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Abstract. The conventional eigenvalue alarm mode has a high rate of false alarm and missed 
alarm for the low-speed heavy load super large rolling bearing. Besides, the traditional signal 
processing method such as envelope spectral analysis is difficult to extract its fault characteristic 
frequencies, resulting in a high rate of false diagnosis and missed diagnosis. In order to solve the 
above problems, an intelligent diagnosis method for the low-speed heavy load super large rolling 
bearing based on deep learning is proposed. The proposed method mainly utilizes the strong 
robustness of deep learning algorithm to the quality of original vibration data in the field of fault 
diagnosis. Firstly, an effective signal acquisition scheme is designed to solve the problem that the 
signal characteristics of low-speed heavy load super large rolling element bearing are difficult to 
be acquired. Then, the collected data are randomly divided into training sets, verification sets and 
test sets by using data enhancement technology. Subsequently, input the divided training set 
samples into 1-dimensional convolution neural network (1DCNN) deep learning model for 
learning and training to construct the 1DCNN learning model and set network structure 
parameters. Meanwhile, the optimal training model is obtained by validating the updating effect 
of model parameters through validation set. Finally, the test data is input into the trained model to 
realize intelligent diagnosis. Effectiveness of the proposed method is verified by the vibration data 
of a wind power main bearing. 
Keywords: low-speed heavy load, super large rolling element bearing, intelligent diagnosis, deep 
learning, 1DCNN. 

1. Introduction 

The super large rolling bearing refers to the bearing with a nominal outer diameter of more 
than 440 mm [1], which is used widely in energy, building materials, engineering construction 
and other fields. For example, the rolling element bearing used in the coal mill, the pitch bearing 
used in the wind turbine, and the main bearing used in the tunnel boring machine (TBM) are all 
super large rolling element bearings. Compared with conventional rolling element bearings, the 
type of rolling element bearing studied in the paper not only has common characteristics of huge 
size, low rotating speed, heavy load, slow change of fault features, but also has similar fault 
mechanism. In practical engineering, it is often no longer applicable to judge its running states 
based on conventional threshold alarm monitoring methods such as vibration amplitude, kurtosis 
index, etc. Fig. 1 presents the typical false and missed alarm cases of super large bearing based on 
conventional threshold alarm method in practical engineering application, and the above figure is 
a missed alarm event: the monitored vibration amplitude trend of a low-speed heavy load bearing 
does not exceed the alarm limit. However, it was found that serious wear failure had occurred 
when the machine is shut down and disassembled. The below figure shows a false alarm event 
caused by additional shock, which results in kurtosis alarm. Envelope spectral analysis based on 
resonance principle is one of the traditional classical methods for fault diagnosis of rolling element 
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bearing by extracting the fault characteristic frequencies effectively. Unfortunately, it would not 
work effectively on large rolling bearing running at low-speed. The main reason is that the fault 
in any parts (inner race, outer race, rolling element or cage) will lead to series of impacts whenever 
a rolling element comes in contact with the fault, and the energy of impacts is too weak under low 
speed to excite the resonance of the entire system including the bearing housing, sensors and 
structure on which the bearing is mounted. In the past decade, kinds of advanced signal processing 
techniques such as minimum entropy de-convolution [2], spectral kurtosis [3], higher order 
spectral technique [4], wavelet analysis [5-7], empirical mode decomposition [8-9], wavelet 
de-noising [10-11], wavelet decomposition tree [12], etc. have been proposed. However, the 
above-mentioned signal processing methods still would not give satisfactory diagnosis effect 
when the rotor supported by the super large bearing rotates at low speed, and the reason is still 
that the impulse strength caused by the fault is too weak [13]. 
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Fig. 1. False and missed alarm cases of super large bearing 

