensure the detection effect of metal performance defects. To further analyze the 

detection results of ultrasonic technology on metal material surface curves, a continuous wavelet 

transform was used to analyze the echo signal, as shown in Fig. 8. 
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(b) Amplitude Results for 316L Type Steel at 5MHz
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(c) Amplitude Results for 45 Type Steel at 7.5MHz
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(d) Amplitude Results for 316L Type Steel at 7.5MHz
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(b) Amplitude Results for 316L Type Steel at 5MHz
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(c) Amplitude Results for 45 Type Steel at 7.5MHz
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(d) Amplitude Results for 316L Type Steel at 7.5MHz
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(b) Amplitude Results for 316L Type Steel at 5MHz
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d) Amplitude results for 316L type steel at 7.5 MHz 

Fig. 7. Ultrasonic probe signal detection results 

Fig. 8 shows the relationship between propagation distance and defect echo signal of 316 L 

steel. In the experiment, a 5 MHz probe was selected for metal surface defect detection, and the 

detection data results were reflected through a one-dimensional wavelet transform. Fig. 8(a) 

shows the defect echo signal detection results when the propagation distance is 3 mm. When the 

sampling points were between 2000 and 4000, the defect echo signal had significant fluctuations, 

and when the sampling points were 2500, the echo signal amplitude was 0.886 MHz. At the same 

time, signal fluctuations would attenuate with crystal reflection in the detection of metal surface 

defects, resulting in a significant decrease in the detection results of the echo signal. As shown in 

Fig. 8(b), the defect signal detection feedback result is shown when the propagation distance is 

5 mm. When the propagation distance was 5 mm, it was no longer possible to clearly distinguish 

each peak wave component from the time domain diagram based on the curve results, and the 

defect spectrum was significantly lower than the structural noise spectrum. Fig. 8(c) shows the 
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feedback results of defect signal detection when the propagation distance is 8 mm. When the 

propagation distance was greater than 10 mm, the structural spectrum energy was much higher 

than the defect spectrum energy, indicating that when the propagation distance was too large, the 

detection of metal surface defects would be significantly limited. Wavelet transform was used to 

analyze the spectrum signal, and 316 L steel was selected to detect metal surface defects. Fig. 9 

shows the results of surface leakage wave attenuation imaging. 

 
a) Propagation distance: 3 mm 

 
b) Propagation distance: 5 mm 

 
c) Propagation distance: 10 mm 

Fig. 8. Echo signal experimental detection and analysis results 

Fig. 9(a) to 9(e) show the results of metal surface defects at propagation distances of 5 mm, 

10 mm, 20 mm, 30 mm, and 35 mm, respectively. From the perspective of metal surface defect 

detection imaging, when the propagation distance was 5 mm, the defect signal and structural noise 

signal can be clearly seen, and the reflected signal corresponding to the defect signal can also be 

clearly identified. At a propagation distance of 10 mm, structural noise signals, defect signals, and 

reflected signals can still be recognized in the image, but echo signal diffusion problems occurred 

at the bottom edge of the image, and the image quality significantly decreased. When the 

propagation distance was 20 mm, there was a distortion problem between the defect signal and 

the structural noise signal at this moment with image quality further decreased. At a propagation 

distance of 30 mm, due to the increasingly serious problem of echo signal diffusion, the captured 

defect signals were difficult to distinguish and cannot meet the requirements for metal surface 

defect detection. When the propagation distance was 35 mm, the echo signal can be vaguely 

captured in the image, but the type of leakage surface signal cannot be accurately identified. 

6. Synthetic aperture-focused imaging experimental analysis based on PCA-WHMM 

To improve the imaging effect of metal surface defects, the proposed PCA-WHMM synthetic 

aperture-focused imaging technology was used to optimize the imaging quality. The experimental 
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testing system was Windows 10, and the processor was Intel i7. The analysis was completed under 

MATLAB software. In the experiment, a 10 mm position echo signal was selected for scanning 

and imaging analysis of metal surface defects, with a total of 600 data samples, 200 test sets, and 

200 validation sets. Train the image data using the proposed model, and identify the final imaging 

defects based on the solder joint standards in the image. The experimental results are shown in 

Fig. 10. 