Generally, the rotating speed of rolling element bearing below 100 RPM could be considered 
as low speed [13]. In this paper, the rotating speed of the studied object is much lower, that is 
about 15 RPM. Although domestic and foreign scholars have made some progress in the research 
of fault diagnosis of low-speed heavy load super large rolling element bearing, especially in its 
structural mechanics research [14-16], testing and monitoring technology research [17-18], life 
prediction research [19-22], etc., the new monitoring technology in theoretical research is still far 
from mature and effective engineering application. In addition, the life prediction of super large 
rolling element bearing is mainly based on cumulative damage experiments or classic life 
calculation models, whose theory novelty is relatively limited. Intelligent diagnosis of low-speed 
heavy load super large rolling element bearing is an effective solution to the above problems, 
which focuses mainly in two directions: 1) Intelligent diagnosis based on shallow machine 
learning. 2) Intelligent diagnosis based on deep learning. As for the first direction, to achieve high 
classification accuracy, shallow machine learning is mainly based on effective feature extraction, 
and then uses the extracted feature vector as the training and test set of intelligent algorithms such 
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as back propagation neural network (BP), support vector machine (SVM), support vector data 
description (SVDD), hidden Markov model (HMM), etc. [15, 23-25]. Normally, shall machine 
learning has the disadvantages of requiring high-quality raw data and effective feature extraction 
algorithm. The second direction has become the current mainstream. At present, various deep 
learning algorithms have been used widely in fault diagnosis [26-32]. In view of the characteristics 
that deep learning does not require feature extraction and has strong robustness to the quality of 
original data, as well as the weak features caused by the complex operating conditions and slow 
change of features in the operation process of low-speed heavy load super large rolling element 
bearing, a corresponding intelligent diagnosis method is proposed. Main contributions of the paper 
are as follows: 1) Aiming at the problem that it is difficult to collect the characteristics of 
low-speed heavy load bearing’ vibration signal, a simple and effective hardware acquisition 
scheme is designed. 2) An effective 1DCNN model is trained and is suitable for fault diagnosis of 
low-speed heavy load super large rolling element bearing. 3) The proposed method has high 
diagnostic accuracy and could provide a new idea for the diagnosis of low-speed heavy load super 
large rolling element bearing. Besides, its advantage over the other shallow machine learning 
methods is also verified. 

The rest of the paper is organized as follows: Section 2 is dedicated to the theory of 1DCNN, 
and flow chart of the proposed method with its details are described in Section 3. Experiment 
verification is given in Section 4 and conclusion is obtained in Section 5 at last.  

2. 1DCNN 

CNN is one kind of deep learning, which extracts deep feature information layer by layer 
through convolution and pooling. At present, it could be divided into two types in view of input 
signals: 1DCNN and 2DCNN. The input of 2DCNN is two-dimensional image data, and if the 
signal collected by sensor in actual project is one-dimensional time signal, which needs to be 
converted into two-dimensional signals by certain methods such as short-time Fourier transform, 
wavelet transform, etc. During such conversion process, it could not be guaranteed whether there 
will be distortion, or even the risk of loss of useful information. Besides, the network layer of 
2DCNN is relatively more complex, and the above-mentioned shortcomings of 2DCNN may lead 
to insufficient feature learning in the training and learning of network model, resulting in decline 
of accuracy. 1DCNN takes one-dimensional signal as input directly, which could ensure that it 
contains all the characteristic information of the original signal and avoids the above problems of 
2DCNN. 1DCNN is a forward propagation artificial neural network, whose network parameters 
are updated by the back propagation algorithm [33]. Compared with 2DCNN, its network structure 
is simple and compact, and it can effectively carry out classification training with limited data. 
Flow chart of the used 1DCNN is shown in Fig. 2, whose main structure is mainly composed of 
convolution layer, activation layer and pooling layer. 
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Fig. 2. 1DCNN flow diagram 
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2.1. Convolution layer 

The convolution layer uses the given convolutional kernel to convolute the input features, and 
extracts the obvious fault impact features. It involves multiple feature maps with multiple neurons, 
and each neuron of each feature map is connected with the local area of the previous feature map 
through a set of weights. The local area is called the receptive field of neurons, and the group of 
weights is called convolution kernel. CNN could realize weight sharing when the same 
convolution kernel is used to calculate the input features, and weight sharing could reduce network 
complexity and avoid over-fitting problem. The calculation equation of convolution layer is given 
in Eq. (1): 

𝑥 = 𝑓 ቌ 𝑥ିଵ∈ெೕ ∗ 𝑤 + 𝑏ቍ, (1)

where 𝑥 is the output feature of the 𝑙th layer, 𝑓 represents activation function, 𝑀 is the input 
feature map, 𝑥ିଵ is the input information of the 𝑙th layer, 𝑤  is the convolution kernel weight 
and 𝑏 is offset. 

2.2. Activation layer 

The activation layer is mainly used for nonlinear transformation of convolution features by 
using activation functions, which enhances the representation ability of features, thus making it 
easier for the network to distinguish the features of different fault types. The Relu activation 
function shown in Eq. (2) is used in the paper: ReLu(𝑦) = ቄ𝑥,   𝑥 > 0,0,   𝑥 ≤ 0, (2)

where 𝑥 is the output of convolution layer, and 𝑦 is the activated value of 𝑥. 

2.3. Pooling layer 

After the convolution and activation operations of the input features, the noise interference 
could be eliminated to a certain extent through the pooling operation to increase the stability of 
the features. The pooling layer plays the role of down-sampling operation, and can aggregate the 
obtained features, so that similar features can be combined into one, which is used to reduce the 
dimension of features. In this experiment, the maximum pooling operation is used to locally 
maximize the perception domain of the output feature information, so as to obtain more 
representative features and avoid over-fitting: 𝑝ାଵ = max(ିଵ)ௐାଵழ௧ழௐ൛𝑞(𝑡)ൟ, 𝑗 = 1,2, …, (3)

where 𝑞(𝑡) is the value of the𝑡thneuron in the 𝑖th feature map in the 𝑙th layer. 𝑝ାଵ is the value 
of the (𝑙 + 1)th layer neuron. 𝑊 is pooling width, and 𝑗 is the size of sliding step. 

2.4. Full connection layer and output layer 

The pooled feature will go through the full connection layer to integrate the extracted feature 
information, and then classify and diagnose the forward calculated value through the activation 
function. Among them, the activation function of the last layer is the Softmax function, which 
could normalize the probability distribution of different types of fault characteristics, and 
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compress any real value vector into the value range [0, 1). The closer the value is to 1, the more 
likely the output is the actual fault type. 

The training and learning processes based on 1DCNN network model have five convolution 
stages for feature extraction, and each convolution stage contains a set of one-dimensional 
convolution layers for learning the characteristics of input signal. Batch normalization layer 
normalizes the feature vector of a batch output to appropriate data distribution, making the output 
value more stable, thus accelerating the model learning speed. The nonlinear unit activation 
function (Relu) performs nonlinear transformation on the extracted signal features to overcome 
the problem of gradient disappearance and accelerate the training speed. The maximum pooling 
layer is used to improve the local translation invariance characteristics of the input signal. The 
first convolution layer in the network model uses a wide convolution kernel to suppress the 
high-frequency noise in the input signal and capture the remote correlation features, while the 
other convolution layers use a smaller convolution kernel to obtain the complex representation of 
the characteristics of the input signal. The number of convolution kernel in the output layer, that 
is, the number of neurons, is determined by the type of state of the experimental data. In this paper, 
ADAM optimizer is used to update and optimize the weight and bias of the network. Softmax 
classifier is used as the classifier, and the evaluation standard is accuracy. 

3. Flow chart of the proposed method with its details 

The concrete steps of the proposed method are as following: 
Step 1: Signal collection: acceleration sensor is used to collect the vibration signal data of low-

speed heavy load super large rolling bearing under various known fault conditions and normal 
condition. 

Step 2: Sample division: set the sample length and use data enhancement technology to divide 
the collected vibration data randomly to obtain sample data, including training set, verification set 
and test set. 

Step 3: Build deep learning model and conduct training, and save the optimal model: build one 
learning model and set network structure parameters by using 1DCNN, then input the divided 
training set samples into the 1DCNN deep learning model for learning and training, and verify the 
updating effect of model parameters through the validation set to obtain the optimal training 
model. 

Step 4: Real-time evaluation: input the test data of low-speed heavy load super large rolling 
bearing into the above trained learning model to obtain the fault diagnosis results, and the final 
model parameters are saved. The vibration data of low-speed heavy load super large rolling 
bearing under unknown fault states is collected in real time, and the 1DCNN deep learning model 
is used for real-time fault detection to realize intelligent fault diagnosis. 

In step 1, the signal acquisition scheme is shown in Fig. 3 in view of the weak and slow change 
characteristics of the vibration signal of low-speed heavy load super large rolling bearing: 
compared with the signal acquisition scheme of ordinary bearing, the charge amplifier is added 
between the acceleration sensor and the collector in addition to use the high sensitivity vibration 
sensor. At the same time, the sampling parameters need to be set with low sampling frequency 
and long sampling length. 