(a)Echo imaging results 

at 5mm position

(b) Echo imaging results 

at 10mm position

(c) Echo imaging results 

at 20mm position

(d) Echo imaging results 

at 30mm position

(e) Echo imaging results 

at 35mm position

Scale: 1/6
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d) Echo imaging results at 30 mm position 
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e) Echo imaging results at 35 mm position 

Fig. 9. Relationship results between leakage surface wave distance and attenuation curve (Scale 1/6) 

 
a) Sampling hole echo signal diagram 

 

 
b) Echo signal diagram of sampling hole  

after PCA noise reduction 

Fig. 10. Noise reduction comparison results of surface leakage wave echo signals 

Fig. 10(a) and Fig. 10(b) show the original echo signal and the signal results after PCA noise 

reduction processing, respectively. According to the original image, due to the signal diffusion 

problem of surface leakage wave on the inspected metal surface, the metal surface defect detection 

imaging was affected. Therefore, PCA was used to process the 316 L metal defect signal over a 

relatively long distance, as shown in Fig. 10(b). From the graph results, the noise interference 

problem of the defect signal significantly decreased when the adoption time was 0.00003 s, but 

still faced the problem of signal diffusion. In response, the improved PCA-WHMM technology 

was used to denoise the echo signal at a long distance, as shown in Fig. 11. 
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a) Original echo signal diagram 

 
b) PCA noise reduction echo signal diagram 

 
c) PCA-WHMM noise reduction and  

reconstruction echo signal diagram 

 
d) Improve PCA-WHMM noise reduction and 

reconstruction echo signal diagram 

Fig. 11. Noise reduction results of echo signals by different algorithms 

In Fig. 11(a), Fig. 11(b), Fig. 11(c), and Fig. 11(d), the original echo signal, PCA noise 

reduction signal, PCA-WHMM noise reduction signal, and improved PCA-WHMM noise 

reduction signal results are shown respectively. From the noise reduction results, compared to 

PCA and PCA-WHMM noise reduction results, the improved PCA-WHMM noise reduction 

system had less noise. Especially in the improved PCA-WHMM, the wavelet algorithm was used 

to reconstruct the signal distortion problem, and the echo signal noise problem significantly 

decreased at 0 to 0.00005 seconds, and the curve was also more stable. The final echo signal noise 

reduction results are shown in Table 1. 

Table 1. Comparison results of echo signal after noise reduction processing 

Defect sample 

number 

Raw data 

SNR/dB 

PCA-WHMM Improve PCA-WHMM 

Reconstruct data 

SNR/dB 

D-

value/dB 

Reconstruct data 

SNR/dB 

D-

value/dB 

1 24.65 25.65 1.00 26.54 1 

2 24.65 25.75 1.01 26.34 2 

3 15.35 16.69 1.34 16.96 3 

4 13.54 14.23 0.69 15.67 4 

5 23.24 23.95 0.71 25.64 5 

6 17.35 17.96 0.61 18.64 6 

7 13.54 14.36 0.82 15.64 7 

8 16.24 17.95 0.71 18.64 8 

9 19.64 21.58 1.94 21.95 9 

10 17.36 18.65 1.29 19.64 10 

From the data in Table 1, both PCA-WHMM and improved PCA-WHMM algorithms can 

achieve noise reduction processing of original image data. In comparison, the improved 

PCA-WHMM algorithm had better processing effects on the original image data. For example, in 
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defect sample numbers 5, 6, and 7, the optimized reconstructed data SNR values of PCA-WHMM 

were 23.95 dB, 17.35 dB, and 13.54 dB, respectively. The improved PCA-WHMM was 25.64 dB, 

18.64 dB, and 15.64 dB, respectively, an overall improvement of 13.65 %. Improved PC-WHMM 

can significantly improve the SNR value of defect images and the detection effect of metal surface 

defects. As shown in Fig. 12, the final laser surfacing repair metal material surface defect detection 

results. 