Acceleration sensor with high 
sensitivity: 3.27pc/m/s²

Charge amplifier with 
sensitivity:100mv/pc Signal collector

 
Fig. 3. Signal acquisition strategy 

In step 2, as for the samples under each fault state, 70 % of the samples are randomly selected 
as the training set, 10 % as the verification set, and the remaining 20 % as the test set: set the 
length of sample data as 𝐿 firstly. Assume that the total length of one-dimensional original fault 
data under one kind of fault state of the low-speed heavy load super large rolling bearing is 𝑋, 
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then set a random number i in the range (0,𝑋 − 𝐿), and use data enhancement method of 
fixed-length random segmentation to segment the original vibration data to obtain n samples. The 
data enhancement method could enhance the randomness of the sample data, thus increasing the 
robustness of the model. Use same method to obtain the sample data under other fault conditions 
to form the original data set, and divide the original data set according to the set ratio. 

4. Experiment verification 

The experimental object is a main bearing of a wind power plant, whose actual picture is given 
in Fig. 4. Five measuring points are arranged for the main bearing as shown in Fig. 5 to collect the 
vibration signals using different sampling parameters, and the details of the sampling settings and 
sampled values are presented in Table 1. It should be noted that measuring points 1 and 2 are two 
sensors arranged in 90 degrees at the same monitoring position. The rotating speed of main bearing 
is 15 r/min, and the acceleration sensor is selected to be placed on measuring point 3, namely the 
main loading area through analyzing and comparing the time domain diagram, spectrum diagram 
and envelope spectrum diagram of the vibration data collected from the different measuring points 
shown in Fig. 5. Besides, it is more reasonable to set the sampling frequency and sampling length 
as 128 Hz and 16384 points respectively through comparing. 

Table 1. Details of the sampling parameters with the measured vibration amplitudes 
Measuring 

points 
Rotating speed 

(r/min) 
Sampling 

frequency (Hz) 
Sampling length 

(Points) 
Vibration amplitude 

（m/s/s） 

1 15 256 

512 0.02 
4096 0.02 
8192 0.02 

16384 0.02 
32768 0.02 

2 15 256 

512 0.02 
4096 0.02 
8192 0.02 

16384 0.02 
32768 0.02 

3 15 256 

512 0.3 
4096 0.3 
8192 0.3 

16384 0.32 
32768 0.32 

4 15 256 

512 0.01 
4096 0.01 
8192 0.01 

16384 0.01 
32768 0.01 

5 15 256 

512 0.01 
4096 0.01 
8192 0.01 

16384 0.01 
32768 0.01 

The signal acquisition scheme is used to collect the one-dimensional original fault signals of 
the test bearing in four states (state 1: outer race fault; state 2: inner race fault; state 3: cage fault; 
state 4: normal), and their time-domain waveform are given in Fig. 6. The envelope spectral 
analysis results corresponding to the four running states are shown Fig. 7. The fault characteristic 
frequencies of outer race, inner race and cage could be calculated respectively using the 
corresponding calculation formulas. However, the above fault characteristics frequencies could 
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not be reflected in Fig. 7 through comparison, which shows that the conventional envelope spectral 
feature extraction method is invalid in the diagnosis of low-speed heavy load super large rolling 
bearing. Complete the training of 1DCNN model and save the final model parameters. The model 
is used to classify the vibration signals of the experimental bearing in real time, and the sample 
data set and sample division are shown in Table 2. 

 
Fig. 4. The test rig 

3

1、2 4、5

 
Fig. 5. The five different measuring points 

  
Fig. 6. Time domain waveforms of the test bearing’ running states 

 
a) Envelope spectrum of running state 1 

 
b) Envelope spectrum of running state 2 

 
c) Envelope spectrum of running state 3 

 
d) Envelope spectrum of running state 4 

Fig. 7. Envelope spectral analysis results of the four states 

Fig. 8 shows the classification accuracy and loss function values obtained by 1DCNN network 
model after 50 iterations. The experimental results show that this method could converge to obtain 
higher accuracy and less loss results with only a few iterations, indicating that the network model 
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designed by this method is more reasonable. The structural parameters of the fault diagnosis model 
are presented in Table 3. 

Table 2. Sample data set and sample division 
Running states State 1 State 2 State 3 State 4 

Label 0 1 2 3 
Data length 512 512 512 512 

Training samples 700 700 700 700 
Verification samples 100 100 100 100 

Test samples 200 200 200 200 
 

 
a) Curve of training relating to accuracy 

 
b) Curve of training relating to validation loss 

Fig. 8. Curves of training relating to accuracy and validation loss 

Table 3. Structure parameters of the 1DCNN fault diagnosis model 
Model structure Convolution kernel  Number of convolution kernel  Step length 

Convolution layer 1 16 16 2 
Pooling layer 1 16 2 2 

Convolution layer 2 32 3 1 
Pooling layer 2 32 2 2 

Convolution layer 3 64 3 1 
Pooling layer 3 64 2 2 

Convolution layer 4 64 3 1 
Pooling layer 4 64 2 2 

Convolution layer 5 64 3 1 
Pooling layer 5 64 2 2 

Full collection layer 1 100 – 
Output layer 1 4 – 

Fig. 9 shows the confusion matrix diagram of classifying the data set in four states based on 
1DCNN model. The confusion matrix could record the classification details of each state labeled 
0-3, including the classification accuracy and misclassification number. The dark area on the 
diagonal of the confusion matrix represents the accuracy rate corresponding to each type of fault, 
200 is the number of test sets for each type of fault, and the values in other areas are the number 
of misclassifications, and it could be seen that the 1DCNN model has a high accuracy rate, up to 
97.13 %, which shows that the proposed method could be better applied on the fault diagnosis of 
low-speed heavy load super large rolling bearing, and could provide great feasibility. 

The three kinds of traditional machine learning methods (Multi features-SVDD, Multi 
features-BP, Multi features-HMM) are used for comparison, and the Multi features include 
standard deviation, peak, skewness, kurtosis, crest factor, shape factor. The comparison results of 
the four intelligent diagnosis methods are shown in Fig. 10: the quantitative comparison shows 
that the proposed method has higher diagnostic accuracy. The main reason is that the diagnosis 
accuracy of the traditional intelligent diagnosis algorithm mainly depends on the effective feature 
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vector, while the operation condition of the low-speed heavy load bearing is different from that of 
the conventional bearing, and the corresponding traditional time-domain features could not reflect 
its real operation characteristics effectively, resulting in the subsequent unsatisfactory diagnosis 
accuracy.  

 
Fig. 9. Classification ratio of the confusion matrix 

 
Fig. 10. Comparison results using different methods 

5. Conclusions 

In the paper, an intelligent diagnosis method for low-speed heavy load super large rolling 
bearing based on 1DCNN is proposed systematically, and its effectiveness is verified by relevant 
experiment on the main bearing test bench of wind power pitch. The specific conclusions are as 
follows: 

1) To solve the problem that the signal characteristics of low-speed heavy load super large 
rolling bearing change slowly and are difficult to be collected, a charge amplifier could be installed 
between the high-sensitivity sensor and the signal collector. It is more effective to collect the 
vibration signals in the bearing aera to reflect the fault characteristics by analyzing and comparing 
the time domain characteristics of vibration signals at different measuring points. 

2) The conventional effective feature extraction method of rolling bearing-envelope spectral 
analysis method is no longer applicable to fault characteristic frequency extraction of low-speed 
heavy load super large rolling bearing. The reason is that faults in any parts (inner race, outer race, 
rolling elements, cage) of the low-speed heavy load super large rolling bearing could lead to a 
series of impacts whenever a rolling element comes in contact with a fault. Unfortunately, the 
impulses generated by these impacts could not excite the entire system that includes bearing 
housing, sensors and structure on which the bearing is mounted due to the low rotating speed. 

3) 1DCNN deep learning is used and constructed in the paper with the corresponding network 
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structure parameters being set. The divided training set samples are input into the constructed 
1DCNN model for learning and training, then the updating effect of the model parameters is 
verified by the validation set, and the optimal trained model suitable for low-speed heavy load 
super large rolling bearing could be obtained. 

4) The obvious degree of characteristics of the vibration data of the main bearing area of the 
low-speed heavy load super large rolling bearing is more ideal than the other areas through 
analyzing and comparison. By increasing the amount of basic information contained in the data 
and combining with 1DCNN deep learning algorithm to extract the features of the original 
vibration signal automatically, the intelligent recognition bearing fault mode could be realized, 
and the recognition accuracy is up to 97 %. 

The proposed method could provide a new idea for the diagnosis of engineering low-speed 
heavy super large rolling element bearing. 
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