From Fig. 12(a) to Fig. 12(f), common defects on metal surfaces such as root overlap, external 

undercut, internal undercut, root depression, weld burn through, and weld slag inclusion are 

detected. After improving the noise reduction processing of PCA-WHMM technology, it can 

accurately judge common metal surface defects and improve the recognition effect. Table 2 shows 

the comparison results of optimized laser surfacing repair metal surface performance parameters. 

In Table 2, the original performance is 100 % based on the original performance of 316 L 

metal surfaces. According to the comparison results in Table 2, the parameters such as hardness, 

toughness, and corrosion resistance of laser surfacing before optimization were only 85.6 %, 

81.7 %, and 95.6 % of the original ones and were 100.0 % after optimization. The repair effect of 

laser surfacing can be significantly improved using ultrasonic technology. 

(a) Root overlap (b) External bite (c)Internal biting

(d) Root concavity (e)Welding burnthrough (f) Welding slag inclusion
Scale: 1/4
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(d) Root concavity (e)Welding burnthrough (f) Welding slag inclusion
Scale: 1/4

 
b) External bite (a) Root overlap (b) External bite (c)Internal biting

(d) Root concavity (e)Welding burnthrough (f) Welding slag inclusion
Scale: 1/4
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(d) Root concavity (e)Welding burnthrough (f) Welding slag inclusion
Scale: 1/4
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(a) Root overlap (b) External bite (c)Internal biting

(d) Root concavity (e)Welding burnthrough (f) Welding slag inclusion
Scale: 1/4

 
e) Welding burnthrough 

(a) Root overlap (b) External bite (c)Internal biting

(d) Root concavity (e)Welding burnthrough (f) Welding slag inclusion
Scale: 1/4

 
f) Welding slag inclusion 

Fig. 12. Final laser surfacing repair metal material surface defect detection results (Scale: 1/4) 

Table 2. Comparison of optimized laser surfacing repair metal surface parameters 

Welding performance 

parameters 

Laser surfacing repair of metal 

surface / % 

Optimized laser surfacing for 

repairing metal surfaces / % 

Thermal crack resistance 65.6 95.5 

Kang cold cracking ability 75.7 96.2 

Hardness 85.6 95.7 

Toughness performance 81.7 95.6 

Fatigue strength 75.5 96.3 

Corrosion resistance 86.4 100.0 

7. Conclusions 

Metal surface defects frequently arise in metal parts repaired by surfacing welding, posing 

serious safety hazards to equipment production and safe use. Consequently, ultrasonic technology 

is employed to detect metal surface defects, aimed at enhancing the repair effect. To address 
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surface leakage wave diffusion's impact on defect signals, PCA and WHMM models are used for 

echo signal noise reduction processing. Synthetic aperture focusing technology is also utilized to 

facilitate the reconstruction of metal surface defect signal maps, thereby improving ultrasonic 

technology's detection effect on metal surface defects. In detecting varying ultrasonic propagation 

distances, as the distance increases, image quality depreciates due to signal diffusion challenges. 

When the propagation distance lies between 5 mm and 10 mm, there is a clear defect signal. To 

optimize results for longer-range echo signals, improved PCA-WHMM technology is utilized. For 

the defect sample numbers 5, 6, and 7, the optimized reconstructed data SNR values of 

PCA-WHMM stand at 23.95 dB, 17.35 dB, and 13.54 dB, respectively, while those of improved 

PCA-WHMM are 25.64 dB, 18.64 dB, and 15.64 dB. Compared to PCA-WHMM, improved 

PCA-WHMM enhances image construction quality by 13.65 %. Finally, comparing the repair 

effects of laser surfacing on 316 L metal before and after optimization, the optimized metal 

parameters such as hardness, fatigue strength, and corrosion resistance align with original 

performance. Improved PCA-WHMM significantly enhances defect image SNR value and meets 

metal surface defect detection requirements. However, this study also has its limitations. The 

experiment mainly targets laser surfacing's metal surface defect issues without accounting for 

more complex curved metal surface challenges, which require further improvement in the future. 
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